JPH11288729A - Solid electrolytic fuel cell - Google Patents

Solid electrolytic fuel cell

Info

Publication number
JPH11288729A
JPH11288729A JP10091296A JP9129698A JPH11288729A JP H11288729 A JPH11288729 A JP H11288729A JP 10091296 A JP10091296 A JP 10091296A JP 9129698 A JP9129698 A JP 9129698A JP H11288729 A JPH11288729 A JP H11288729A
Authority
JP
Japan
Prior art keywords
fuel cell
gas flow
separator
solid electrolyte
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10091296A
Other languages
Japanese (ja)
Inventor
Komei Kadokawa
角川  功明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP10091296A priority Critical patent/JPH11288729A/en
Publication of JPH11288729A publication Critical patent/JPH11288729A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent fracture of solid electrolytes caused by thermal stress, and to drive safely. SOLUTION: This fuel cell is constituted by alternately laminating cells where anodes 1 and cathodes 3 are formed on both sides of solid electrolytes 2, and separators 4A made of a NiCr heat resisting alloy. Oxidizing agent gas passage grooves 6A are formed by arranging and laminating gas passage groove forming members 7 having a thermal expansion coefficient smaller than that of the separators 4A and close to that of the solid electrolytes 2, and made of squared materials of LaMnO3 , between the cathodes 3 and the separators 4A.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、固体電解質を用
い、電気化学反応によってそのギブスの自由エネルギー
を電気エネルギーに変換する固体電解質型燃料電池に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte fuel cell which uses a solid electrolyte and converts Gibbs free energy into electric energy by an electrochemical reaction.

【0002】[0002]

【従来の技術】ジルコニア等の固体電解質を用いる固体
電解質型燃料電池は、その作動温度がおよそ1000℃と高
温であるため、発電効率が高い上に触媒が不要となるの
で燃料ガスの改質の簡素化が期待できるという利点を有
している。さらに、電解質が固体であるため取り扱いが
容易で、かつ長期安定性に優れるという特徴を有し、将
来の発電システムを担うものとして期待されている。
2. Description of the Related Art A solid electrolyte fuel cell using a solid electrolyte such as zirconia has a high operating temperature of about 1000 ° C., and thus has a high power generation efficiency and requires no catalyst. It has the advantage that simplification can be expected. Furthermore, since the electrolyte is solid, it is easy to handle and has excellent long-term stability, and is expected to be used as a power generation system in the future.

【0003】図5は、従来の固体電解質型燃料電池の基
本構成例を示す要部の断面図である。本構成はいわゆる
平板型の構成で、固体電解質2の両面にアノード1およ
びカソード3を配して形成された平板状のセルとセパレ
ータ4とを交互に積層し、両端より締付けて構成されて
おり、セパレータ4のアノード1に対向する主面には燃
料ガス通流溝5が、また、セパレータ4のカソード3に
対向するもう一方の主面には酸化剤ガス通流溝6が設け
られている。
FIG. 5 is a sectional view of a main part showing an example of a basic configuration of a conventional solid oxide fuel cell. This configuration is a so-called flat plate type configuration, in which a plate-like cell formed by disposing an anode 1 and a cathode 3 on both surfaces of a solid electrolyte 2 and a separator 4 are alternately stacked and fastened from both ends. A fuel gas flow groove 5 is provided on the main surface of the separator 4 facing the anode 1, and an oxidizing gas flow groove 6 is provided on the other main surface of the separator 4 facing the cathode 3. .

【0004】本構成において、外部より水素を含む燃料
ガスと酸化剤ガスを供給すると、燃料ガス通流溝5を流
れてきた燃料ガスは、アノード1の内部を拡散して固体
電解質2に到達する。一方、酸化剤ガス通流溝6を流れ
てきた酸化剤ガスは、カソード3において還元されて酸
化物イオンとなり、固体電解質2の内部を移動し、固体
電解質2とアノード1の界面において、燃料ガス中の水
素と電気化学反応を生じて水を生成し、同時に電気エネ
ルギーが外部に取り出されることとなる。
In this configuration, when a fuel gas containing hydrogen and an oxidizing gas are supplied from the outside, the fuel gas flowing through the fuel gas flow groove 5 diffuses inside the anode 1 and reaches the solid electrolyte 2. . On the other hand, the oxidizing gas flowing through the oxidizing gas flow groove 6 is reduced at the cathode 3 to become oxide ions, moves inside the solid electrolyte 2, and at the interface between the solid electrolyte 2 and the anode 1, fuel gas An electrochemical reaction occurs with the hydrogen inside to produce water, and at the same time, electric energy is extracted to the outside.

【0005】[0005]

【発明が解決しようとする課題】上記のごとき平板型固
体電解質型燃料電池においては、セパレータ4には、通
常 NiCr 系耐熱合金が用いられているが、室温から作動
温度の約1000℃に至る温度領域においては、NiCr系耐熱
合金の熱膨張係数はおおよそ 16 ×10-6/℃で、固体電
解質2として用いられるYSZの熱膨張係数 10.5 ×10
-6/℃に比較してかなり大きい。このため、固体電解質
2の両面にアノード1およびカソード3を配して形成し
たセルとセパレータ4とを交互に積層し、両端より締付
けて構成した燃料電池を作動温度へと昇温すると、固体
電解質2とセパレータ4の熱膨張差によって、固体電解
質2には引っ張り応力が、またセパレータ4には圧縮応
力が加わることとなり、強度に劣る固体電解質2に割れ
が生じるという問題点があった。
In the flat solid electrolyte fuel cell as described above, the separator 4 is usually made of a heat-resistant NiCr-based alloy. In the region, the thermal expansion coefficient of the NiCr heat-resistant alloy is approximately 16 × 10 −6 / ° C., and the thermal expansion coefficient of YSZ used as the solid electrolyte 2 is 10.5 × 10
It is considerably larger than -6 / ° C. For this reason, when a fuel cell formed by alternately laminating cells formed by disposing anodes 1 and cathodes 3 on both surfaces of a solid electrolyte 2 and separators 4 and tightening from both ends to the operating temperature, the solid electrolyte 2 Due to the difference in thermal expansion between the solid electrolyte 2 and the separator 4, a tensile stress is applied to the solid electrolyte 2 and a compressive stress is applied to the separator 4, which causes a problem that the solid electrolyte 2 having poor strength is cracked.

【0006】また、NiCr系耐熱合金は加工が容易でない
ので、燃料ガス通流溝5および酸化剤ガス通流溝6を備
えたセパレータ4の加工にはコストがかかり、極めて高
価になるという難点があった。本発明は、上記のごとき
従来技術の問題点を考慮してなされたもので、本発明の
目的は、作動温度へ昇温しても固体電解質の破損を生じ
ることなく安全に運転でき、かつセパレータの加工が容
易で低コストで製作できる固体電解質型燃料電池を提供
することにある。
Further, since the NiCr-based heat-resistant alloy is not easily processed, the processing of the separator 4 having the fuel gas flow grooves 5 and the oxidizing gas flow grooves 6 is costly and extremely expensive. there were. The present invention has been made in view of the problems of the prior art as described above, and an object of the present invention is to operate safely without causing damage to the solid electrolyte even when the temperature is raised to the operating temperature, and to provide a separator. An object of the present invention is to provide a solid oxide fuel cell which can be easily processed at a low cost.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、固体電解質の両面にアノード
とカソードを配してなる平板状のセルとガス不透過性材
料よりなるセパレータを交互に積層して構成される固体
電解質型燃料電池において、セルとセパレータとの間
に、導電性材料又は表面に導電性を付与した非導電性材
料で、かつ、室温より運転温度に至る温度領域の熱膨張
係数がセパレータの熱膨張係数より小さく固体電解質の
熱膨張係数と同等以上の材料により形成されたガス流路
構成部材を配することとし、例えば、 (1)セルのカソード側とセパレータとの間に配される
ガス流路構成部材を、例えば LaMnO3 又は LaCrO3 のご
とき導電性セラミック、又は同種の導電性セラミックを
表面に被覆した耐熱性金属により形成することとする。
In order to achieve the above object, the present invention provides a flat cell having an anode and a cathode on both surfaces of a solid electrolyte and a separator made of a gas impermeable material. In a solid oxide fuel cell configured by stacking alternately, between the cell and the separator, a conductive material or a non-conductive material having a surface provided with conductivity, and a temperature range from room temperature to an operating temperature. A gas flow path constituent member formed of a material having a thermal expansion coefficient smaller than that of the separator and smaller than or equal to the thermal expansion coefficient of the solid electrolyte is provided. For example, (1) the cell cathode side and the separator the gas flow path constituting member is formed by, for example, LaMnO 3 or LaCrO 3 of such electrically conductive ceramic, or a heat resistant metal conductive ceramic of the same type was coated on the surface disposed between the And the.

【0008】(2)さらに、上記(1)のガス流路構成
部材を、表面に同種の導電性セラミックのペーストを塗
布して組み込むこととする。 (3)また、セルのアノード側とセパレータとの間に配
されるガス流路構成部材を、Ni−YSZサーメット、又
は耐熱性金属、又はNiを被覆した耐熱性金属により形成
することとする。
(2) Further, the gas flow path constituting member of (1) is incorporated by applying the same kind of conductive ceramic paste on the surface. (3) Further, the gas flow path constituting member disposed between the anode side of the cell and the separator is made of Ni-YSZ cermet, a heat-resistant metal, or a heat-resistant metal coated with Ni.

【0009】(4)さらに、上記(3)のガス流路構成
部材を、表面に Ni ペーストを塗布し、あるいは Ni フ
ェルトを挿入してて組み込むこととする。 (5)また、セルのアノード側とセパレータとの間に配
されるガス流路構成部材を、例えば Ni フェルトのごと
き金属フェルトで加圧、挟持した非導電性セラミックよ
り構成することとする。
(4) Further, the gas flow path constituting member of (3) is incorporated by applying a Ni paste on the surface or inserting a Ni felt. (5) Further, the gas flow path constituting member disposed between the anode side of the cell and the separator is made of a non-conductive ceramic pressed and sandwiched by a metal felt such as a Ni felt.

【0010】セルとセパレータとの間に、上記のごと
く、導電性を有し、かつ熱膨張係数がセパレータの熱膨
張係数より小さく固体電解質の熱膨張係数と同等以上の
材料により形成されたガス流路構成部材を配することと
すれば、燃料電池を作動温度へと昇温したとき、固体電
解質に接して配されるガス流路構成部材の熱膨張量はセ
パレータの熱膨張量に比較して低く抑えられるので、固
体電解質に加わる熱応力が緩和されることとなり、割れ
の発生が防止される。
As described above, a gas flow formed between the cell and the separator by a material having conductivity and a thermal expansion coefficient smaller than the thermal expansion coefficient of the separator and equal to or higher than the thermal expansion coefficient of the solid electrolyte. If the passage component is arranged, when the fuel cell is heated to the operating temperature, the amount of thermal expansion of the gas passage component arranged in contact with the solid electrolyte is compared with the amount of thermal expansion of the separator. Since the temperature is kept low, the thermal stress applied to the solid electrolyte is reduced, and the occurrence of cracks is prevented.

【0011】特に、上記(1)のごとくとすれば、セル
のカソード側に加わる熱応力が緩和される。また、上記
(2)のごとくとすれば、セルのカソード側とセパレー
タとの間に配されるガス流路構成部材が良好な導電性を
保持して組み込まれるので、内部損失が効果的に低減さ
れる。また、上記(3)のごとくとすれば、セルのアノ
ード側に加わる熱応力が緩和される。また、上記(4)
のごとくとすれば、セルのアノード側とセパレータとの
間に配されるガス流路構成部材が良好な導電性を保持し
て組み込まれるので、内部損失が効果的に低減される。
また(5)のごとくとすれば、セルのアノード側に加わ
る熱応力が極めて微少に抑えられる。
In particular, if the above (1) is satisfied, the thermal stress applied to the cathode side of the cell is reduced. Further, according to the above (2), the gas flow path constituting member disposed between the cathode side of the cell and the separator is incorporated while maintaining good conductivity, so that the internal loss is effectively reduced. Is done. In addition, when the above condition (3) is satisfied, the thermal stress applied to the anode side of the cell is reduced. In addition, the above (4)
According to the above, the gas flow path constituting member disposed between the anode side of the cell and the separator is incorporated while maintaining good conductivity, so that the internal loss is effectively reduced.
In addition, according to (5), the thermal stress applied to the anode side of the cell can be extremely small.

【0012】[0012]

【発明の実施の形態】以下に、本発明の実施の形態を例
を挙げて説明する。 <実施例1>図1は、本発明の固体電解質型燃料電池の
第1の実施例の基本構成を示す要部の断面図である。本
構成は、図5に示した従来例と基本的には同じ構成で、
固体電解質2の両面にアノード1とカソード3を配した
セルと、NiCr耐熱合金よりなるセパレータ4Aを交互に
積層して構成されている。本構成と従来例の構成との差
異は、セルのカソード3に面して配される酸化剤ガス通
流溝6Aの形成方法にあり、従来例ではセパレータ4に
酸化剤ガス通流溝6を加工して形成していたのに対し
て、本実施例では、導電性セラミックの LaMnO3 の角材
からなるガス通流溝形成部材7に LaMnO3 のペーストを
塗布し、図2に配置例を示したごとく、セル10のカソ
ード3の上に配列し、表面に同様の LaMnO3 のペースト
を塗布したセパレータ4Aと組み合わせて積層すること
により、酸化剤ガス通流溝6Aを形成している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to examples. <Embodiment 1> FIG. 1 is a sectional view of a main part showing a basic structure of a first embodiment of a solid oxide fuel cell according to the present invention. This configuration is basically the same as the conventional example shown in FIG.
A cell in which an anode 1 and a cathode 3 are arranged on both surfaces of a solid electrolyte 2 and separators 4A made of a NiCr heat-resistant alloy are alternately stacked. The difference between the present configuration and the configuration of the conventional example lies in the method of forming the oxidizing gas flow groove 6A disposed facing the cathode 3 of the cell. In the conventional example, the oxidizing gas flow groove 6 is formed in the separator 4. On the other hand, in this embodiment, a paste of LaMnO 3 is applied to the gas flow groove forming member 7 made of a square material of LaMnO 3 of a conductive ceramic, and an arrangement example is shown in FIG. As described above, the oxidizing gas passage grooves 6A are formed by arranging the cells on the cathode 3 of the cell 10 and laminating them in combination with the separator 4A having the same LaMnO 3 paste applied on the surface.

【0013】本構成では、NiCr系耐熱合金よりなるセパ
レータ4Aの室温より運転温度に至る温度領域の熱膨張
係数が 16 ×10-6/℃、固体電解質2の熱膨張係数が 1
0.5×10-6/℃であるのに対して、セル10のカソード
3とセパレータ4Aとの間に配された LaMnO3 からなる
ガス通流溝形成部材7の熱膨張係数は 12 ×10-6/℃
で、セパレータ4Aの熱膨張係数よりかなり小さく、固
体電解質2の熱膨張係数に近接した熱膨張係数を備えて
いる。したがって、本構成の電池を運転温度に昇温した
時、固体電解質2に加わる熱膨張差による熱応力は、従
来例に比べて大幅に低減されるので、従来見られたよう
な固体電解質の割れを生じる恐れがなくなる。また、ガ
ス通流溝形成部材7は導電性セラミックの LaMnO3 の角
材により構成されており、さらに LaMnO3 のペーストを
塗布して組み込まれているので、内部抵抗は微少に抑え
られ、良好な発電特性が得られる。
In this configuration, the thermal expansion coefficient of the separator 4A made of a NiCr heat-resistant alloy in the temperature range from room temperature to the operating temperature is 16 × 10 −6 / ° C., and the thermal expansion coefficient of the solid electrolyte 2 is 1
In contrast to 0.5 × 10 −6 / ° C., the coefficient of thermal expansion of the gas flow groove forming member 7 made of LaMnO 3 disposed between the cathode 3 of the cell 10 and the separator 4A is 12 × 10 −6. / ℃
The thermal expansion coefficient is considerably smaller than the thermal expansion coefficient of the separator 4A, and is close to the thermal expansion coefficient of the solid electrolyte 2. Therefore, when the battery of the present configuration is heated to the operating temperature, the thermal stress due to the difference in thermal expansion applied to the solid electrolyte 2 is greatly reduced as compared with the conventional example, so that the solid electrolyte cracks as seen in the prior art can be obtained. Is no longer a possibility. Further, the gas flow groove forming member 7 is made of a conductive ceramic LaMnO 3 material, and is further coated with a LaMnO 3 paste, so that the internal resistance can be suppressed to a very small value and good power generation can be achieved. Characteristics are obtained.

【0014】また、本構成では、セパレータ4Aに酸化
剤ガス通流溝を加工する必要がなくなるので、加工費が
低減し、安価に製作できることとなる。なお、本実施例
では、ガス通流溝形成部材7を導電性セラミックの LaM
nO3 の角材により構成しているが、 LaMnO3 の角材の代
わりに、セパレータ4Aより熱膨張係数が小さく、固体
電解質2より熱膨張係数の大きい FeCr 系耐熱合金を用
いることとし、表面に LaMnO3 をコーティングしてガス
通流溝形成部材を構成することとしても、同様な効果が
得られる。
Further, according to this configuration, it is not necessary to form the oxidant gas passage groove in the separator 4A, so that the processing cost is reduced and the separator 4A can be manufactured at a low cost. In this embodiment, the gas flow groove forming member 7 is made of conductive ceramic LaM.
Although constituted by square material of nO 3, instead of the square timber of LaMnO 3, lower thermal expansion coefficient than the separator 4A, and the use of large FeCr-based heat-resistant alloy of the thermal expansion coefficient of a solid electrolyte 2, LaMnO the surface 3 The same effect can also be obtained by forming a gas flow groove forming member by coating the material.

【0015】<実施例2>図3は、本発明の固体電解質
型燃料電池の第2の実施例の基本構成を示す要部の断面
図である。第1の実施例が、セルのカソード3の表面に
ガス通流溝形成部材7を配列して酸化剤ガス通流溝6A
を形成したことを特徴としているのに対して、本実施例
の特徴は、セルのアノード1に面して形成される燃料ガ
ス通流溝の形成方法にある。すなわち、本実施例では、
セルのアノード1の上に,表面に水蒸気酸化防止用の 1
0 μmの Ni メッキを施した FeCr 系耐熱合金の角材よ
りなるガス通流溝形成部材7Aを配列し、セパレータ4
Bと組み合わせて積層することにより、燃料ガス通流溝
5Aを形成している。
<Embodiment 2> FIG. 3 is a sectional view of a main part showing a basic structure of a solid oxide fuel cell according to a second embodiment of the present invention. In the first embodiment, the gas flow groove forming member 7 is arranged on the surface of the cathode 3 of the cell, and the oxidizing gas flow groove 6A is formed.
The feature of the present embodiment lies in the method of forming the fuel gas flow groove formed facing the anode 1 of the cell. That is, in this embodiment,
On the anode 1 of the cell, a surface for preventing steam oxidation 1
A gas flow groove forming member 7A made of a square material of a FeCr-based heat-resistant alloy plated with 0 μm Ni is arranged, and a separator 4 is formed.
By stacking in combination with B, a fuel gas flow groove 5A is formed.

【0016】本構成では、ガス通流溝形成部材7Aを形
成している FeCr 系耐熱合金が、セパレータ4Bを形成
している NiCr 系耐熱合金より小さく、固体電解質2よ
り大きい熱膨張係数を備えているので、第1の実施例と
同様に、運転温度に昇温した時の固体電解質2に加わる
熱膨張差による熱応力が緩和され、固体電解質の割れを
生じる恐れがなくなる。
In this configuration, the FeCr-based heat-resistant alloy forming the gas flow groove forming member 7A is smaller than the NiCr-based heat-resistant alloy forming the separator 4B and has a larger thermal expansion coefficient than the solid electrolyte 2. Therefore, as in the first embodiment, the thermal stress due to the difference in thermal expansion applied to the solid electrolyte 2 when the temperature is raised to the operating temperature is reduced, and the solid electrolyte is not likely to crack.

【0017】また、本構成では、セパレータ4Bに燃料
ガス通流溝を加工する必要がなくなるので、加工費が低
減し、安価に製作できることとなる。なお、上記の構成
において、 Ni メッキを施した FeCr 系耐熱合金の角材
よりなるガス通流溝形成部材7Aを組み込む際に、 Ni
ペーストを塗布して組み込めば、接触抵抗が微少に抑え
られ、内部損失の低減に効果的である。また、 Ni ペー
ストを塗布する代わりに、接触面に Ni フェルトを挿入
して組み立てることとしても、接触抵抗が微少に抑えら
れ、内部損失が低減する。
Further, according to this configuration, since it is not necessary to process the fuel gas flow groove in the separator 4B, the processing cost is reduced, and the separator 4B can be manufactured at a low cost. In the above configuration, when the gas flow groove forming member 7A made of a Ni-plated FeCr-based heat-resistant alloy square member is incorporated, Ni
If the paste is applied and incorporated, the contact resistance can be suppressed to a very small value, which is effective in reducing the internal loss. Also, instead of applying the Ni paste, assembling by inserting Ni felt into the contact surface, the contact resistance is suppressed very small and the internal loss is reduced.

【0018】また、上記の構成において、FeCr系耐熱合
金に代わってアノード1を形成しているNi/YSZを用
い、その角材によりガス通流溝形成部材7Aを構成する
こととしても、同様の効果が得られる。 <実施例3>図4は、本発明の固体電解質型燃料電池の
第3の実施例の燃料ガス通流溝の形成方法を示す模式図
である。
The same effect can be obtained by using the Ni / YSZ forming the anode 1 instead of the FeCr heat-resistant alloy and forming the gas flow groove forming member 7A by the square material in the above configuration. Is obtained. <Embodiment 3> FIG. 4 is a schematic view showing a method of forming a fuel gas passage groove according to a third embodiment of the solid oxide fuel cell of the present invention.

【0019】本構成の燃料ガス通流溝は、図4(a)に
示したごとく、幅2mm、厚さ1mmの断面を有するジルコ
ニアの角材21を、厚さ1.5mm の Ni フェルト22の上
に配列し、さらに上部に同様の Ni フェルト22を乗せ
たのち、上下方向に加圧する。図4(b)は加圧後の状
態を示したもので、ジルコニアの角材21の上面と下面
には圧縮された Ni フェルト22が残存し、ジルコニア
の角材21のない部分では、上下の Ni フェルト22が
互いに接触して配される。 Ni フェルト22は多孔質で
あるので燃料ガスの通流が可能であり、ジルコニアの角
材21のない部分に燃料ガス通流溝5Bが形成されるこ
ととなる。また、 Ni フェルト22により導電性が確保
されるので、角材21は導電性を備える必要はなく、こ
の例のようにジルコニアを用いることが可能である。
As shown in FIG. 4 (a), the fuel gas flow groove of this configuration is made by placing a zirconia square member 21 having a cross section of 2 mm in width and 1 mm in thickness on a Ni felt 22 having a thickness of 1.5 mm. After arranging and further placing the same Ni felt 22 on the upper part, pressure is applied vertically. FIG. 4B shows the state after pressurization. The compressed Ni felt 22 remains on the upper surface and the lower surface of the zirconia square member 21, and the upper and lower portions of the zirconia square member 21 do not have the Ni felt 22. 22 are arranged in contact with each other. Since the Ni felt 22 is porous, the fuel gas can flow therethrough, and the fuel gas flow groove 5B is formed in a portion where the zirconia square member 21 is not provided. Further, since the Ni felt 22 ensures conductivity, the square member 21 does not need to have conductivity, and zirconia can be used as in this example.

【0020】本構成とすれば、熱膨張により Ni フェル
ト22に生じる熱応力は微少であり、また、角材21に
用いているジルコニアは固体電解質と同種の材料である
ので、固体電解質に加わる熱応力は極めて微少である。
したがって、熱応力による固体電解質の破損の恐れはな
い。また、本構成においても、セパレータに燃料ガス通
流溝を加工する必要がなくなるので、加工費が低減し、
安価に製作できることとなる。
With this configuration, the thermal stress generated in the Ni felt 22 due to thermal expansion is very small, and the zirconia used for the square bar 21 is the same type of material as the solid electrolyte. Is extremely small.
Therefore, there is no possibility that the solid electrolyte may be damaged by thermal stress. Also in this configuration, since it is not necessary to process the fuel gas flow grooves in the separator, the processing cost is reduced,
It can be manufactured at low cost.

【0021】なお、本構成では、燃料ガス通流溝5Bを
形成する角材21としてジルコニアを用いているが、ジ
ルコニアに限定されるものではなく、熱応力を低減でき
るように熱膨張係数を考慮して選定すればよい。また、
本構成では、 Ni フェルト22を用いているが、その他
の金属フェルトを用いることとしてもよい。
In this configuration, zirconia is used as the square member 21 forming the fuel gas flow groove 5B. However, the material is not limited to zirconia, and the thermal expansion coefficient is taken into consideration so as to reduce thermal stress. You just need to select it. Also,
In this configuration, the Ni felt 22 is used, but another metal felt may be used.

【0022】[0022]

【発明の効果】上述のように、本発明によれば、固体電
解質の両面にアノードとカソードを配してなる平板状の
単位セルとガス不透過性材料よりなるセパレータを交互
に積層して構成される固体電解質型燃料電池において、
単位セルとセパレータとの間に、導電性材料又は表面に
導電性を付与した非導電性材料で、かつ、室温より運転
温度に至る温度領域の熱膨張係数がセパレータの熱膨張
係数より小さく固体電解質の熱膨張係数と同等以上の材
料により形成されたガス流路構成部材を配することとし
たので、固体電解質とセパレータとの間に生じる熱応力
が緩和され、固体電解質の破損を生じることなく安全に
運転できる固体電解質型燃料電池が得られることとなっ
た。
As described above, according to the present invention, a flat unit cell having an anode and a cathode disposed on both surfaces of a solid electrolyte and a separator made of a gas impermeable material are alternately laminated. In the solid oxide fuel cell to be
A solid electrolyte between the unit cell and the separator, which is a conductive material or a non-conductive material having conductivity imparted to its surface, and whose thermal expansion coefficient in the temperature range from room temperature to the operating temperature is smaller than that of the separator. Since the gas flow path component made of a material equal to or more than the thermal expansion coefficient of the solid electrolyte is arranged, the thermal stress generated between the solid electrolyte and the separator is reduced, and the solid electrolyte can be safely Thus, a solid oxide fuel cell that can be operated in a short time was obtained.

【0023】また、セパレータへの反応ガス通流溝の加
工工数が削減されるので、固体電解質型燃料電池を低コ
ストで製作できることとなった。
In addition, since the number of processing steps for forming the reaction gas flow groove to the separator is reduced, a solid oxide fuel cell can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体電解質型燃料電池の第1実施例の
基本構成を示す要部の断面図
FIG. 1 is a sectional view of a main part showing a basic configuration of a first embodiment of a solid oxide fuel cell according to the present invention;

【図2】第1の実施例のガス通流溝形成部材7の配置例
を示す斜視図
FIG. 2 is a perspective view showing an arrangement example of a gas flow groove forming member 7 of the first embodiment.

【図3】本発明の固体電解質型燃料電池の第2実施例の
基本構成を示す要部の断面図
FIG. 3 is a sectional view of a main part showing a basic configuration of a second embodiment of the solid oxide fuel cell according to the present invention;

【図4】本発明の固体電解質型燃料電池の第3実施例の
燃料ガス通流溝の形成方法を示す模式図
FIG. 4 is a schematic view showing a method for forming a fuel gas flow groove according to a third embodiment of the solid oxide fuel cell of the present invention.

【図5】従来の固体電解質型燃料電池の基本構成例を示
す要部の断面図
FIG. 5 is a cross-sectional view of a main part showing a basic configuration example of a conventional solid oxide fuel cell.

【符号の説明】[Explanation of symbols]

1 アノード 2 固体電解質 3 カソード 4A セパレータ 4B セパレータ 5 燃料ガス通流溝 5A 燃料ガス通流溝 5B 燃料ガス通流溝 6 酸化剤ガス通流溝 6A 酸化剤ガス通流溝 7 ガス通流溝形成部材 7A ガス通流溝形成部材 10 セル 21 角材 22 Niフェルト DESCRIPTION OF SYMBOLS 1 Anode 2 Solid electrolyte 3 Cathode 4A Separator 4B Separator 5 Fuel gas flow groove 5A Fuel gas flow groove 5B Fuel gas flow groove 6 Oxidant gas flow groove 6A Oxidant gas flow groove 7 Gas flow groove forming member 7A Gas flow groove forming member 10 Cell 21 Square member 22 Ni felt

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】固体電解質の両面にアノードとカソードを
配してなる平板状のセルとガス不透過性材料よりなるセ
パレータを交互に積層して構成される固体電解質型燃料
電池において、 セルとセパレータとの間に、導電性材料又は表面に導電
性を付与した非導電性材料で、かつ、室温より運転温度
に至る温度領域の熱膨張係数がセパレータの熱膨張係数
より小さく固体電解質の熱膨張係数と同等以上の材料に
より形成されたガス流路構成部材が配されていることを
特徴とする固体電解質型燃料電池。
1. A solid oxide fuel cell comprising a solid electrolyte and a flat cell having an anode and a cathode disposed on both surfaces thereof and a separator made of a gas-impermeable material, which are alternately stacked. Between a conductive material or a non-conductive material having conductivity imparted to its surface, and a coefficient of thermal expansion in a temperature range from room temperature to an operating temperature is smaller than a coefficient of thermal expansion of the separator; 1. A solid oxide fuel cell comprising a gas flow path component formed of a material equivalent to or higher than that of the solid electrolyte fuel cell.
【請求項2】セルのカソード側とセパレータとの間に配
された前記のガス流路構成部材が、導電性セラミック、
又は導電性セラミックを表面に被覆した耐熱性金属によ
り形成されていることを特徴とする請求項1に記載の固
体電解質型燃料電池。
2. The gas flow path constituting member disposed between a cathode side of a cell and a separator comprises a conductive ceramic,
2. The solid oxide fuel cell according to claim 1, wherein the solid oxide fuel cell is formed of a heat-resistant metal having a surface coated with a conductive ceramic. 3.
【請求項3】前記のガス流路構成部材が、表面に導電性
セラミックのペーストを塗布して組み込まれていること
を特徴とする請求項2に記載の固体電解質型燃料電池。
3. The solid oxide fuel cell according to claim 2, wherein said gas flow path constituting member is incorporated by applying a conductive ceramic paste to a surface thereof.
【請求項4】前記の導電性セラミックが LaMnO3 又は L
aCrO3 であることを特徴とする請求項2、3又は4に記
載の固体電解質型燃料電池。
4. The conductive ceramic is LaMnO 3 or L
solid oxide fuel cell according to claim 2, 3 or 4, characterized in that a Acro 3.
【請求項5】セルのアノード側とセパレータとの間に配
された前記のガス流路構成部材が、Ni−YSZサーメッ
トにより形成されていることを特徴とする請求項1に記
載の固体電解質型燃料電池。
5. The solid electrolyte type according to claim 1, wherein the gas flow path constituting member disposed between the anode side of the cell and the separator is formed of Ni-YSZ cermet. Fuel cell.
【請求項6】セルのアノード側とセパレータとの間に配
された前記のガス流路構成部材が、耐熱性金属、又は N
i を被覆した耐熱性金属により形成されていることを特
徴とする請求項1に記載の固体電解質型燃料電池。
6. The gas flow path constituting member disposed between the anode side of the cell and the separator is made of a heat-resistant metal or N 2
2. The solid oxide fuel cell according to claim 1, wherein the solid electrolyte fuel cell is formed of a heat-resistant metal covering i.
【請求項7】前記のガス流路構成部材が、表面に Ni ペ
ーストを塗布し、あるいは Ni フェルトを挿入して、組
み込まれていることを特徴とする請求項5又は6に記載
の固体電解質型燃料電池。
7. The solid electrolyte type according to claim 5, wherein the gas flow path constituting member is incorporated by applying a Ni paste on the surface or inserting a Ni felt. Fuel cell.
【請求項8】セルのアノード側とセパレータとの間に配
された前記のガス流路構成部材が、金属フェルトの層間
に加圧、挟持された非導電性セラミックよりなることを
特徴とする請求項1に記載の固体電解質型燃料電池。
8. The gas flow path member disposed between the anode side of the cell and the separator is made of a non-conductive ceramic pressed and sandwiched between metal felt layers. Item 2. The solid oxide fuel cell according to Item 1.
【請求項9】前記の金属フェルトが、 Ni フェルトであ
ることを特徴とする請求項8に記載の固体電解質型燃料
電池。
9. The solid oxide fuel cell according to claim 8, wherein said metal felt is Ni felt.
JP10091296A 1998-04-03 1998-04-03 Solid electrolytic fuel cell Pending JPH11288729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10091296A JPH11288729A (en) 1998-04-03 1998-04-03 Solid electrolytic fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10091296A JPH11288729A (en) 1998-04-03 1998-04-03 Solid electrolytic fuel cell

Publications (1)

Publication Number Publication Date
JPH11288729A true JPH11288729A (en) 1999-10-19

Family

ID=14022518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10091296A Pending JPH11288729A (en) 1998-04-03 1998-04-03 Solid electrolytic fuel cell

Country Status (1)

Country Link
JP (1) JPH11288729A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109625A (en) * 2001-09-28 2003-04-11 Mitsubishi Materials Corp Collector and solid electrolyte fuel cell
WO2007068510A1 (en) * 2005-12-12 2007-06-21 Forschungszentrum Jülich GmbH Reoxidation-stable high-temperature fuel cell
JP2012038646A (en) * 2010-08-10 2012-02-23 Nippon Telegr & Teleph Corp <Ntt> Operation method of flat-plate solid oxide fuel cell module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109625A (en) * 2001-09-28 2003-04-11 Mitsubishi Materials Corp Collector and solid electrolyte fuel cell
WO2007068510A1 (en) * 2005-12-12 2007-06-21 Forschungszentrum Jülich GmbH Reoxidation-stable high-temperature fuel cell
JP2012038646A (en) * 2010-08-10 2012-02-23 Nippon Telegr & Teleph Corp <Ntt> Operation method of flat-plate solid oxide fuel cell module

Similar Documents

Publication Publication Date Title
US10256495B2 (en) Fuel cell and fuel cell stack
JP5023429B2 (en) Flat plate fuel cell
US8071252B2 (en) Interconnector for high-temperature fuel cells
US6821667B2 (en) Fuel cell stack having foil interconnects and laminated spacers
JP2007107090A (en) Alloy for interconnection of fuel cells
WO2013114811A1 (en) Fuel battery
US9640804B2 (en) Fuel cell, and fuel cell stack
JP4462050B2 (en) Solid oxide fuel cell
JP4963195B2 (en) Separator and flat solid oxide fuel cell
JP2003263996A (en) Solid oxide fuel cell
JP6118230B2 (en) Fuel cell stack
KR102114627B1 (en) Fuel cell power generation unit and fuel cell stack
JPH1116585A (en) Flat solid electrolyte fuel cell and its layering method
JP2004281353A (en) Separator for fuel cell
US6528197B1 (en) Bipolar plate with porous wall for a fuel cell stack
JPH11288729A (en) Solid electrolytic fuel cell
JP4984374B2 (en) Fuel cell
WO2009119107A1 (en) Flat-plate solid oxide fuel cell
US8697307B2 (en) Solid oxide fuel cell stack
US7344793B2 (en) Reinforcement structures for electrolyte-supported solid oxide fuel cell
JP5727429B2 (en) Fuel cell with separator and fuel cell
KR101367068B1 (en) Bimetal current collecting contact member and fuel cell apparatus with the same
JP4513396B2 (en) Solid oxide fuel cell
JP6734707B2 (en) Current collecting member-electrochemical reaction single cell composite and electrochemical reaction cell stack
CA2415391C (en) Aluminous interconnector for fuel cells

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080712

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090712

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100712

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20100712

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100712

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110712

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110712

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120712

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130712

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250