JPH11288679A - Automatic sample tilting device of transmission type electron microscope - Google Patents

Automatic sample tilting device of transmission type electron microscope

Info

Publication number
JPH11288679A
JPH11288679A JP9125098A JP9125098A JPH11288679A JP H11288679 A JPH11288679 A JP H11288679A JP 9125098 A JP9125098 A JP 9125098A JP 9125098 A JP9125098 A JP 9125098A JP H11288679 A JPH11288679 A JP H11288679A
Authority
JP
Japan
Prior art keywords
sample
tilt
image
calculated
tilting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9125098A
Other languages
Japanese (ja)
Other versions
JP3672728B2 (en
Inventor
Fumio Hosokawa
細川史生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP09125098A priority Critical patent/JP3672728B2/en
Publication of JPH11288679A publication Critical patent/JPH11288679A/en
Application granted granted Critical
Publication of JP3672728B2 publication Critical patent/JP3672728B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To automatically tilt a sample to an angle formed by mathematically calculated different orientations of the crystals of the sample and to automatically move the sample so that the mathematically calculated positional deviation of the sample is canceled out. SOLUTION: The electron diffraction pattern of a sample 4 is recognized by an image recognition means 11 via an image pickup TV 7, and cystal orientations and the orientation and the tilt angle of the required sample tilt in the target orientation from which to perform observation are calculated from the electron diffraction pattern by an analysis means 12. A sample tilting mechanism 9 is controlled by a position correcting means 14 to tilt an image of the sample 4 by a minute amount such that it does not go out of the screen of an image display means 13, the positional deviation of the sample 4 being calculated by the analysis means 12. Position correcting control is performed whereby a sample moving mechanism 8 and a deflection coil 6 are controlled by the position correcting means 14 so that the positional deviation is canceled out. Such tilting of the sample 4 and position correcting control are repeated until the calculated tilt angle is attained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子線を試料に照
射し、試料を透過した透過電子により試料の像を得る透
過型電子顕微鏡の技術分野に属し、特に、試料を所望の
傾斜に傾斜させる透過型電子顕微鏡における自動傾斜装
置の技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field of a transmission electron microscope which irradiates a sample with an electron beam and obtains an image of the sample by transmitted electrons transmitted through the sample. It belongs to the technical field of automatic tilting devices in transmission electron microscopes.

【0002】[0002]

【従来の技術】透過型顕微鏡(以下、TEMともいう)
は、電子線を試料に照射し、試料を透過した透過電子に
より試料の高分解能の透過電子像を得て試料の観察を行
うばかりでなく、結晶性材料の分子や原子の配列を調べ
ることができる電子回折像、走査透過像あるいはエネル
ギロス像を得て元素分析をも行うものである。また、近
年では、この透過型電子顕微鏡を用いて、透過電子によ
る像だけではなく、試料から反射した反射電子、試料か
ら生じた二次電子やオージェ電子あるいはX線等によ
り、試料表面の形状および構造の観察や試料の元素分析
等の種々の分析も行われている。
2. Description of the Related Art Transmission microscopes (hereinafter also referred to as TEMs).
In addition to observing the sample by irradiating the sample with an electron beam and obtaining a high-resolution transmission electron image of the sample using transmitted electrons transmitted through the sample, it is also possible to examine the arrangement of molecules and atoms in crystalline materials. An elemental analysis is also performed by obtaining a possible electron diffraction image, scanning transmission image or energy loss image. In recent years, using this transmission electron microscope, not only the image due to the transmitted electrons, but also the reflected electrons reflected from the sample, secondary electrons generated from the sample, Auger electrons, X-rays, etc. Various analyzes such as observation of a structure and elemental analysis of a sample are also performed.

【0003】ところで、このTEMにおいては、電子回
折パターン等の観察を行う際に、観察試料の入射電子線
に対する向き(方位)を調整する必要がある。これは、
1つの試料を、異なる方位で観察することにより、試料
の結晶構造の知見が得られるからである。この試料の方
位合わせは、従来、試料を機械的にx、yの各2軸方向
に独立して傾斜する機構(ゴニオメータ)により行われ
ている。
In the TEM, when observing an electron diffraction pattern or the like, it is necessary to adjust the direction (azimuth) of the observation sample with respect to the incident electron beam. this is,
This is because observing one sample in different directions provides knowledge of the crystal structure of the sample. Conventionally, the orientation of the sample is adjusted by a mechanism (goniometer) that mechanically tilts the sample independently in the two x-axis and y-axis directions.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、試料が
傾斜軸上に乗っていないと、試料のこの傾斜軸まわりの
傾斜時に、試料の位置ずれが生じるようになる。このた
め、試料の傾斜時に、目的試料が観察視野よりずれてし
まい、方位合わせには多大な手間がかかっている。特
に、数十nm程度の微小結晶粒子の方位合わせはきわめ
て困難になっている。そこで、このような試料の位置の
補正を行う必要があるが、従来、透過型顕微鏡には、こ
の位置ずれを積極的に補正する手段が備えられてはいな
かった。
However, if the sample does not ride on the tilt axis, the sample will be displaced when the sample tilts around the tilt axis. For this reason, when the sample is tilted, the target sample deviates from the observation visual field, and it takes much time and effort to adjust the orientation. In particular, it is extremely difficult to align the orientation of fine crystal grains of about several tens nm. Therefore, it is necessary to correct the position of the sample, but conventionally, the transmission microscope has not been provided with a means for positively correcting the position shift.

【0005】本発明はこのような事情に鑑みてなされた
ものであって、その目的は、試料の結晶の異なる方位の
なす角および試料の傾斜により生じる試料の位置ずれ
を、それぞれ数学的に求め、求めた試料の結晶の異なる
方位のなす角に基づいて、試料を、所望の傾斜に自動的
に傾斜させるとともにこの試料の傾斜により生じた試料
の位置ずれが解消するように自動的にかつ簡単に移動さ
せることのできる透過型電子顕微鏡における自動試料傾
斜装置を提供することである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to mathematically determine an angle between different orientations of a crystal of a sample and a displacement of the sample caused by the inclination of the sample. Automatically tilting the sample to a desired tilt based on the angles formed by the different orientations of the crystal of the sample, and automatically and simply to eliminate the displacement of the sample caused by the tilt of the sample. It is an object of the present invention to provide an automatic sample tilting device in a transmission electron microscope which can be moved to a position.

【0006】[0006]

【課題を解決するための手段】前述の課題を解決するた
めに、請求項1の発明は、試料を前後左右方向および上
下方向に移動させる試料移動機構と、試料を所定に傾斜
角に傾斜する試料傾斜機構と、これらの試料移動機構お
よび試料傾斜機構をそれぞれ制御する電子制御装置とを
少なくとも備え、前記試料移動機構により前記試料を前
後左右方向および上下方向に移動させて試料の位置を調
節するとともに、前記試料傾斜機構により前記試料を所
定の傾斜角に傾斜し、この試料に電子ビームを照射し
て、試料を透過した透過電子を偏向コイルで偏向制御し
て撮像手段に結像させ、この撮像手段で試料の像を撮影
することにより、試料の高分解能の像を得る透過型電子
顕微鏡において、前記電子制御装置が、前記撮像手段か
らの像信号に基づいて、試料の現在の結晶方位で得られ
る電子回折パターンを得る像認識手段と、この像認識手
段からの電子回折パターンの強度分布を解析することに
より、現在の結晶方位を計算するとともに、観察しよう
とする目的の結晶方位に移行するために必要な、前記試
料傾斜機構の傾斜方向および傾斜値を計算し、更にこの
計算した傾斜方向および傾斜値に基づく前記試料傾斜機
構による試料傾斜制御後に生じた位置ずれを計算する解
析手段と、前記撮像手段からの像信号に基づいて試料の
像を表示する像表示手段と、前記解析手段により計算さ
れた前記傾斜方向および前記傾斜値に基づいて前記試料
傾斜機構を、前記試料の結晶方位が観察しようとする目
的の結晶方位となるように制御するとともに、前記解析
手段により計算された前記位置ずれに基づいて前記試料
移動機構および前記偏向コイルの少なくとも一方を、こ
の位置ずれが解消するように位置補正制御する位置補正
手段とを備えていることを特徴としている。
In order to solve the above-mentioned problems, a first aspect of the present invention is to provide a sample moving mechanism for moving a sample in the front-rear, left-right, and up-down directions, and to tilt the sample at a predetermined tilt angle. A sample tilting mechanism, and at least an electronic control unit that controls the sample moving mechanism and the sample tilting mechanism, respectively, and adjusts the position of the sample by moving the sample in the front-rear, left-right, and vertical directions by the sample moving mechanism. At the same time, the sample is tilted to a predetermined tilt angle by the sample tilting mechanism, the sample is irradiated with an electron beam, and the transmitted electrons transmitted through the sample are deflection-controlled by a deflection coil to form an image on an imaging means. In a transmission electron microscope that obtains a high-resolution image of a sample by photographing an image of the sample with an imaging unit, the electronic control unit is configured to perform image processing based on an image signal from the imaging unit. Calculate the current crystal orientation and observe by analyzing the intensity distribution of the electron diffraction pattern from the image recognition device and the electron diffraction pattern obtained from the current crystal orientation of the sample. Calculating the tilt direction and tilt value of the sample tilt mechanism required to shift to the desired crystal orientation, and further generating a position after controlling the sample tilt by the sample tilt mechanism based on the calculated tilt direction and tilt value. Analysis means for calculating a shift; image display means for displaying an image of the sample based on an image signal from the imaging means; and the sample tilt mechanism based on the tilt direction and the tilt value calculated by the analysis means Is controlled so that the crystal orientation of the sample becomes the target crystal orientation to be observed, and the displacement calculated by the analysis means is At least one of the sample moving mechanism and the deflection coil Zui is characterized in that it comprises a position correcting means for position correction control as the positional deviation is eliminated.

【0007】また、請求項2の発明は、前記位置補正手
段による位置補正制御が、所定精度より粗い精度の位置
補正制御のときは前記試料移動機構によって行うととも
に、前記所定精度以下の細かい精度の位置補正制御のと
きは前記偏向コイルによって行うことを特徴としてい
る。
Further, in the invention according to claim 2, when the position correction control by the position correction means is a position correction control with a coarser accuracy than a predetermined accuracy, the position correction control is performed by the sample moving mechanism and a fine accuracy of the predetermined accuracy or less. The position correction control is performed by the deflection coil.

【0008】更に、請求項3の発明は、前記電子制御装
置が、前記解析手段によって計算された前記試料傾斜機
構の傾斜方向および傾斜値にもとづいて、前記試料傾斜
機構によって前記像表示手段の像表示画面から試料の像
が外れない程度に試料を微小傾斜させるとともに、この
傾斜により生じ、前記解析手段によって計算された試料
の前記位置ずれに基づいて前記試料移動機構および前記
偏向コイルの少なくとも一方によって試料の前記位置補
正制御を行い、これらの試料の微小傾斜および位置補正
制御を、前記解析手段によって計算された前記試料傾斜
機構の傾斜方向および傾斜値となるまで、繰り返し行う
ことを特徴としている。
Further, according to a third aspect of the present invention, the electronic control unit controls the image of the image display means by the sample tilt mechanism based on the tilt direction and the tilt value of the sample tilt mechanism calculated by the analysis means. The sample is slightly tilted to such an extent that the image of the sample does not deviate from the display screen, and at least one of the sample moving mechanism and the deflection coil is caused by the tilt and based on the displacement of the sample calculated by the analysis means. The method is characterized in that the position correction control of the sample is performed, and the minute tilt and position correction control of the sample are repeatedly performed until the tilt direction and the tilt value of the sample tilting mechanism calculated by the analysis unit are obtained.

【0009】[0009]

【作用】このような構成をした本発明の透過型電子顕微
鏡における自動試料傾斜装置においては、TEMにより
試料の電子回折パターンの観察を行う際、結晶方位合わ
せに必要な試料傾斜角が数学的に計算される。この計算
された試料傾斜角に基づいて試料が傾斜されるが、この
とき、この試料傾斜によって生じた試料の位置ずれが数
学的に計算される。そして、この計算された試料の位置
ずれが解消するように、試料が自動的に移動される。
In the automatic sample tilting apparatus of the transmission electron microscope of the present invention having the above-described structure, when observing the electron diffraction pattern of the sample by TEM, the sample tilt angle required for crystal orientation alignment is mathematically determined. Is calculated. The sample is tilted based on the calculated sample tilt angle. At this time, the displacement of the sample caused by the sample tilt is calculated mathematically. Then, the sample is automatically moved so that the calculated displacement of the sample is eliminated.

【0010】特に、請求項2の発明においては、試料の
比較的大きな位置ずれの場合は、試料移動機構によって
所定精度より粗い精度で位置補正制御が機械的に行われ
るとともに、試料の微少な位置ずれの場合は、偏向コイ
ルによって所定精度以下の細かい精度で位置補正制御が
電気的に行われる。
In particular, according to the second aspect of the present invention, in the case of a relatively large displacement of the sample, the position correction control is mechanically performed by the sample moving mechanism with a coarser accuracy than a predetermined accuracy, and the minute position of the sample is finely adjusted. In the case of a deviation, the position correction control is electrically performed by the deflection coil with a fine precision equal to or less than a predetermined precision.

【0011】また、請求項3の発明においては、試料の
位置ずれが、像表示手段の像表示画面から試料の像が外
れない程度となるように、試料の傾斜が微小に制御され
るとともに、この微小試料傾斜によって生じた試料の位
置ずれが解消するように位置補正制御が行われる。そし
て、これらの微小試料傾斜および位置補正制御が繰り返
し行われることにより、試料の像が像表示手段の像表示
画面から外れることなく、試料の傾斜制御および位置補
正制御が自動的にかつ簡単に行われるようになる。
According to the third aspect of the present invention, the tilt of the sample is finely controlled so that the position of the sample does not deviate from the image display screen of the image display means. Position correction control is performed so that the positional shift of the sample caused by the minute sample tilt is eliminated. By repeating the micro sample tilt and position correction control, the sample tilt control and the position correction control can be automatically and easily performed without the sample image deviating from the image display screen of the image display means. You will be

【0012】[0012]

【発明の実施の形態】以下、図面を用いて本発明の実施
の形態を説明する。図1は、本発明にかかる透過型電子
顕微鏡における自動試料傾斜装置の実施の形態の一例を
模式的に示す図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram schematically showing an example of an embodiment of an automatic sample tilting device in a transmission electron microscope according to the present invention.

【0013】図1に示すように、この例の透過型電子顕
微鏡1は、従来公知の透過型電子顕微鏡と同様に、鏡筒
2の中に電子線を放射する電子銃3と、試料4を載置支
持する試料載置台5と、試料4を透過した透過電子を撮
像用テレビ(TV)7にフォーカスさせる偏向コイル6
と、試料4が所望の位置となるように試料載置台5を水
平面内のx、y方向および上下のz方向に移動させる試
料移動機構8と、試料4が所望の方向に所望の傾斜角度
傾斜するように試料載置台5をx、y軸まわりに傾斜さ
せる試料傾斜機構9とを備えている。
As shown in FIG. 1, a transmission electron microscope 1 of this embodiment comprises an electron gun 3 for emitting an electron beam into a lens barrel 2 and a sample 4 in the same manner as a conventionally known transmission electron microscope. A sample mounting table 5 for mounting and supporting, and a deflection coil 6 for focusing transmitted electrons transmitted through the sample 4 on an imaging television (TV) 7
A sample moving mechanism 8 for moving the sample mounting table 5 in the x, y directions and up and down z directions in a horizontal plane so that the sample 4 is at a desired position; And a sample tilting mechanism 9 for tilting the sample mounting table 5 around the x and y axes.

【0014】更に、この例の透過型電子顕微鏡1には、
制御用コンピュータ10が付設されている。この制御コ
ンピュータ10は、撮影用TV7からの像信号に基づい
て試料4の像を認識する像認識手段11と、この像認識
手段11からの像認識信号に基づいて、方位の角度を算
出する解析手段12と、像認識手段11からの像認識信
号および解析手段12からの解析信号に基づいて試料像
および方位角度を表示する像表示手段13と、解析手段
12からの解析信号に基いて試料4の位置補正を行うた
めに、位置補正信号を偏光コイル6、試料移動機構8お
よび試料傾斜機構9にそれぞれ出力して、これらを制御
する位置補正手段14とからなっている。
Further, the transmission electron microscope 1 of this embodiment includes:
A control computer 10 is provided. The control computer 10 includes an image recognition unit 11 that recognizes an image of the sample 4 based on an image signal from the imaging TV 7, and an analysis that calculates an azimuth angle based on the image recognition signal from the image recognition unit 11. Means 12, an image display means 13 for displaying a sample image and an azimuth angle based on an image recognition signal from the image recognition means 11 and an analysis signal from the analysis means 12, and a sample 4 based on the analysis signal from the analysis means 12. In order to perform the position correction, the position correction means 14 outputs a position correction signal to the polarizing coil 6, the sample moving mechanism 8 and the sample tilting mechanism 9, respectively, and controls them.

【0015】次に、このように構成された透過型電子顕
微鏡1を用いて電子回折パターンの観察を行う際の自動
試料傾斜の動作について説明する。 (1) 現在の結晶方位での電子回折パターンの認識を行
う。 すなわち、従来と同様に現在の結晶方位で得られる電子
回折パターンを撮影用TV7に撮影するとともに、この
撮影用TV7から制御用コンピュータ10の像認識手段
11のメモリに取り込み、電子回折パターンを認識す
る。この電子回折パターンの取込は、図示しないがA/
D変換器を備えたハードウェアにより行われるようにな
っている。また、ここで取り込まれた電子回折パターン
は、一般的には不特定の結晶方位からのものであり、観
察しようとする目的の結晶方位からではないものとなっ
ている。
Next, the operation of the automatic sample tilting when observing the electron diffraction pattern using the transmission electron microscope 1 configured as described above will be described. (1) Recognize the electron diffraction pattern in the current crystal orientation. That is, the electron diffraction pattern obtained in the current crystal orientation is photographed on the photographing TV 7 in the same manner as in the related art, and is taken from the photographing TV 7 into the memory of the image recognition means 11 of the control computer 10 to recognize the electron diffraction pattern. . Although the capture of the electron diffraction pattern is not shown,
This is performed by hardware provided with a D converter. Further, the electron diffraction pattern taken in here is generally from an unspecified crystal orientation and not from a target crystal orientation to be observed.

【0016】(2) 現在の結晶方位の計算を行う。 すなわち、像認識手段11は電子回折パターンを認識す
ると解析手段12へ像認識信号を出力し、解析手段12
は電子回折パターンの強度分布を解析することにより、
現在の結晶方位を数学的に計算する。この計算方法は種
々あるが、例えば、ブラッグ反射を満たす3つのスポッ
トを操作者が指示することにより、方位ベクトルvおよ
び各反射ベクトルg間の次の数式1
(2) The current crystal orientation is calculated. That is, when the image recognition means 11 recognizes the electron diffraction pattern, it outputs an image recognition signal to the analysis means 12 and
By analyzing the intensity distribution of the electron diffraction pattern,
Calculate the current crystal orientation mathematically. There are various calculation methods. For example, when the operator specifies three spots satisfying the Bragg reflection, the following equation 1 between the azimuth vector v and each reflection vector g is obtained.

【0017】[0017]

【数1】 (Equation 1)

【0018】を適用して現在の結晶方位を計算すること
ができる。各反射ベクトルについては、格子定数、加速
電圧、カメラ長をもとに電子回折パターンから指数付け
を行うことにより、向きと大きさ計算する。
The present invention can be applied to calculate the current crystal orientation. The direction and magnitude of each reflection vector are calculated by indexing the electron diffraction pattern based on the lattice constant, acceleration voltage, and camera length.

【0019】(3) 観察に必要な傾斜角の計算を行う。 すなわち、数式1の関係より現在の結晶方位を特定した
後、観察目的の結晶方位に移行するために必要な、試料
傾斜機構(ゴニオメータ)9の方向および傾斜角を数学
的に計算する。
(3) The tilt angle required for observation is calculated. That is, after specifying the current crystal orientation from the relationship of Expression 1, the direction and the tilt angle of the sample tilting mechanism (goniometer) 9 necessary for shifting to the crystal orientation to be observed are mathematically calculated.

【0020】(4) 試料4の実像の第1の取込を行う。 すなわち、観察中の試料4の実像を、撮影用TV7を介
して制御用コンピュータ10の像認識手段11のメモリ
に取り込んで画像1(IMG1)とするとともに、この
画像1を像表示手段13に表示する。
(4) The first capture of the real image of the sample 4 is performed. That is, a real image of the sample 4 under observation is taken into the memory of the image recognition means 11 of the control computer 10 via the photographing TV 7 to be an image 1 (IMG1), and the image 1 is displayed on the image display means 13. I do.

【0021】(5) 試料傾斜制御を行う。 すなわち、目的方位に向かって、微小角度(1度〜3
度)の試料傾斜を行う。この際、一般的に試料4が機械
軸上にないため、この試料傾斜に伴い、試料4の実像は
像表示手段13の観察画面上を移動するが、この移動量
が微小角度(1度〜3度)の傾斜のため、観察画面から
完全に外れない程度の移動量であるので、試料4の実像
は像表示手段13の観察画面上に表示された状態が保持
される。
(5) Perform sample tilt control. That is, a small angle (1 degree to 3 degrees)
Degree of sample tilt is performed. At this time, since the sample 4 is generally not on the mechanical axis, the real image of the sample 4 moves on the observation screen of the image display means 13 with the tilt of the sample. Due to the inclination of 3 degrees), the amount of movement is such that it does not completely deviate from the observation screen, so that the real image of the sample 4 is maintained on the observation screen of the image display means 13.

【0022】(6) 試料4の実像の第2の取込を行う。 すなわち、この微小角度(1度〜3度)の試料傾斜によ
り、位置ずれを起こした観察試料4の画像を、前述と同
様に撮影用TV7を介して制御用コンピュータ10の像
認識手段11のメモリに取り込んで画像2(IMG2)
とする。
(6) The second capture of the real image of the sample 4 is performed. That is, the image of the observation sample 4 that has been displaced due to the inclination of the sample at this minute angle (1 to 3 degrees) is stored in the memory of the image recognition unit 11 of the control computer 10 via the imaging TV 7 in the same manner as described above. Image 2 (IMG2)
And

【0023】(7) 画像位置ずれの計算を行う。 すなわち、画像1と画像2との相関関数XCF(r)を
計算することにより、傾斜に起因する試料の位置ずれ
(向き、量)を数学的に計算する。この相関関数は、次
の数式2の関係を利用したフーリエ変換で計算する。
(7) Calculate the image position shift. That is, by calculating the correlation function XCF (r) between the image 1 and the image 2, the displacement (direction, amount) of the sample due to the tilt is mathematically calculated. This correlation function is calculated by a Fourier transform using the following equation (2).

【0024】[0024]

【数2】 (Equation 2)

【0025】このように計算された相関関数に現れるピ
ーク(P(r))の最大点を相当する位置ベクトルRが画
像1と画像2との位置ずれ量および方向に対応するよう
になる。
The position vector R corresponding to the maximum point of the peak (P (r)) appearing in the correlation function calculated in this way corresponds to the amount of displacement and the direction between the image 1 and the image 2.

【0026】(8) 位置ずれの補正を行う。 すなわち、試料4の移動を、得られた位置ベクトルR、
つまり試料傾斜による位置ずれがキャンセルするよう
に、補正に要求される精度に応じて行う。その場合、
0.1μ程度の精度で十分な場合は、機械的な試料移動
機構8を作動させて、試料4を粗動させるとともに、
0.1μ程度以下の精度が必要な場合は、電気的な偏向
コイル6によるビーム偏向機能を用いて、試料4を微動
する。
(8) The position is corrected. That is, the movement of the sample 4 is represented by the obtained position vector R,
That is, the correction is performed in accordance with the accuracy required for the correction so that the displacement caused by the sample tilt is canceled. In that case,
When an accuracy of about 0.1 μ is sufficient, the mechanical sample moving mechanism 8 is operated to coarsely move the sample 4 and
When an accuracy of about 0.1 μ or less is required, the sample 4 is finely moved by using the beam deflection function of the electric deflection coil 6.

【0027】(9) 自動傾斜シーケンスを行う。 すなわち、前述の(4)〜(8)の各処理を、観察目的方位へ
の移行に必要な傾斜角になるまで繰り返し行う。このよ
うにして、試料の結晶方位が観察目的方位となるよう
に、試料4が自動的に傾斜制御される。
(9) Perform an automatic tilt sequence. That is, the above-described processes (4) to (8) are repeatedly performed until the inclination angle required for shifting to the observation target direction is reached. In this way, the tilt of the sample 4 is automatically controlled so that the crystal orientation of the sample becomes the observation target direction.

【0028】この例の透過型顕微鏡1における自動試料
傾斜装置によれば、試料傾斜に起因する試料4の位置ず
れをコンピュータによる画像解析で計算し、計算した位
置ずれに基づいて、段階的に微小傾斜と位置補正を繰り
返すことにより、目的方位を得るために必要な傾斜角ま
で、試料4が像表示手段13の観察画面から外れること
なく、試料傾斜を自動的にかつ簡単に行うことができる
ようになる。そして、従来非常に困難であった、数十n
mの微小結晶の方位合わせがこのように容易となること
により、この例の自動試料傾斜装置は電子回折研究分野
においてきわめて有益なものとなる。
According to the automatic sample tilting device in the transmission microscope 1 of this embodiment, the displacement of the sample 4 caused by the sample tilt is calculated by image analysis by a computer, and the position is calculated based on the calculated position shift, and the minute displacement is gradually reduced. By repeating the tilt and the position correction, the sample can be automatically and easily tilted without the sample 4 deviating from the observation screen of the image display means 13 up to the tilt angle necessary for obtaining the target orientation. become. And several tens n, which was very difficult in the past
This ease of orientation of the microcrystals of m makes the automatic sample tilter of this example very useful in the field of electron diffraction research.

【0029】[0029]

【発明の効果】以上の説明から明らかなように、本発明
の透過型顕微鏡における自動試料傾斜装置によれば、結
晶方位合わせに必要な試料傾斜角および試料傾斜によっ
て生じた試料の位置ずれを数学的に計算し、計算した試
料傾斜角に基づいて試料を自動的に傾斜するとともに、
計算した試料の位置ずれが解消するように試料を自動的
に移動させているので、目的方位への試料の傾斜および
位置ずれ解消のための位置補正制御を自動的にかつ簡単
に行うことができるようになる。これにより、従来非常
に困難であった、数十nmの微小結晶の方位合わせが容
易に可能となることから、本願発明の透過型電子顕微鏡
における自動試料傾斜装置は、電子回折研究分野におい
てきわめて有益なものとなる。
As is apparent from the above description, according to the automatic sample tilting apparatus in the transmission microscope of the present invention, the sample tilt angle required for the crystal orientation alignment and the sample displacement caused by the sample tilt are calculated mathematically. And automatically tilt the sample based on the calculated sample tilt angle,
Since the sample is automatically moved so that the calculated displacement of the sample is eliminated, it is possible to automatically and easily perform the position correction control for tilting the sample to the target direction and eliminating the displacement. Become like This makes it possible to easily align the orientation of microcrystals of several tens of nm, which has been very difficult in the past. Therefore, the automatic sample tilting apparatus in the transmission electron microscope of the present invention is extremely useful in the field of electron diffraction research. It becomes something.

【0030】特に、請求項2の発明によれば、試料の比
較的大きな位置ずれの場合には、試料移動機構により位
置補正制御を機械的に行うとともに、試料の微少な位置
ずれの場合には、偏向コイルにより位置補正制御を電気
的に行うようにしているので、位置補正制御がより効率
よく行うことができるようになる。
In particular, according to the second aspect of the present invention, in the case of a relatively large displacement of the sample, the position correction control is performed mechanically by the sample moving mechanism, and in the case of a small displacement of the sample, Since the position correction control is electrically performed by the deflection coil, the position correction control can be performed more efficiently.

【0031】また、請求項3の発明によれば、試料の像
が像表示手段の観察画面から外れることなく、試料の傾
斜制御および位置補正制御を自動的に行うようにしてい
るので、試料の方位合わせおよび位置ずれ補正制御に手
間がほとんどかからなくなり、しかもより正確に試料の
方位合わせおよび位置ずれ補正制御を行うことができ
る。
According to the third aspect of the present invention, the tilt control and the position correction control of the sample are automatically performed without the image of the sample deviating from the observation screen of the image display means. The azimuth adjustment and the positional deviation correction control can be performed with little effort, and the azimuth alignment and the positional deviation correction control of the sample can be performed more accurately.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明にかかる透過型電子顕微鏡における自
動試料傾斜装置の実施の形態の一例を模式的に示す図で
ある。
FIG. 1 is a diagram schematically showing an example of an embodiment of an automatic sample tilting device in a transmission electron microscope according to the present invention.

【符号の説明】[Explanation of symbols]

1…透過型電子顕微鏡、2…電子銃、4…試料、5…試
料載置台、6…偏向コイル、7…撮像用TV、8…試料
移動機構、9…試料傾斜機構、10…制御コンピュー
タ、11…像認識手段、12…解析手段、13…像表示
手段、14…位置補正手段
DESCRIPTION OF SYMBOLS 1 ... Transmission electron microscope, 2 ... Electron gun, 4 ... Sample, 5 ... Sample mounting table, 6 ... Deflection coil, 7 ... TV for imaging, 8 ... Sample moving mechanism, 9 ... Sample tilting mechanism, 10 ... Control computer, 11 image recognition means, 12 analysis means, 13 image display means, 14 position correction means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 試料を前後左右方向および上下方向に移
動させる試料移動機構と、試料を所定に傾斜角に傾斜す
る試料傾斜機構と、これらの試料移動機構および試料傾
斜機構をそれぞれ制御する電子制御装置とを少なくとも
備え、前記試料移動機構により前記試料を前後左右方向
および上下方向に移動させて試料の位置を調節するとと
もに、前記試料傾斜機構により前記試料を所定の傾斜角
に傾斜し、この試料に電子ビームを照射して、試料を透
過した透過電子を偏向コイルで偏向制御して撮像手段に
結像させ、この撮像手段で試料の像を撮影することによ
り、試料の高分解能の像を得る透過型電子顕微鏡におい
て、 前記電子制御装置は、前記撮像手段からの像信号に基づ
いて、試料の現在の結晶方位で得られる電子回折パター
ンを得る像認識手段と、この像認識手段からの電子回折
パターンの強度分布を解析することにより、現在の結晶
方位を計算するとともに、観察しようとする目的の結晶
方位に移行するために必要な、前記試料傾斜機構の傾斜
方向および傾斜値を計算し、更にこの計算した傾斜方向
および傾斜値に基づく前記試料傾斜機構による試料傾斜
制御後に生じた位置ずれを計算する解析手段と、前記撮
像手段からの像信号に基づいて試料の像を表示する像表
示手段と、前記解析手段により計算された前記傾斜方向
および前記傾斜値に基づいて前記試料傾斜機構を、前記
試料の結晶方位が観察しようとする目的の結晶方位とな
るように制御するとともに、前記解析手段により計算さ
れた前記位置ずれに基づいて前記試料移動機構および前
記偏向コイルの少なくとも一方を、この位置ずれが解消
するように位置補正制御する位置補正手段とを備えてい
ることを特徴とする透過型電子顕微鏡における自動試料
傾斜装置。
1. A sample moving mechanism for moving a sample in the front-rear, left-right, and vertical directions, a sample tilting mechanism for tilting the sample at a predetermined tilt angle, and electronic control for controlling the sample moving mechanism and the sample tilting mechanism, respectively. At least a device for adjusting the position of the sample by moving the sample in the front-rear, left-right and up-down directions by the sample moving mechanism, and tilting the sample at a predetermined tilt angle by the sample tilting mechanism. A high resolution image of the sample is obtained by irradiating the sample with an electron beam, deflecting the transmitted electrons transmitted through the sample by a deflection coil to form an image on an imaging unit, and photographing the image of the sample with the imaging unit. In the transmission electron microscope, the electronic control unit is configured to obtain an electron diffraction pattern obtained in a current crystal orientation of the sample based on an image signal from the imaging unit. Means and the sample tilt mechanism required to calculate the current crystal orientation by analyzing the intensity distribution of the electron diffraction pattern from the image recognition means and to shift to the target crystal orientation to be observed. Analyzing means for calculating a tilt direction and a tilt value of the sample, further calculating a position shift generated after the sample tilt control by the sample tilt mechanism based on the calculated tilt direction and the tilt value, and an image signal from the imaging means. Image display means for displaying an image of the sample, the sample tilt mechanism based on the tilt direction and the tilt value calculated by the analysis means, the crystal orientation of the target crystal orientation to be observed and And at least one of the sample moving mechanism and the deflection coil based on the displacement calculated by the analysis means. An automatic sample tilting device for a transmission electron microscope, comprising: a position correcting means for performing position correction control so as to eliminate the positional deviation.
【請求項2】 前記位置補正手段による位置補正制御
は、所定精度より粗い精度の位置補正制御のときは前記
試料移動機構によって行うとともに、前記所定精度以下
の細かい精度の位置補正制御のときは前記偏向コイルに
よって行うことを特徴とする請求項1記載の透過型電子
顕微鏡における自動試料傾斜装置。
2. The position correction control by the position correction means is performed by the sample moving mechanism when the position correction control is coarser than a predetermined accuracy, and is performed when the position correction control is finer than the predetermined accuracy. 2. The automatic sample tilting device in a transmission electron microscope according to claim 1, wherein the tilting is performed by a deflection coil.
【請求項3】 前記電子制御装置は、前記解析手段によ
って計算された前記試料傾斜機構の傾斜方向および傾斜
値にもとづいて、前記試料傾斜機構によって前記像表示
手段の像表示画面から試料の像が外れない程度に試料を
微小傾斜させるとともに、この傾斜により生じ、前記解
析手段によって計算された試料の前記位置ずれに基づい
て前記試料移動機構および前記偏向コイルの少なくとも
一方によって試料の前記位置補正制御を行い、これらの
試料の微小傾斜および位置補正制御を、前記解析手段に
よって計算された前記試料傾斜機構の傾斜方向および傾
斜値となるまで、繰り返し行うことを特徴とする請求項
1または2記載の透過型電子顕微鏡における自動試料傾
斜装置。
3. An electronic control unit according to claim 1, wherein said sample tilting mechanism converts an image of the sample from an image display screen of said image display means based on the tilt direction and tilt value of said sample tilting mechanism calculated by said analyzing means. The sample is tilted slightly to the extent that it does not deviate, and the position correction control of the sample is performed by at least one of the sample moving mechanism and the deflection coil based on the position shift of the sample caused by the tilt and calculated by the analysis means. 3. The transmission according to claim 1, wherein the control is performed repeatedly until the tilt and the tilt of the sample tilt mechanism are calculated by the analysis means. Automatic sample tilting device for scanning electron microscope.
JP09125098A 1998-04-03 1998-04-03 Automatic specimen tilting device in transmission electron microscope Expired - Fee Related JP3672728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09125098A JP3672728B2 (en) 1998-04-03 1998-04-03 Automatic specimen tilting device in transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09125098A JP3672728B2 (en) 1998-04-03 1998-04-03 Automatic specimen tilting device in transmission electron microscope

Publications (2)

Publication Number Publication Date
JPH11288679A true JPH11288679A (en) 1999-10-19
JP3672728B2 JP3672728B2 (en) 2005-07-20

Family

ID=14021185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09125098A Expired - Fee Related JP3672728B2 (en) 1998-04-03 1998-04-03 Automatic specimen tilting device in transmission electron microscope

Country Status (1)

Country Link
JP (1) JP3672728B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242514A (en) * 2006-03-10 2007-09-20 Univ Of Tokyo Transmission electron microscope, and its control method
EP2056332A1 (en) 2007-10-29 2009-05-06 Hitachi High-Technologies Corporation Displacement correction of a sample stage for an eucentric rotation in a charged particle microscope
JP2010212067A (en) * 2009-03-10 2010-09-24 Jeol Ltd Automatic sample inclination device for electron microscope
US8008621B2 (en) 2008-07-23 2011-08-30 Korea Institute Of Machinery & Materials Apparatus of measuring the orientation relationship between neighboring grains using a goniometer in a transmission electron microscope and method for revealing the characteristics of grain boundaries
JP2014192037A (en) * 2013-03-27 2014-10-06 Hitachi High-Tech Science Corp Charged particle beam apparatus, method for processing sample by using the apparatus, and computer program for processing sample by using the apparatus
CN104183453A (en) * 2014-07-17 2014-12-03 胜科纳米(苏州)有限公司 Sample platform and microscope system
JP2019075286A (en) * 2017-10-17 2019-05-16 日本電子株式会社 Electron microscope and adjustment method of sample tilt angle
WO2024024108A1 (en) * 2022-07-29 2024-02-01 株式会社日立ハイテク Charged particle beam device and method for controlling charged particle beam device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242514A (en) * 2006-03-10 2007-09-20 Univ Of Tokyo Transmission electron microscope, and its control method
EP2056332A1 (en) 2007-10-29 2009-05-06 Hitachi High-Technologies Corporation Displacement correction of a sample stage for an eucentric rotation in a charged particle microscope
JP2009110734A (en) * 2007-10-29 2009-05-21 Hitachi High-Technologies Corp Charged particle beam microscope system and microscopic detection method
US7863564B2 (en) 2007-10-29 2011-01-04 Hitachi High-Technologies Corporation Electric charged particle beam microscope and microscopy
US8008621B2 (en) 2008-07-23 2011-08-30 Korea Institute Of Machinery & Materials Apparatus of measuring the orientation relationship between neighboring grains using a goniometer in a transmission electron microscope and method for revealing the characteristics of grain boundaries
JP2010212067A (en) * 2009-03-10 2010-09-24 Jeol Ltd Automatic sample inclination device for electron microscope
JP2014192037A (en) * 2013-03-27 2014-10-06 Hitachi High-Tech Science Corp Charged particle beam apparatus, method for processing sample by using the apparatus, and computer program for processing sample by using the apparatus
CN104183453A (en) * 2014-07-17 2014-12-03 胜科纳米(苏州)有限公司 Sample platform and microscope system
JP2019075286A (en) * 2017-10-17 2019-05-16 日本電子株式会社 Electron microscope and adjustment method of sample tilt angle
US10867771B2 (en) 2017-10-17 2020-12-15 Jeol Ltd. Electron microscope and specimen tilt angle adjustment method
WO2024024108A1 (en) * 2022-07-29 2024-02-01 株式会社日立ハイテク Charged particle beam device and method for controlling charged particle beam device

Also Published As

Publication number Publication date
JP3672728B2 (en) 2005-07-20

Similar Documents

Publication Publication Date Title
US9103769B2 (en) Apparatus and methods for controlling electron microscope stages
US7791023B2 (en) Electron holography system
JP4383950B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
US20090283677A1 (en) Section image acquiring method using combined charge particle beam apparatus and combined charge particle beam apparatus
US10332719B2 (en) Device and method for computing angular range for measurement of aberrations and electron microscope
US10867771B2 (en) Electron microscope and specimen tilt angle adjustment method
JP5296578B2 (en) Automatic specimen tilting device for electron microscope
JP3672728B2 (en) Automatic specimen tilting device in transmission electron microscope
JP3970656B2 (en) Sample observation method using transmission electron microscope
JP4095743B2 (en) Transmission electron microscope
JP2001210263A (en) Scanning electron microscope, its dynamic focus control method and shape identifying method for semiconductor device surface and cross section
JP2002286663A (en) Sample analysis and sample observation apparatus
US5081354A (en) Method of determining the position of electron beam irradiation and device used in such method
JP2000251823A (en) Sample inclination observing method in scanning charged particle beam system
JP2007242514A (en) Transmission electron microscope, and its control method
JP4431624B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
JP4011455B2 (en) Sample observation method using transmission electron microscope
US10020162B2 (en) Beam alignment method and electron microscope
EP0257679A1 (en) Method of beam centring
JPS63307652A (en) Focus detection device for electron microscope
JP2023117159A (en) Measuring method and electron microscope
JP2003207469A (en) Electron probe microanalyzer
JP2000100367A (en) Scanning electron microscope
JP2948242B2 (en) Focused electron beam diffractometer
JP2007128808A (en) Method and device for correcting tilting stage of electron microscope

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees