JPH11287761A - Method for determining metallic element - Google Patents

Method for determining metallic element

Info

Publication number
JPH11287761A
JPH11287761A JP8839498A JP8839498A JPH11287761A JP H11287761 A JPH11287761 A JP H11287761A JP 8839498 A JP8839498 A JP 8839498A JP 8839498 A JP8839498 A JP 8839498A JP H11287761 A JPH11287761 A JP H11287761A
Authority
JP
Japan
Prior art keywords
sample
acid
microwaves
added
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8839498A
Other languages
Japanese (ja)
Inventor
Yuji Matsui
祐司 松井
Yoshiharu Akutsu
好春 阿久津
Takao Shinozaki
孝夫 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP8839498A priority Critical patent/JPH11287761A/en
Publication of JPH11287761A publication Critical patent/JPH11287761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To speedily, simply and safely determine many kinds of metallic elements in a sample such as a cosmetic, etc., by sequentially adding a strong acid, a hydrofluoric acid, a boric acid to the sample including an inorganic substance, a metal-containing organic substance while irradiating microwaves to the sample. SOLUTION: A sample such as various cosmetics, agricultural chemicals, etc., includes an inorganic substance and a metal-containing organic substance, and also includes a surfactant, an organic solvent, etc. A strong acid of 2 or lower pKa, preferably nitric acid is added by 2-10 ml to 0.1 g of the sample and microwaves are irradiated in a sealing system. Thereafter, a hydrofluoric acid is added by the same quantity as the nitric acid, and microwaves are irradiated again in the sealing system. Because of this two-stage process, particularly, mica, silica or the like inorganic mineral, silicones are completely dissolved, thus enabling correct analyses. Thereafter, a boric acid is added and microwaves are irradiated in the sealing system. Fluoride ions generated in a pre-stage process are masked by this operation, with high determination accuracy secured. The obtained sample solution is subjected to metallic element analysis, whereby metallic elements in the sample are speedily, simply and safely determined.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は化粧品、香粧品、家
庭用洗浄剤等の有機物及び無機物を含有する試料中の金
属元素の定量法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining a metal element in a sample containing organic and inorganic substances such as cosmetics, cosmetics, household cleaners and the like.

【0002】[0002]

【従来の技術】化粧品、香粧品、家庭用洗浄剤中には、
種々の金属元素系無機鉱物、金属含有有機物等が含ま
れ、品質管理の面からその定量が行われている。又、安
全面からこれら製品中の重金属、ヒ素等の微量金属の定
量も必要である。
2. Description of the Related Art In cosmetics, cosmetics, and household cleaning agents,
Various metal element-based inorganic minerals, metal-containing organic substances, and the like are included, and their quantification is performed in terms of quality control. From the viewpoint of safety, it is necessary to determine trace metals such as heavy metals and arsenic in these products.

【0003】これらの試料中の前記金属含有成分の定量
法は、蛍光X線法により試料中の元素を前処理なしに直
接分析する方法や、試料をガラスビーズ化した後に分析
する方法等がある。しかし、これらの方法では化粧品や
香粧品の試料の場合、試料中に複雑なマトリックスを含
む場合が多く、分析すべき元素が多種類であるなど、精
度よい分析ができない。
[0003] Methods of quantifying the metal-containing components in these samples include a method of directly analyzing the elements in the sample by a fluorescent X-ray method without pretreatment, and a method of analyzing the sample after forming it into glass beads. . However, in these methods, in the case of a sample of a cosmetic or a cosmetic, a complex matrix is often included in the sample, and accurate analysis cannot be performed, for example, because there are many types of elements to be analyzed.

【0004】他方、多金属元素定量法として、高周波誘
導、結合プラズマ発光分光分析法(ICP−AES)及
び原子吸光分光分析法(AAS)があるが、試料は溶液
であることが必要である。
On the other hand, there are high-frequency induction, coupled plasma emission spectroscopy (ICP-AES) and atomic absorption spectroscopy (AAS) as polymetal element determination methods, but the sample must be a solution.

【0005】更に、化粧品等の試料を前処理、溶液化
後、ICP−AESやAASにて分析する方法もある
が、分析すべき元素ごとに煩雑な処理や長時間を要し、
自動化が困難であった。
[0005] Furthermore, there is a method in which a sample of cosmetics or the like is pre-treated and made into a solution, and then analyzed by ICP-AES or AAS. However, complicated processing and a long time are required for each element to be analyzed.
Automation was difficult.

【0006】試料に硝酸等を添加し、開放系でマイクロ
波を照射し、加熱分解にて試料溶液を調製する方法があ
る(特開平8−68735号及び同9−89868号公
報)。しかし、同方法のうち開放系の場合、軽元素の揮
散やコンタミネーションの危険性があった。密閉系で
は、マイカやタルクなどの分解ができず、充分な分析が
できなかった。
There is a method in which nitric acid or the like is added to a sample, microwaves are irradiated in an open system, and a sample solution is prepared by thermal decomposition (Japanese Patent Application Laid-Open Nos. 8-68735 and 9-89868). However, in the case of the open system, there is a risk of light element volatilization and contamination. In the closed system, mica and talc could not be decomposed, and sufficient analysis could not be performed.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、化粧
品のような多様で複雑なマトリックスを含み、微量〜高
濃度で複数の元素を含む試料を、迅速、簡便かつ安全に
分解溶液化でき、該試料中の金属元素を高精度で分析す
る方法の提供にある。
SUMMARY OF THE INVENTION An object of the present invention is to rapidly, simply and safely decompose a sample containing a variety of complex matrices, such as cosmetics, containing a plurality of elements in a small amount to a high concentration. Another object of the present invention is to provide a method for analyzing a metal element in the sample with high accuracy.

【0008】[0008]

【課題を解決するための手段】本発明者は、多種多様の
無機物及び/又は金属含有有機物を含む試料に、まずp
Ka2以下の強酸を添加して密閉系でマイクロ波照射
し、次いでフッ化水素酸を添加して密閉系でマイクロ波
照射し、更にほう酸を添加して密閉系でマイクロ波照射
した試料を分析すれば、種々の有機物や無機物が効率良
く、かつ安全に分解でき、AlやSiも含めた多くの金
属元素が一斉にかつ正確に分析できることを見出し、本
発明を完成した。
SUMMARY OF THE INVENTION The present inventors have first prepared p-type samples containing a wide variety of inorganic and / or metal-containing organic substances.
A strong acid of Ka2 or less is added, microwave irradiation is performed in a closed system, then hydrofluoric acid is added, microwave irradiation is performed in a closed system, and further, boric acid is added, and a sample irradiated with microwaves in a closed system is analyzed. For example, they have found that various organic and inorganic substances can be efficiently and safely decomposed, and that many metal elements including Al and Si can be analyzed simultaneously and accurately, and the present invention has been completed.

【0009】本発明は、無機物及び/又は金属含有有機
物を含む試料に、pKa2以下の強酸を添加して密閉系
でマイクロ波を照射した後、フッ化水素酸を添加して密
閉系でマイクロ波を照射し、次いでほう酸を添加して密
閉系でマイクロ波を照射した後、この試料中の金属元素
を定量することを特徴とする該試料中の金属元素の定量
法を提供するものである。
According to the present invention, a sample containing an inorganic substance and / or a metal-containing organic substance is irradiated with a microwave in a closed system after adding a strong acid having a pKa of 2 or less, and then hydrofluoric acid is added to the sample to produce a microwave in a closed system. And then irradiating the sample with microwaves in a closed system after adding boric acid, and then quantifying the metal elements in the sample.

【0010】[0010]

【発明の実施の形態】本発明の定量法は、無機物や金属
含有有機物中の金属元素と微量金属を定量する方法であ
る。試料は、無機物及び/又は金属含有有機物を含み、
かつ、これらの物質以外に界面活性剤、天然・合成高分
子化合物、各種油剤、有機溶剤などを含む。例えば、各
種化粧品、香粧品、洗浄剤、医薬部外品、医薬品、農薬
等がある。無機物には、マイカ、タルクなどの無機鉱物
のほか、各種無機塩等が、金属含有有機物には、シリコ
ーン類、各種有機酸塩等が各々挙げられる。なお、試料
は、予めヘキサン、アルコール、クロロホルム、エーテ
ルなどに溶解する成分を除去して定量するのが好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION The determination method of the present invention is a method for determining a metal element and a trace metal in an inorganic substance or a metal-containing organic substance. The sample contains an inorganic substance and / or an organic substance containing a metal,
In addition, in addition to these substances, surfactants, natural and synthetic polymer compounds, various oils, organic solvents and the like are included. For example, there are various cosmetics, cosmetics, detergents, quasi-drugs, pharmaceuticals, agricultural chemicals, and the like. Examples of the inorganic substance include inorganic minerals such as mica and talc, and various inorganic salts. Examples of the metal-containing organic substance include silicones and various organic acid salts. The sample is preferably quantified by removing components soluble in hexane, alcohol, chloroform, ether and the like in advance.

【0011】本発明では、まず前記試料にpKa2以下
の強酸を添加し、密閉系でマイクロ波照射を行う。ここ
でpKa2以下の強酸としては、塩酸、硝酸、硫酸及び
リン酸等から選ばれる1種以上が挙げられるが、硝酸が
特に好ましく、濃硝酸が特に好ましく、王水等でもよ
い。酸の添加量は、硝酸の場合、70%硝酸として試料
0.1gに対して0.1〜20ml、特に2〜10mlが好
ましい。
In the present invention, first, a strong acid having a pKa of 2 or less is added to the sample, and microwave irradiation is performed in a closed system. Here, as the strong acid having a pKa of 2 or less, one or more selected from hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid and the like can be mentioned, but nitric acid is particularly preferable, concentrated nitric acid is particularly preferable, and aqua regia and the like may be used. In the case of nitric acid, the amount of the acid to be added is 0.1 to 20 ml, preferably 2 to 10 ml, based on 0.1 g of the sample as 70% nitric acid.

【0012】これらの酸を添加した試料は、密閉系でマ
イクロ波照射がされる。密閉系構成用密閉容器には、耐
酸性、耐熱性、耐圧性であって、更に圧力開放機能を備
えた容器が好ましい。
The sample to which these acids have been added is irradiated with microwaves in a closed system. The closed container for the closed system is preferably a container having acid resistance, heat resistance and pressure resistance and further having a pressure release function.

【0013】マイクロ波照射は、通常のマイクロ波照射
装置でよく、例えば2450±50MHzのマイクロ波
照射装置がよい。出力は特に限定されず、通常250W
〜1KWが好ましい。なお、操作中の突沸、高圧、高熱
を防ぐため、圧力及び温度コントロール可能な装置が望
ましい。
The microwave irradiation may be performed by a usual microwave irradiation apparatus, for example, a microwave irradiation apparatus of 2450 ± 50 MHz. The output is not particularly limited, and is usually 250 W
~ 1 kW is preferred. In order to prevent bumping, high pressure and high heat during operation, a device capable of controlling pressure and temperature is desirable.

【0014】マイクロ波照射時の圧力と温度は、密閉状
態で圧力を75kg/cm2 以下、好ましくは数回にわたり
圧力を上げ、各段階で一定時間(5分以上)保持する;
又は密閉状態で温度を500℃以下、より好ましくは2
00℃以下で数回にわたり温度を上げ、各段階で一定時
間(5分以上)保持するのが好適である。
As for the pressure and temperature during microwave irradiation, the pressure is increased to 75 kg / cm 2 or less, preferably several times in a closed state, and is maintained for a certain time (5 minutes or more) in each step;
Alternatively, in a closed state, the temperature is 500 ° C. or less, more preferably 2 ° C.
It is preferable to raise the temperature several times at a temperature of 00 ° C. or less, and to hold the temperature for a certain period of time (5 minutes or more) at each stage.

【0015】次いで、当該試料にフッ化水素酸を添加
し、再度密閉系でマイクロ波照射する。ここで、フッ化
水素酸の添加量は、48%フッ化水素酸として、試料
0.1gに対して0.1〜20ml、特に2〜10mlが好
ましい。また、このフッ化水素酸添加後のマイクロ波照
射は、前記条件に準ずる。
Next, hydrofluoric acid is added to the sample, and the sample is again irradiated with microwaves in a closed system. Here, the addition amount of hydrofluoric acid is preferably 0.1 to 20 ml, particularly preferably 2 to 10 ml per 0.1 g of the sample as 48% hydrofluoric acid. The microwave irradiation after the addition of hydrofluoric acid is in accordance with the above conditions.

【0016】上記2段階の酸添加とマイクロ波照射によ
り、従来、分解が不十分であった成分、特にマイカ、シ
リカ等の無機鉱物やシリコーン類が完全に分解し、正確
な分析ができる。
By the two-stage addition of acid and microwave irradiation, components which have been insufficiently decomposed in the past, particularly inorganic minerals such as mica and silica, and silicones can be completely decomposed, and accurate analysis can be performed.

【0017】次いで、当該試料にほう酸を添加して密閉
系でマイクロ波照射する。この操作により、前段階処理
で生成したフッ化物イオンをマスキングでき、高い定量
精度を確保できる。ほう酸の添加量は、試料中のフッ化
物イオンをマスキングできる量であれば特に限定されな
い。またほう酸添加後のマイクロ波照射も、前記と同様
の装置を用い、好ましくは1分以上、より好ましくは1
〜10分行えばよい。
Next, boric acid is added to the sample, and microwave irradiation is performed in a closed system. By this operation, the fluoride ions generated in the pre-stage treatment can be masked, and high quantitative accuracy can be secured. The amount of boric acid added is not particularly limited as long as it can mask the fluoride ions in the sample. Microwave irradiation after the addition of boric acid is also performed using the same apparatus as above, preferably for 1 minute or more, more preferably 1 minute or more.
It may be performed for 10 to 10 minutes.

【0018】上記の3段階のマイクロ波照射後の試料
は、それぞれ放冷後に、次の操作に入るのが好ましい。
It is preferable that the samples after the above-described three-stage microwave irradiation are allowed to cool and then to be subjected to the following operation.

【0019】かくして得られた試料溶液を、常法に従っ
て金属元素分析すれば、試料中の金属元素が定量でき
る。分析法には、ICP−AES及びAASが好まし
い。なお、分析に対し、試料中に含まれない元素(例え
ばイットリウム)を内標準成分として用いるのが好まし
い。
When the sample solution thus obtained is subjected to metal element analysis according to a conventional method, the metal element in the sample can be quantified. ICP-AES and AAS are preferred for analysis. For analysis, it is preferable to use an element not contained in the sample (for example, yttrium) as an internal standard component.

【0020】本発明方法によれば、前記3段階のマイク
ロ波照射後の試料溶液だけで、数多くの金属元素が一斉
に定量可能であり、例えばAl、Si、Ca、Ti、B
a、Fe、Mg、Zn、As、S、P、K、Na等が一
斉に分析できる。
According to the method of the present invention, a large number of metal elements can be simultaneously determined only by the sample solution after the three-stage microwave irradiation, for example, Al, Si, Ca, Ti, B
a, Fe, Mg, Zn, As, S, P, K, Na, etc. can be analyzed simultaneously.

【0021】[0021]

【実施例】次に実施例を挙げて本発明を詳細に説明する
が、本発明は何らこれに限定されない。
Next, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.

【0022】実施例1 (1)市販のファンデーションからアルコール可溶分を
除去した試料0.05gをテフロン製分解容器に精密に
秤量し、濃硝酸5mlを添加し、ポリプロピレン製耐圧容
器に封入した。耐圧容器を完全密閉し、マイクロ波分解
装置(CHEM社製 MDS2000)にて下記表1の
マイクロ波出力条件で分解した(約25分)。硝酸分解
終了後、オーブンより出し十分に冷却した。
Example 1 (1) 0.05 g of a sample obtained by removing alcohol-soluble components from a commercially available foundation was precisely weighed in a decomposition container made of Teflon, 5 ml of concentrated nitric acid was added, and sealed in a pressure container made of polypropylene. The pressure vessel was completely sealed, and decomposed by a microwave decomposition apparatus (MDS2000 manufactured by CHEM) under the microwave output conditions shown in Table 1 below (about 25 minutes). After completion of nitric acid decomposition, it was taken out of the oven and cooled sufficiently.

【0023】[0023]

【表1】 [Table 1]

【0024】(2)次に、試料にフッ化水素酸を1.5
ml加え、前記(1)と同じ分解装置で安全弁(ラプチャ
ーメンブレン)を交換後、容器を密閉し、表2に示すマ
イクロ波出力条件で分解した(約25分)。フッ化水素
酸分解終了後、室温で十分に冷却した。
(2) Next, hydrofluoric acid was added to the sample for 1.5 hours.
After the addition of ml, the safety valve (rupture membrane) was replaced with the same decomposition device as in the above (1), the container was sealed, and the container was decomposed under the microwave output conditions shown in Table 2 (about 25 minutes). After the completion of hydrofluoric acid decomposition, the system was sufficiently cooled at room temperature.

【0025】[0025]

【表2】 [Table 2]

【0026】(3)次に試料に4%ほう酸20mlを加
え、前記(1)と同じ分解装置で表3のマイクロ波出力
条件で加熱した(約15分)。終了後、オーブンから出
し十分に冷却した。
(3) Next, 20 ml of 4% boric acid was added to the sample, and the sample was heated under the microwave output conditions shown in Table 3 by the same decomposition apparatus as in (1) (about 15 minutes). After the completion, it was taken out of the oven and cooled sufficiently.

【0027】[0027]

【表3】 [Table 3]

【0028】(4)分解溶液をポリプロピレン製100
mlメスフラスコに移した。分解容器は、超純水で数回洗
浄し、洗液も100mlメスフラスコに移した後、イット
リウム溶液(5000mg/l)を5ml添加し、超純水を
加えて100mlとし、分析試料とした。これをICP−
AESを用いて、表4の条件で分析を行った。
(4) The decomposition solution is made of polypropylene 100
Transferred to a ml volumetric flask. The decomposition vessel was washed several times with ultrapure water, and the washing solution was also transferred to a 100 ml volumetric flask. Then, 5 ml of an yttrium solution (5000 mg / l) was added, and ultrapure water was added to 100 ml to prepare an analysis sample. This is ICP-
The analysis was performed using AES under the conditions shown in Table 4.

【0029】[0029]

【表4】 [Table 4]

【0030】結果を表5に示す。なお、従来法の対比の
度、試料を3分割し、それぞれについてアルカリ溶融法
(Ti、Si、Al、Ca定量用)、硫酸水素カリウム
溶融法(Fe、Mg定量用)及び酸分解法(Zn定量
用)の3種の処理を別個に行い、それぞれについてのI
CP−AESによる定量結果も併記した。結果、本発明
方法によれば、Si、Ti、Al、Ca、Fe、Mg及
びZnの一斉定量が従来法と同等以上に正確にできた。
Table 5 shows the results. In comparison with the conventional method, the sample was divided into three parts, and for each, an alkali melting method (for quantitative determination of Ti, Si, Al and Ca), a potassium hydrogen sulfate melting method (for quantitative determination of Fe and Mg) and an acid decomposition method (Zn (For quantification) were separately performed, and I
The results of quantification by CP-AES are also shown. As a result, according to the method of the present invention, simultaneous quantification of Si, Ti, Al, Ca, Fe, Mg and Zn could be performed more accurately than the conventional method.

【0031】[0031]

【表5】 [Table 5]

【0032】実施例2 市販乳液試料からアルコール可溶分を除去したものを用
いた以外は実施例1と同様にして金属元素を定量した。
結果、乳液中のSi、Ti、Al、Fe、Mg、Ca及
びZnが一斉に定量できた(表6参照)。
Example 2 Metal elements were quantified in the same manner as in Example 1 except that a commercially available emulsion sample from which alcohol-soluble components had been removed was used.
As a result, Si, Ti, Al, Fe, Mg, Ca and Zn in the emulsion could be simultaneously determined (see Table 6).

【0033】[0033]

【表6】 [Table 6]

【0034】実施例3 市販の口紅試料からアルコール可溶分を除去した試料を
用いた以外は実施例1と同様にして金属元素を定量し
た。口紅中のSi、Ti、Al、Fe、Mg、Ca及び
Znが一斉に定量できた(表7参照)。
Example 3 A metal element was quantified in the same manner as in Example 1 except that a sample obtained by removing alcohol-soluble components from a commercially available lipstick sample was used. Si, Ti, Al, Fe, Mg, Ca and Zn in the lipstick could be simultaneously determined (see Table 7).

【0035】[0035]

【表7】 [Table 7]

【0036】[0036]

【発明の効果】本発明方法は、有機物及び無機物を数多
く含む化粧品等の試料中の、多種の金属元素を、迅速、
簡便かつ安全に定量できる。従来、元素や試料ごとに異
なる条件で行っていた前処理が一操作でできるため、多
種元素の一斉分析が可能になり、精度も向上した。また
分解プログラムを使えば、自動分解もできる。
According to the method of the present invention, various kinds of metal elements in a sample of cosmetics or the like containing a large number of organic substances and inorganic substances can be quickly and rapidly removed.
Easy and safe quantification. Conventionally, pre-processing, which was performed under different conditions for each element or sample, can now be performed in a single operation, so that simultaneous analysis of various elements has become possible and accuracy has been improved. If a disassembly program is used, automatic disassembly can be performed.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 無機物及び/又は金属含有有機物を含有
する試料に、pKa2以下の強酸を添加して密閉系でマ
イクロ波を照射した後、フッ化水素酸を添加して密閉系
でマイクロ波を照射し、次いでほう酸を添加して密閉系
でマイクロ波を照射した後、この試料中の金属元素を定
量することを特徴とする該試料中の金属元素の定量法。
1. A sample containing an inorganic substance and / or a metal-containing organic substance is added with a strong acid having a pKa of 2 or less and irradiated with microwaves in a closed system. A method for quantifying a metal element in a sample, which comprises irradiating the sample, then adding boric acid, irradiating the sample with microwaves in a closed system, and then quantifying the metal element in the sample.
JP8839498A 1998-04-01 1998-04-01 Method for determining metallic element Pending JPH11287761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8839498A JPH11287761A (en) 1998-04-01 1998-04-01 Method for determining metallic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8839498A JPH11287761A (en) 1998-04-01 1998-04-01 Method for determining metallic element

Publications (1)

Publication Number Publication Date
JPH11287761A true JPH11287761A (en) 1999-10-19

Family

ID=13941589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8839498A Pending JPH11287761A (en) 1998-04-01 1998-04-01 Method for determining metallic element

Country Status (1)

Country Link
JP (1) JPH11287761A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168855A (en) * 2000-09-25 2002-06-14 Murata Mfg Co Ltd Method for converting inorganic glass sample into solution and quantitative analysis method for inorganic glass sample
KR20180054998A (en) * 2016-11-15 2018-05-25 주식회사 포스코 Decomposition method of a sample for icp analysis
CN113848245A (en) * 2021-09-18 2021-12-28 河南省地质矿产勘查开发局第一地质矿产调查院 Method for measuring trace gold in plant by ICP-MS (inductively coupled plasma-mass spectrometry), pretreatment reagent and application of pretreatment reagent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168855A (en) * 2000-09-25 2002-06-14 Murata Mfg Co Ltd Method for converting inorganic glass sample into solution and quantitative analysis method for inorganic glass sample
KR20180054998A (en) * 2016-11-15 2018-05-25 주식회사 포스코 Decomposition method of a sample for icp analysis
CN113848245A (en) * 2021-09-18 2021-12-28 河南省地质矿产勘查开发局第一地质矿产调查院 Method for measuring trace gold in plant by ICP-MS (inductively coupled plasma-mass spectrometry), pretreatment reagent and application of pretreatment reagent

Similar Documents

Publication Publication Date Title
Bizzi et al. Improvement of microwave-assisted digestion of milk powder with diluted nitric acid using oxygen as auxiliary reagent
JP2004198324A (en) Analytical method for heavy metal contained in soil
Murphy et al. Determination of total mercury in environmental and biological samples by flow injection cold vapour atomic absorption spectrometry
Wu et al. Simple mercury speciation analysis by CVG-ICP-MS following TMAH pre-treatment and microwave-assisted digestion
JP2001324427A (en) Method for high accuracy boron analysis in iron and steel
JP2003194683A (en) Preparation method of analytical sample and quantitative analysis method of element
JPH11287761A (en) Method for determining metallic element
De Boer et al. A comparative examination of sample treatment procedures for ICAP-AES analysis of biological tissue
Oral et al. ICP-OES method for the determination of Fe, Co, Mn, Cu, Pb, and Zn in Ore samples from the Keban region using experimental design and optimization methodology
Santos et al. A new procedure for bovine milk digestion in a focused microwave oven: gradual sample addition to pre-heated acid
Safarova et al. Methods of sample preparation of soil, bottom sediments, and solid wastes for atomic absorption determination of heavy metals
Coedo et al. A micro-scale mercury cathode electrolysis procedure for on-line flow injection inductively coupled plasma mass spectrometry trace elements analysis in steel samples
Karandashev et al. Analysis of silver and gold samples from the borodino treasure by inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry
JP2010197183A (en) Analysis method of trace element in alloy
Dočekal et al. Determination of trace impurities in titanium dioxide by direct solid sampling electrothermal atomic absorption spectrometry
JP2019191012A (en) Element analysis method of inorganic sample
Matusiewicz et al. Hydride generation graphite furnace atomic absorption determination of bismuth in clinical samples with in situ preconcentration
JP4729780B2 (en) Method for solution of inorganic glass sample and method for quantitative analysis of inorganic glass sample
Besecker et al. A simple closed-vessel nitric acid digestion method for cosmetic samples
JP6834467B2 (en) Deterioration analysis method for organic solvents
JP4602070B2 (en) Sample pretreatment method for arsenic analysis by chemical form
WO2014050786A1 (en) Component analyzing device and component analyzing method
Besecker et al. A simple closed-vessel nitric acid digestion method for a polyethylene/polypropylene polymer blend
WO2019163394A1 (en) Method for preparing sample for analysis
JPH01121751A (en) Analysis of arsenic in waste oil