JPH11288724A - Manufacture of electrode active material holding substrate - Google Patents

Manufacture of electrode active material holding substrate

Info

Publication number
JPH11288724A
JPH11288724A JP10090473A JP9047398A JPH11288724A JP H11288724 A JPH11288724 A JP H11288724A JP 10090473 A JP10090473 A JP 10090473A JP 9047398 A JP9047398 A JP 9047398A JP H11288724 A JPH11288724 A JP H11288724A
Authority
JP
Japan
Prior art keywords
metal plate
sintering
active material
reinforcing metal
green sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10090473A
Other languages
Japanese (ja)
Inventor
Koji Hoshino
孝二 星野
Yoshiyuki Mayuzumi
良享 黛
Saburo Wakita
三郎 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP10090473A priority Critical patent/JPH11288724A/en
Publication of JPH11288724A publication Critical patent/JPH11288724A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the connecting strength to prevent peeling in sintering by temporarily sintering a green sheet formed of a metal slurry obtained by mixing a foaming agent to a metal powder to form a temporarily sintered body, and sticking this temporarily sintered body to a reinforcing metal plate followed by main sintering to connect the both. SOLUTION: A mixed slurry 1 obtained by mixing nickel powder, a binder and a plasticizer to a solvent is formed into a sheet to form a green sheet 2, and the green sheet 2 is foamed to form a porous foamed sheet 3. The foamed sheet 3 is temporarily sintered at 800-900 deg.C to form a temporarily sintered body 4, which is then put on a reinforcing metal plate 5 to form an integrated base 6. A weight 7 is put thereon, and a main sintering is performed at 1,000-1,200 deg.C in 5% hydrogenous nitrogen. Consequently, the temporarily sintered body 4 is made into a porous sintered metal plate 8 and bonded to the reinforcing metal plate 5 to form an integrated active material holding substrate 9. According to this, the temporarily sintered body 4 is bonded to the reinforcing metal plate 5 by surface contact, and hardly peeled with a high bonding strength.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、多孔質焼結金属板
と補強用金属板とを貼合わせて構成される蓄電池の電極
用活物質保持基板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an active material holding substrate for an electrode of a storage battery, which is formed by laminating a porous sintered metal plate and a reinforcing metal plate.

【0002】[0002]

【従来の技術】ニッケルー水素電池等のアルカリ蓄電池
は、近年、ハイブリッド車のバッテリーにおいて使用さ
れるようになったことなどから、注目を集めている。ニ
ッケルー水素電池等の陽極としては、通常、水酸化ニッ
ケルを主成分とする活物質を含むニッケル電極が用いら
れる。
2. Description of the Related Art In recent years, alkaline storage batteries such as nickel-metal hydride batteries have attracted attention because they have recently been used in batteries of hybrid vehicles. As the anode of a nickel-metal hydride battery or the like, a nickel electrode containing an active material mainly containing nickel hydroxide is usually used.

【0003】該ニッケル電極の製造方法としては、大き
く分けて、焼結式のものと非焼結式のものとがある。焼
結式の製造方法は、通常、補強用金属板を用いるため導
電性と熱伝導性が良好であるという長所を有するのに対
し、非焼結式の製造方法は、導電性があるニッケル発泡
体等の基体に、導電性がない水酸化ニッケルを主成分と
する活物質を保持するという方式をとるため、該活物質
の充填密度を大きくできるという長所を有する。
[0003] The method of manufacturing the nickel electrode is roughly classified into a sintered type and a non-sintered type. The sintering method generally has the advantage of good electrical and thermal conductivity due to the use of a reinforcing metal plate, whereas the non-sintering method has a conductive nickel foam. Since a method of holding an active material mainly composed of nickel hydroxide having no conductivity on a base such as a body is employed, there is an advantage that the packing density of the active material can be increased.

【0004】これら焼結式と非焼結式の製造方法の両方
の長所を備えたものとして、例えば特開平8−1069
06号に示されているように、活物質を保持するニッケ
ル発泡体等の基体と該基体の補強のための補強用金属板
とを一体として焼結して成形した活物質保持基体を用い
る方法がある。この方法で製造された活物質保持基体で
は、活物質を多く保持することができるため、該保持基
体を用いた電池はその容量が大きく、また、通電性がよ
いため大きな電流を流すことができるという特徴を有す
る。
Japanese Patent Application Laid-Open No. Hei 8-1069 has advantages of both the sintered and non-sintered production methods.
No. 06, a method of using an active material holding base formed by integrally sintering and forming a base such as a nickel foam for holding an active material and a reinforcing metal plate for reinforcing the base. There is. The active material holding substrate manufactured by this method can hold a large amount of the active material, so that a battery using the holding substrate has a large capacity, and has a high conductivity, so that a large current can flow. It has the feature of.

【0005】上述のようなニッケル発泡体等の基体と補
強用金属板とを一体として焼結して成形した活物質の保
持基体(以下、一体式活物質保持基板という。)の従来
の製造方法を示す。該製造方法は、(1)発泡性樹脂を
混練し、発泡樹脂柱を成形する工程、(2)該発泡樹脂
柱をスライスして薄膜を形成する工程、(3)補強用金
属板を芯材として該薄膜を該補強用金属板の片面あるい
は両面に接着剤で張り付け、ニッケル粉末含有溶液を塗
布した後、該発泡性樹脂、接着剤、等を焼成し熱分解除
去する工程、(4)該薄膜を焼結する工程、(5)該薄
膜の表面の酸化物を除去する工程、を基本的な製造手順
としている。このような方法によって製造された一体式
活物質保持基板では、活物質の充填密度を大きくし、ま
た、大きな電流を流すことが可能である。尚、通常電極
の製造は、該活物質保持基体に、活物質のスラリーを充
填した後、その充填された基体を乾燥し、さらに圧延し
て、緻密化することが行われる。
A conventional method of manufacturing an active material holding substrate (hereinafter, referred to as an integrated active material holding substrate) formed by integrally sintering and molding a substrate such as a nickel foam as described above and a reinforcing metal plate. Is shown. The production method includes: (1) a step of kneading a foamable resin to form a foamed resin pillar; (2) a step of slicing the foamed resin pillar to form a thin film; and (3) a process of forming a reinforcing metal plate into a core material. (4) a step of applying the nickel powder-containing solution to one or both sides of the reinforcing metal plate with an adhesive, applying a nickel powder-containing solution, and then baking and thermally decomposing the foamable resin, the adhesive, and the like; The steps of sintering the thin film and (5) removing the oxide on the surface of the thin film are the basic manufacturing procedures. In the integrated active material holding substrate manufactured by such a method, the packing density of the active material can be increased, and a large current can flow. Usually, in the production of an electrode, after the active material holding substrate is filled with an active material slurry, the filled substrate is dried, further rolled, and densified.

【0006】[0006]

【発明が解決しようとする課題】ところで、上述のよう
な方法で製造された一体式活物質保持基板は、前記ニッ
ケル発泡体が発泡性樹脂の表面にニッケル粉末含有溶液
を塗布して焼成されるものであるため、発泡性樹脂が占
有していた部分が焼成により中空となり、図6(a)、
(b)において模式的に示しているように、該ニッケル
発泡体32は、ニッケル骨格30の内部に中空部31を
形成した構成とされる。このため、図6(b)の該ニッ
ケル発泡体32と前記補強用金属板33との接合部位の
拡大図で模式的に示されているように、該接合部Pは点
接触となり、その間の接合強度は低くなる。また、前記
焼結の際、補強用金属板33の熱伸縮によるサイズの変
化は無視できる程度なのに対して、ニッケル発泡体32
は大きく収縮する。このため、焼結時にニッケル発泡体
32が補強用金属板33から剥離し易いという問題があ
った。
Meanwhile, in the integrated active material holding substrate manufactured by the above-described method, the nickel foam is fired by applying a nickel powder-containing solution to the surface of a foamable resin. 6A, the portion occupied by the foamable resin becomes hollow by firing, and FIG.
As schematically shown in (b), the nickel foam 32 has a structure in which a hollow portion 31 is formed inside a nickel skeleton 30. For this reason, as schematically shown in an enlarged view of a joining portion between the nickel foam 32 and the reinforcing metal plate 33 in FIG. 6B, the joining portion P is in point contact, and The joining strength is reduced. In the sintering, the change in size due to the thermal expansion and contraction of the reinforcing metal plate 33 is negligible, while the nickel foam 32
Greatly shrinks. For this reason, there was a problem that the nickel foam 32 was easily separated from the reinforcing metal plate 33 during sintering.

【0007】本発明は上記状況に鑑みてなされたもの
で、ニッケル発泡体等の多孔質焼結金属板と補強用金属
板とを貼合わせて構成される電極用活物質保持基板の製
造方法において、接合強度が高い一体式活物質保持基板
を製造することができ、また、焼結時に補強用金属板か
ら多孔質焼結金属板が剥離しないようにすることを目的
とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a method for manufacturing an active material holding substrate for an electrode, which is formed by bonding a porous sintered metal plate such as a nickel foam and a reinforcing metal plate. It is another object of the present invention to manufacture an integrated active material holding substrate having a high bonding strength, and to prevent the porous sintered metal plate from peeling from the reinforcing metal plate during sintering.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
本発明は、多孔質焼結金属板と補強用金属板とを貼合わ
せて構成される電極用活物質保持基板の製造方法におい
て、金属粉末に発泡剤と混合してなる金属スラリーによ
りグリーンシートを形成し、該グリーンシートを仮焼結
して仮焼結体を形成した後、該仮焼結体を補強用金属板
に貼合わせて、本焼結することにより両者を接合するこ
とを特徴とするものである。
In order to achieve the above object, the present invention provides a method for manufacturing an active material holding substrate for an electrode, which is constituted by bonding a porous sintered metal plate and a reinforcing metal plate. A green sheet is formed from a metal slurry obtained by mixing a powder with a foaming agent, and the green sheet is temporarily sintered to form a temporarily sintered body. Then, the temporarily sintered body is bonded to a reinforcing metal plate. It is characterized in that both are joined by main sintering.

【0009】すなわち、仮焼体は、金属スラリーを発泡
させて形成されるので、その金属骨格は中実状になり、
従って、補強用金属板との接合部も面接触となり、点接
触である従来タイプのものに比べて、接合強度が高く剥
離しにくい。
That is, since the calcined body is formed by foaming a metal slurry, the metal skeleton becomes solid,
Therefore, the joint portion with the reinforcing metal plate is also in surface contact, and has a higher joint strength and is less likely to peel off as compared with the conventional type which is a point contact.

【0010】また、グリーンシートだけ予め仮焼結を行
い仮焼体とすることで、仮焼結後に行う本焼結の際の該
仮焼体の熱伸縮を小さくすることができる。従って、仮
焼体と、本来熱伸縮の小さい補強用金属板との間の熱伸
縮差が小さくなり、該補強用金属板からの仮焼体の剥離
を防止することができる。この場合、多孔質焼結金属板
の金属粉末としてニッケル粉末を用いたものであれば、
仮焼結温度を800〜950℃、好ましくは900℃、
本焼結温度を1000〜1200℃、好ましくは110
0℃に設定すれば、仮焼結時に収縮を90%以上進行さ
せ得て、本焼結時の収縮を1%以下に抑えることができ
る。
Further, by pre-sintering only the green sheet to form a calcined body, the thermal expansion and contraction of the calcined body during the main sintering performed after the pre-sintering can be reduced. Therefore, the difference in thermal expansion and contraction between the calcined body and the metal plate for reinforcement, which is originally small in thermal expansion and contraction, is reduced, and peeling of the calcined body from the metal plate for reinforcement can be prevented. In this case, as long as nickel powder is used as the metal powder of the porous sintered metal plate,
The sintering temperature is 800 to 950 ° C, preferably 900 ° C,
Main sintering temperature is 1000-1200 ° C., preferably 110
By setting the temperature at 0 ° C., the shrinkage can be advanced by 90% or more during the preliminary sintering, and the shrinkage during the main sintering can be suppressed to 1% or less.

【0011】[0011]

【発明の実施の形態】以下、本発明に係る電極用活物質
保持基板の製造方法の好適な実施の形態を図面を参照し
て詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the method for manufacturing an active material holding substrate for an electrode according to the present invention will be described below in detail with reference to the drawings.

【0012】図1は、一体式活物質保持基板の製造工程
の概略を示す。まず、金属粉末、バインダー、可塑剤等
を溶媒に混合して、混合スラリーを作成する。例えば、
平均粒径2μmのニッケル粉末300g、バインダー兼
増粘剤としてヒドロキシプロピルメチルセルロース20
g、可塑剤としてグリセリン20g、溶媒として水20
0gからなる配合組成を有するスラリーとし、該スラリ
ーを一昼夜混練した後、真空脱泡しながら、界面活性剤
としてドデシルベンゼンスルホン酸ナトリウムの50%
水溶液を20g混合し、続いて発泡剤としてヘキサンを
8g加えた混合物スラリー1を作る。
FIG. 1 shows an outline of a manufacturing process of an integrated active material holding substrate. First, a mixed slurry is prepared by mixing a metal powder, a binder, a plasticizer, and the like into a solvent. For example,
300 g of nickel powder having an average particle size of 2 μm, and hydroxypropyl methylcellulose 20 as a binder and thickener
g, glycerin 20 g as a plasticizer, and water 20 as a solvent.
A slurry having a composition of 0 g is kneaded with the slurry for 24 hours, and then deaerated under vacuum, and 50% of sodium dodecylbenzenesulfonate is used as a surfactant.
A mixed slurry 1 is prepared by mixing 20 g of the aqueous solution and then adding 8 g of hexane as a blowing agent.

【0013】次に該混合物スラリー1を、公知のドクタ
ーブレード法、スリップキャスト法、塗布法などの方法
により、図1(1)に示すように、シート状に成形し
て、グリーンシート2を作る。このグリーンシート2
は、具体的には、以下のような手順で発泡、焼結処理が
なされる。まず、グリーンシート2を例えば、湿度95
%、温度40℃の高湿度雰囲気でで、20分間保持して
発泡を行い、図1(2)に示すように、発泡シート3を
作る。この発泡の工程を高湿度に保って行うのは、グリ
ーンシートが乾いてから発泡すると、ひびが入ることを
防止するためである。ヘキサンは、水よりも大きい蒸気
圧を有するので、容易に気化してガスとなり、微細で整
寸の気泡が多数発生し、多孔質の発泡シートができる。
そして、この発泡シート3を遠赤外線を用いて、雰囲気
温度50℃で30分間保持して乾燥を行う。さらに、大
気雰囲気中で、600℃で20分間加熱して、脱脂す
る。このとき、バインダー等は揮発される。
Next, the mixture slurry 1 is formed into a sheet by a known doctor blade method, slip casting method, coating method or the like, as shown in FIG. . This green sheet 2
Specifically, foaming and sintering are performed in the following procedure. First, the green sheet 2 is set to a humidity of 95, for example.
% In a high humidity atmosphere at a temperature of 40 ° C. for 20 minutes for foaming, and as shown in FIG. The reason why this foaming step is performed while keeping the humidity high is to prevent cracking when the green sheet is foamed after drying. Hexane has a vapor pressure higher than that of water, so that it is easily vaporized to become a gas, and a large number of fine and sized air bubbles are generated, thereby forming a porous foam sheet.
Then, the foamed sheet 3 is dried by using far-infrared rays at an ambient temperature of 50 ° C. for 30 minutes. Furthermore, it is heated at 600 ° C. for 20 minutes in an air atmosphere to degrease it. At this time, the binder and the like are volatilized.

【0014】次に前記グリーンシート2を5%水素含有
窒素中で800〜950℃の比較的低温域、例えば、9
00℃で20分間保持して仮焼結を行い、図1(3)に
示すように、発泡シートの仮焼体4を作る。
Next, the green sheet 2 is placed in a relatively low temperature range of 800 to 950 ° C.
Pre-sintering is performed at a temperature of 00 ° C. for 20 minutes to form a pre-sintered body 4 of a foamed sheet as shown in FIG.

【0015】それから、図1(4)に示すように、該仮
焼体4を補強用金属板5にのせて一体の基体6とし、こ
の基体6の上に、図1(5)に示すように、酸化アルミ
ニウム等でできた重し7をのせて、図1(6)に示す状
態とし、それらを5%水素含有窒素中で1000〜12
00℃の高温域、例えば、1100℃で20分間保持す
ることで本焼結を施す。こうして、仮焼体は多孔質焼結
金属板8とされて、補強用金属板5に接合され、図1
(7)に示すような一体式活物質保持基板9ができあが
る。
Then, as shown in FIG. 1 (4), the calcined body 4 is placed on a reinforcing metal plate 5 to form an integral base 6. On this base 6, as shown in FIG. Is placed on a weight 7 made of aluminum oxide or the like to obtain a state shown in FIG. 1 (6).
The main sintering is performed by holding at a high temperature range of 00 ° C., for example, 1100 ° C. for 20 minutes. Thus, the calcined body is made into a porous sintered metal plate 8 and joined to the reinforcing metal plate 5.
An integrated active material holding substrate 9 as shown in (7) is completed.

【0016】尚、上述したような実施例における補強用
金属板は、鉄板にニッケルをめっきしたもので、開口率
が、例えば60%の孔あきの金属板材である。図2中符
号5aがその孔を示す。また、図1(4)の補強用金属
板5に示されているトラックAは、電池の幅を示し、こ
の図における補強用金属板5では、電池2個分のトラッ
クを有している。前記仮焼体4は、各トラックAの部分
を覆うように重ねられる。この補強用金属板5は、基板
9全体の補強および導電性の向上を目的として用いられ
るものであるから、これらの機能を発揮し得るものであ
れば、別の材質および異なる開口率の金属板材を使用す
ることも可能である。
The reinforcing metal plate in the above-described embodiment is a metal plate obtained by plating an iron plate with nickel and having an aperture ratio of, for example, 60%. Reference numeral 5a in FIG. 2 indicates the hole. Also, a track A shown on the reinforcing metal plate 5 in FIG. 1 (4) indicates the width of the battery, and the reinforcing metal plate 5 in this figure has tracks for two batteries. The calcined bodies 4 are stacked so as to cover the respective tracks A. Since the reinforcing metal plate 5 is used for the purpose of reinforcing the entire substrate 9 and improving the conductivity, any metal material having a different material and a different aperture ratio can be used as long as it can exhibit these functions. It is also possible to use

【0017】以上のようにして製造されることにより、
多孔質焼結金属板と補強用金属板との剥離が確実に防止
されることになる。すなわち、前記仮焼体は、金属スラ
リーを発泡させて形成されるので、図2(a)、(b)
において示されているように、その金属骨格21は中実
状になり、従って、補強用金属板5との接合部Qも面接
触となり、点接触である従来タイプのものに比べて、接
合強度が高くなるのである。
By being manufactured as described above,
Separation between the porous sintered metal plate and the reinforcing metal plate is reliably prevented. That is, since the calcined body is formed by foaming a metal slurry, FIGS. 2 (a) and 2 (b)
As shown in the above, the metal skeleton 21 has a solid shape, and therefore, the joint Q with the reinforcing metal plate 5 also comes into surface contact, and the joint strength is lower than that of the conventional type which is a point contact. It will be higher.

【0018】一方、図3は、焼結温度に対するグリーン
シートの収縮の特性の様子を示す。該グリーンシート
は、焼結温度を上げていくと、700℃を超えたあたり
から大きく収縮し始め、900℃近傍での収縮率は25
%程度となり、この温度ですでに該グリーンシートの臨
界の収縮率である27%の90%以上の収縮が達成され
ることがわかる。一方、図示していないが、補強用金属
板の焼結によるサイズの変化は、該グリーンシートに比
べると、無視できるほど小さい。すなわち、通常のよう
に、該グリーンシートと該補強用金属板とを重ねて11
00℃近傍で焼結を行うと、該グリーンシートはおおよ
そ27%も収縮するのに対して、該補強用金属板は熱伸
縮によるサイズの変化が無視できる程度であるので、こ
の熱伸縮率の大きな差異が、焼結時における該補強用金
属板からの該グリーンシートの剥離の原因になるのであ
る。
On the other hand, FIG. 3 shows the state of the characteristic of shrinkage of the green sheet with respect to the sintering temperature. When the sintering temperature is increased, the green sheet starts to shrink greatly from around 700 ° C., and the shrinkage rate near 900 ° C. is 25%.
%, Which indicates that at this temperature, shrinkage of 90% or more, which is already 27%, which is the critical shrinkage ratio of the green sheet, is achieved. On the other hand, although not shown, the change in size due to sintering of the reinforcing metal plate is negligibly small as compared with the green sheet. That is, as usual, the green sheet and the reinforcing metal plate
When sintering is performed at around 00 ° C., the green sheet shrinks by about 27%, whereas the reinforcing metal plate has a negligible change in size due to thermal expansion and contraction. The large difference causes peeling of the green sheet from the reinforcing metal plate during sintering.

【0019】そこで、本発明の製造方法においては、ま
ず900℃近傍でグリーンシートに対して仮焼結を行っ
て、臨界収縮率近傍まで収縮させ、該グリーンシートの
仮焼体を作る。そうすると、本焼結における仮焼体の収
縮は1%に満たないので、仮焼結の後、該仮焼体と前記
補強用金属板とを貼合わせて、本焼結を行うと、貼合わ
せた後の両者の熱伸縮によるサイズの変化の差異が小さ
くなり、剥離し難くなるのである。
Therefore, in the production method of the present invention, first, the green sheet is pre-sintered at around 900 ° C. and shrunk to near the critical shrinkage to produce a calcined body of the green sheet. Then, since the shrinkage of the calcined body in the main sintering is less than 1%, after the pre-sintering, the calcined body is bonded to the reinforcing metal plate, and the main sintering is performed. After that, the difference in size change due to thermal expansion and contraction between the two becomes small, and peeling becomes difficult.

【0020】なお、仮焼結の工程を含まない点以外は本
発明の製造方法と同様である特開平8−291304号
に記載の製造方法では、本焼結を行う前のグリーンシー
トは強度が低く脆弱なため、本焼結の際に該グリーンシ
ートが前記補強用金属板の重みで潰れ易く、長尺による
連続焼結を行うことは困難であるが、本発明に係る製造
方法の場合、仮焼結を行うことで前記グリーンシートは
焼結されて仮焼体となることで強度が強くなり、長尺に
よる連続焼結を行うことが可能になる。従って、本発明
の製造方法は量産化に適しており、大量生産による製造
コストの削減が可能になる。
In the production method described in JP-A-8-291304, which is the same as the production method of the present invention except that the step of the preliminary sintering is not included, the green sheet before the sintering has a high strength. Because of low brittleness, during the main sintering, the green sheet is easily crushed by the weight of the reinforcing metal plate, and it is difficult to perform continuous sintering with a long length, but in the case of the manufacturing method according to the present invention, By performing sintering, the green sheet is sintered to form a calcined body, whereby the strength is increased, and continuous sintering with a long length can be performed. Therefore, the production method of the present invention is suitable for mass production, and the production cost can be reduced by mass production.

【0021】図4および図5は、前述の活物質保持基板
を量産する場合の接合工程を模式的に示したものであ
る。図4は、ロール状に巻かれている前記補強用金属板
5を巻戻しながら、その巻戻された部分の補強用金属板
5の両面に、図1(3)において示した仮焼体4を貼合
わせた後、荷重ベルト10で押圧しながら焼結炉11を
通して本焼結を行い接合するという工程を連続的に行う
接合工程の例を示している。図5は、仮焼体をロール化
した場合で、仮焼体4と補強用金属板5を同じ速度で巻
戻しながら、図4の場合と同様に、補強用金属板5の両
面に貼合わせ、荷重ベルト10で押圧しながら焼結炉1
1を通して本焼結を行い接合する。このような工程によ
り、活物質保持基板を量産することが可能になる。
FIG. 4 and FIG. 5 schematically show a joining step in mass-producing the above-mentioned active material holding substrate. FIG. 4 shows the calcined body 4 shown in FIG. 1 (3) on both surfaces of the unrolled portion of the reinforcing metal plate 5 while rewinding the reinforcing metal plate 5 wound in a roll shape. 2 shows an example of a joining step in which a step of performing main sintering and joining through a sintering furnace 11 while pressing with a load belt 10 after joining is performed continuously. FIG. 5 shows a case where the calcined body is rolled, and the calcined body 4 and the reinforcing metal plate 5 are rewound at the same speed, and are bonded to both sides of the reinforcing metal plate 5 as in the case of FIG. Sintering furnace 1 while pressing with a load belt 10
1 and perform main sintering and joining. Through such a process, the active material holding substrate can be mass-produced.

【0022】[0022]

【実験例】実際に電極を製造する場合、上述のような工
程で製造された活物質保持基板に活物質スラリーを充填
し、それを乾燥、圧延するという手順で行われる。そこ
で、本発明に係る方法により製造された活物質保持基板
について、前記補強用金属板からの前記仮焼体あるいは
前記ニッケル発泡体のような多孔質焼結金属板の剥離の
防止に対する有効性を調べる目的で、本発明による製造
方法による活物質保持基板と従来法(特開平8−106
906号)による活物質保持基板を使用して実際に電極
を製造した場合の、剥離の状況を比較した。
[Experimental example] When an electrode is actually manufactured, the active material holding substrate manufactured in the above-described process is filled with an active material slurry, followed by drying and rolling. Therefore, for the active material holding substrate manufactured by the method according to the present invention, the effectiveness in preventing the porous sintered metal plate such as the calcined body or the nickel foam from being peeled off from the reinforcing metal plate is evaluated. For the purpose of investigation, an active material holding substrate by the manufacturing method according to the present invention and a conventional method (Japanese Patent Laid-Open No. 8-106)
No. 906) was used to compare the state of peeling when an electrode was actually manufactured using the active material holding substrate.

【0023】活物質スラリーとしては、平均粒径10μ
mの水酸化ニッケル粉50g、テフロン分散溶液5g、
水10gを混合したものを用いた。電極は、活物質保持
基板に活物質スラリーを含ませた後、100℃で30分
間乾燥し、次に圧下率50%で圧延することにより、製
造した。その結果、従来法で製造した活物質保持基板を
用いた場合では、補強用金属板からのニッケル発泡体の
剥離が確認されたのに対して、本発明による製造方法に
よる活物質保持基板を用いた場合は、仮焼体の剥離は確
認されなかった。
The active material slurry has an average particle size of 10 μm.
m nickel hydroxide powder 50 g, Teflon dispersion solution 5 g,
What mixed 10 g of water was used. The electrode was manufactured by including the active material slurry on the active material holding substrate, drying at 100 ° C. for 30 minutes, and then rolling at a reduction of 50%. As a result, when the active material holding substrate manufactured by the conventional method was used, peeling of the nickel foam from the reinforcing metal plate was confirmed, whereas the active material holding substrate according to the manufacturing method of the present invention was used. In this case, peeling of the calcined body was not confirmed.

【0024】以上の実験結果より、焼結時における補強
用金属板からの多孔質焼結金属板の剥離を防止するため
の方法として、本発明の製造方法により製造した活物質
保持基板を使用することが有効であることが確認でき
た。
From the above experimental results, the active material holding substrate manufactured by the manufacturing method of the present invention is used as a method for preventing peeling of the porous sintered metal plate from the reinforcing metal plate during sintering. Was confirmed to be effective.

【0025】[0025]

【発明の効果】以上詳細に説明したように、本発明に係
る電極用活物質保持基板の製造方法によれば、以下に記
載されるような効果を奏する。
As described above in detail, according to the method for manufacturing an active material holding substrate for an electrode according to the present invention, the following effects can be obtained.

【0026】(1)仮焼体は、金属スラリーを発泡させ
て形成されるので、その金属骨格は中実状になり、従っ
て、補強用金属板との接合部も面接触となり、点接触で
ある従来タイプのものに比べて、接合強度が高く剥離し
にくい。
(1) Since the calcined body is formed by foaming a metal slurry, its metal skeleton is solid, and therefore, the joint with the reinforcing metal plate is also in surface contact and is in point contact. Compared with the conventional type, the bonding strength is high and it is hard to peel off.

【0027】(2)グリーンシートと補強用金属板とを
貼合わせて本焼結する前に、該グリーンシートだけ予め
仮焼結を行い仮焼体とすることで、本焼結時における双
方の熱伸縮率の差異に起因した、補強用金属板からの仮
焼体の剥離を防止することができる。
(2) Before laminating the green sheet and the reinforcing metal plate and performing main sintering, only the green sheet is preliminarily sintered to form a calcined body, so that both of the green sheet and the reinforcing metal plate during the main sintering are formed. It is possible to prevent the calcined body from peeling off from the reinforcing metal plate due to the difference in thermal expansion and contraction rate.

【0028】(3)仮焼結を行うことでグリーンシート
は焼結され仮焼体となって強度が強くなり、長尺による
連続焼結を行うことが可能になる。従って、本発明の製
造方法は量産化に適しており、大量生産による製造コス
トの削減が可能になる。
(3) By performing the preliminary sintering, the green sheet is sintered and becomes a calcined body, the strength is increased, and it is possible to perform continuous sintering in a long length. Therefore, the production method of the present invention is suitable for mass production, and the production cost can be reduced by mass production.

【0029】(4)金属スラリーの金属粉末をニッケル
とし、仮焼結の温度を900℃近傍、本焼結の温度を1
100℃近傍に設定すると、本焼結時の多孔質焼結金属
板の収縮率を1%以下とすることができ、補強用金属板
との接合強度が強く、剥離しにくいものとなる。
(4) Nickel is used as the metal powder of the metal slurry.
When the temperature is set at around 100 ° C., the contraction rate of the porous sintered metal plate at the time of the main sintering can be made 1% or less, the bonding strength with the reinforcing metal plate is high, and the porous metal plate does not easily peel off.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の製造方法に係る一実施形態の概略工
程図である。
FIG. 1 is a schematic process chart of an embodiment according to a production method of the present invention.

【図2】 (a)本発明の製造方法で製造した場合の多
孔質焼結金属板と補強用金属板との接合部位の模式図で
ある。(b)接合部位の拡大した模式図である。
FIG. 2 (a) is a schematic view of a joint portion between a porous sintered metal plate and a reinforcing metal plate when manufactured by the manufacturing method of the present invention. (B) It is the schematic diagram which expanded the joining site | part.

【図3】 グリーンシートの焼結温度に対する収縮の特
性を示すグラフである。
FIG. 3 is a graph showing shrinkage characteristics with respect to a sintering temperature of a green sheet.

【図4】 補強用金属板を連続的に供給しながら多孔質
焼結金属板と接合している工程を示す模式図である。
FIG. 4 is a schematic view showing a step of joining a porous sintered metal plate while continuously supplying a reinforcing metal plate.

【図5】 仮焼体をロール化して補強用金属板に供給し
ながら接合している工程を示す接合している工程を示す
模式図である。
FIG. 5 is a schematic view showing a joining step in which a calcined body is rolled and joined while being supplied to a reinforcing metal plate.

【図6】 (a)従来の製造方法で製造した場合の多孔
質焼結金属板と補強用金属板との接合部位の模式図であ
る。(b)接合部位の拡大した模式図である。
FIG. 6A is a schematic view of a joint portion between a porous sintered metal plate and a reinforcing metal plate when manufactured by a conventional manufacturing method. (B) It is the schematic diagram which expanded the joining site | part.

【符号の説明】[Explanation of symbols]

2 グリーンシート 4 仮焼体 5 補強用金属板 7 重し 8 多孔質焼結金属板 9 一体式活物質保持基板 10 荷重ベルト P 接合部 Q 接合部 2 green sheet 4 calcined body 5 reinforcing metal plate 7 weight 8 porous sintered metal plate 9 integrated active material holding substrate 10 load belt P joint Q joint

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多孔質焼結金属板と補強用金属板とを貼
合わせて構成される電極用活物質保持基板の製造方法に
おいて、 金属粉末に発泡剤を混合してなる金属スラリーによりグ
リーンシートを形成し、該グリーンシートを仮焼結して
仮焼体を形成した後、該仮焼体を補強用金属板に重ね合
わせて、本焼結することにより両者を接合することを特
徴とする電極用活物質保持基板の製造方法。
1. A method for manufacturing an active material holding substrate for an electrode, comprising bonding a porous sintered metal plate and a reinforcing metal plate, wherein a green sheet is prepared by mixing a metal powder with a foaming agent. And forming a calcined body by calcining the green sheet to form a calcined body, then superimposing the calcined body on a reinforcing metal plate, and sintering the two to join them together. A method for manufacturing an active material holding substrate for an electrode.
【請求項2】 前記金属粉末がニッケル粉末であり、前
記仮焼結の温度を800〜950℃、前記本焼結の温度
を1000〜1200℃に設定する請求項1に記載の電
極用活物質保持基板の製造方法。
2. The active material for an electrode according to claim 1, wherein the metal powder is a nickel powder, and the temperature of the preliminary sintering is set to 800 to 950 ° C. and the temperature of the main sintering is set to 1000 to 1200 ° C. Manufacturing method of holding substrate.
JP10090473A 1998-04-02 1998-04-02 Manufacture of electrode active material holding substrate Withdrawn JPH11288724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10090473A JPH11288724A (en) 1998-04-02 1998-04-02 Manufacture of electrode active material holding substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10090473A JPH11288724A (en) 1998-04-02 1998-04-02 Manufacture of electrode active material holding substrate

Publications (1)

Publication Number Publication Date
JPH11288724A true JPH11288724A (en) 1999-10-19

Family

ID=13999569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10090473A Withdrawn JPH11288724A (en) 1998-04-02 1998-04-02 Manufacture of electrode active material holding substrate

Country Status (1)

Country Link
JP (1) JPH11288724A (en)

Similar Documents

Publication Publication Date Title
EP2415542B1 (en) Process for producing porous sintered aluminum, and porous sintered aluminum
EP2415543B1 (en) Process for producing porous sintered aluminum, and porous sintered aluminum
TWI454580B (en) Method for manufacturing aluminum composite body having aluminum porous sintered body
JP5376364B2 (en) Solid electrolyte structure manufacturing method, all solid state battery manufacturing method, solid electrolyte structure and all solid state battery
US6423422B2 (en) High strength spongy sintered metal composite sheet and production method thereof
JPH09277226A (en) Manufacture of solid electrolyte type fuel cell
JP2001040402A (en) Porous metallic thin sheet body and its manufacture
JP4534355B2 (en) Method for producing porous substrate for electrode
JPH11288724A (en) Manufacture of electrode active material holding substrate
US20080160352A1 (en) High Temperature Fuel Cell Having a Metallic Supporting Structure for the Solid Oxide Functional Layers
JP2000021416A (en) Electrode active material holding board and manufacture thereof, and positive electrode for alkaline secondary battery using the board
JP2960548B2 (en) Two-layer tape for molten carbonate fuel cells
JP2000021417A (en) Electrode active material holding board and manufacture thereof, positive electrode for alkaline secondary battery using the board
JP4721500B2 (en) Solid oxide fuel cell and method for producing the same
JP5569196B2 (en) Method for producing metal porous thin plate and metal porous thin plate obtained by the production method
JP2004043976A (en) High strength spongy baked metal composite plate
JP2000133277A (en) Porous substrate, its manufacture, and electrode for alkaline secondary battery using this porous substrate
JP3455054B2 (en) Manufacturing method of cylindrical solid oxide fuel cell
JP2000173623A (en) Porous nickel base material and electrode for alkaline secondary battery using the same
JPH06283179A (en) Manufacture of electrolytic film for solid electrolytic fuel cell
JPS6215768A (en) Manufacture of rused salt fuel battery
US7195794B2 (en) Method of making an electrolytic cell
JP4289858B2 (en) Method for producing sintered substrate for alkaline secondary battery and sintered substrate for alkaline secondary battery
JP2003297371A (en) Sintered substrate for alkaline storage battery
JP2000123841A (en) Manufacture of porous base material used for electrode of alkaline secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607