WO2019163394A1 - Method for preparing sample for analysis - Google Patents

Method for preparing sample for analysis Download PDF

Info

Publication number
WO2019163394A1
WO2019163394A1 PCT/JP2019/002368 JP2019002368W WO2019163394A1 WO 2019163394 A1 WO2019163394 A1 WO 2019163394A1 JP 2019002368 W JP2019002368 W JP 2019002368W WO 2019163394 A1 WO2019163394 A1 WO 2019163394A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
analysis
exchange resin
cation exchange
ash
Prior art date
Application number
PCT/JP2019/002368
Other languages
French (fr)
Japanese (ja)
Inventor
高史 末包
裕志 土屋
奈央 金子
Original Assignee
株式会社住化分析センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=67687431&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019163394(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社住化分析センター filed Critical 株式会社住化分析センター
Priority to JP2020501606A priority Critical patent/JP7252936B2/en
Publication of WO2019163394A1 publication Critical patent/WO2019163394A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/44Sample treatment involving radiation, e.g. heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for preparing a sample for analysis.
  • a microwave decomposition method, an ashing method, or the like is generally used as a method for preparing an analysis sample.
  • the amount of sample is not so limited (1 g or more can be processed), and most organic samples can be decomposed.
  • a quantification method including the following steps (first step) to (fifth step) has been conventionally provided (Patent Document 1): (First step) A step of ashing graphite in the presence of a calcium compound and capturing boron in the graphite in an ash; (Second step) dissolving an ash obtained in the first step with an acid Step of obtaining an ash product aqueous solution; (Third step) Step of capturing boron contained in the ash product aqueous solution obtained in the second step in an anion exchange resin; (Fourth step) Anion exchange resin in the third step A step of eluting boron trapped in the aqueous acid solution to obtain an eluent; (fifth step) a step of quantifying boron in the eluent obtained in the fourth step by inductively coupled plasma-mass spectrometry.
  • the microwave decomposition method has a problem that the amount of sample that can be processed is limited (about 0.1 g) and a problem that decomposition is difficult depending on sample properties.
  • the conventional ashing method has an issue that it is an open system and is processed at a high temperature, so that some elements (particularly boron and phosphorus) may be volatilized during ashing.
  • Patent Document 1 a method for quantifying boron in graphite has been developed, including a method for preparing an analytical sample based on an ashing method as described above (Patent Document 1). .
  • the technique described in Patent Document 1 has been quite useful in solving the problem of the amount of sample that can be processed or the problem of element volatilization.
  • development of a more useful analytical sample preparation method has been desired.
  • Patent Document 1 the quantifiable element in graphite is boron, and the technique of Patent Document 1 is not a technique for use in quantification other than boron.
  • One embodiment of the present invention has been made in view of the above-mentioned problems, and its purpose is to simply analyze an element contained in a sample without limiting it to boron and / or phosphorus. It is to provide a novel method for preparing a sample for analysis.
  • the method for preparing an analytical sample is a method for preparing an analytical sample for analyzing elements contained in the sample, and the sample is ashed in the presence of a capture agent.
  • An ashing step in which the elements in the sample are captured, an ashing step, and an acid lysis step in which an ashed product aqueous solution is obtained by dissolving the ashed product obtained in the ashing step in an acid.
  • an element that is included in a sample is not limited to boron and / or phosphorus, and an analysis sample that can be easily analyzed can be provided. Play.
  • An analytical sample preparation method is an analytical sample preparation method for analyzing an element contained in a sample, and the sample is ashed in the presence of a capture agent.
  • An ashing step for obtaining an ashed product in which the elements in the sample are captured, and an acid dissolving step for obtaining an ashed product aqueous solution by dissolving the ashed product obtained in the ashing step in an acid,
  • an acid dissolving step for obtaining an ashed product aqueous solution by dissolving the ashed product obtained in the ashing step in an acid
  • the cation of the element derived from the scavenger is captured by the cation exchange resin, and other than the cation element
  • a cation exchange resin contact step for obtaining an analysis solution containing the above elements.
  • the “method for preparing an analytical sample according to an embodiment of the present invention” is also simply referred to as “the present preparation method”.
  • the term “present preparation method” does not limit the preparation method of the analytical sample at all, and merely indicates one embodiment of the preparation method of the analytical sample.
  • the sample that is the object of this preparation method is not particularly limited as long as it can be ashed, and may be a carbon-free sample, a carbon-containing sample, or a combination thereof.
  • a carbon-free sample is a sample containing only a substance not containing carbon.
  • Examples of the carbon-free sample include metals, ceramics, and aqueous solutions, but are not limited to these as long as they do not contain carbon.
  • Carbon sample is a sample containing a substance containing carbon.
  • the “carbon-containing substance” include (1) a substance made of carbon such as graphite, graphene, carbon nanotube, glassy carbon, carbon fiber, carbon black, activated carbon, and (2) a biological sample.
  • examples include substances containing carbon, and (3) substances containing carbon such as resins, organic compounds, and fluororesins.
  • the carbon-containing sample only needs to contain a substance containing carbon, and may be a composite of a substance containing carbon and another substance (for example, a graphite composite material). Moreover, the carbon-containing sample may contain only one type of substance containing carbon, or may contain two or more types.
  • the carbon-containing sample may be derived from a natural product or an artificial product. Examples of carbon-containing samples derived from natural products include biological samples; grains such as rice. Moreover, resin etc. are contained in the carbon containing sample derived from an artifact.
  • the present preparation method includes an ashing step of ashing the sample in the presence of a scavenger to obtain an ash product in which the elements in the sample are captured.
  • the sample is preferably a carbon-containing sample.
  • the sample is usually used in the ashing step of the preparation method in a powder state.
  • the sample can be cut or pulverized to form a powder, which can be used in the ashing step of the preparation method. Therefore, in this preparation method, the form and size of the sample are not particularly limited.
  • the amount of the sample used per time in this preparation method is usually 0.001 g to 100 g, preferably 0.005 g to 50 g, more preferably 0.01 g to 10 g.
  • the ashing step is a step of obtaining an ash in which the elements in the sample are captured by ashing the sample in the presence of the capturing agent.
  • the scavenger is not particularly limited as long as it is a compound that can capture the measurement target element contained in the sample in the ash during the ashing step.
  • the scavenger may not capture all of the elements contained in the sample in the ash during the ashing step. That is, the capture agent is a compound that can capture boron and phosphorus that can be contained in a sample, and at least one element other than boron and phosphorus, in the ash.
  • the capture agent is a compound that can capture boron and phosphorus that can be contained in a sample, and at least one element other than boron and phosphorus, in the ash.
  • the scavenger only one of the above compounds can be used alone, or two or more of the above compounds can be used in combination.
  • the scavenger is a scavenger that can capture the cation of the element derived from the scavenger in the cation exchange resin contact step described later. Thereby, the analysis solution containing elements other than the element of the said cation can be obtained.
  • the scavenger does not contain boron and phosphorus that can be contained in the sample, and at least one element other than boron and phosphorus.
  • the scavenger include compounds containing an alkali metal element, an alkaline earth metal element (for example, calcium), a lanthanoid series element (for example, lanthanum), and the like. These compounds can be used alone or in combination of two or more of the above compounds.
  • the compound may be an oxide, and for example, calcium oxide, lanthanum oxide and the like can be suitably used.
  • the above compound is usually oxidized in the ashing step to become an oxide, and the element in the sample is considered to be trapped in the ash by combining with this oxide. Therefore, the compound may be an oxide precursor that can be oxidized to an oxide by heating in an atmosphere containing oxygen. Examples of the oxide precursor include carbonates, fluorides, chlorides, nitrates, sulfates, and hydroxides.
  • a calcium compound can be suitably used because it is excellent in ability to capture boron and phosphorus that can be contained in the sample, and at least one element other than boron and phosphorus, and is easily available.
  • calcium oxide or a precursor thereof is used as the calcium compound.
  • the precursor of calcium oxide can be oxidized to calcium oxide by heating in an atmosphere containing oxygen.
  • Specific examples of the precursor of calcium oxide include calcium carbonate, calcium fluoride, calcium chloride, calcium nitrate, calcium sulfate, and calcium hydroxide. These compounds may be used alone or in combination of two or more.
  • a powdery grade is usually used with a grade higher than reagent special grade.
  • the ashing step may have the following configuration. That is, in the ashing step, the sample is ashed in the presence of the calcium compound, and the element in the sample is combined with calcium oxide (CaO) to obtain the ashed product in which the element in the sample is captured. It is.
  • CaO calcium oxide
  • the amount of the scavenger used is not particularly limited as long as the total amount of the scavenger can be dissolved in the acid dissolution step, but is usually 0.01 mass times to 10 mass times with respect to the sample. is there.
  • the sample may be mixed with the capture agent and the resulting mixture may be heated.
  • the sample and the capture agent are preferably heated in a container such as a platinum dish or a platinum crucible.
  • Containers such as platinum dishes, platinum crucibles and the like are inert to (a) the sample, the elements in the sample, and the scavenger, and (b) are heat resistant.
  • an inorganic glass container such as quartz glass, soda lime glass, borosilicate glass, or the like may be used.
  • quartz glass is preferably used in that a high-purity one with particularly few metal impurities can be obtained.
  • Ashing is performed in an oxygen-containing atmosphere, specifically in an oxygen gas circulation atmosphere, a still air atmosphere, or an air circulation atmosphere, and preferably in an oxygen gas circulation atmosphere.
  • the flow rate of oxygen gas is preferably 0.5 L / min to 3 L / min in order to efficiently ash the sample.
  • Heating for ashing may be performed in an electric furnace (electric muffle furnace) equipped with a thermocouple thermometer capable of performing temperature control, or may be performed simply by a burner.
  • electric furnace electric muffle furnace
  • thermocouple thermometer capable of performing temperature control
  • Ashing temperature is usually 500 ° C to 1000 ° C.
  • the ashing time varies depending on the amount of the sample and the capturing agent used, the oxygen concentration in the atmosphere in which the ashing process is performed, and the heating temperature, and can be set as appropriate.
  • the sample is ashed in the presence of the scavenger, so even if the sample contains highly volatile elements (such as boron and phosphorus), the element is contained in the ash. Can be captured.
  • highly volatile elements such as boron and phosphorus
  • At least one element other than boron and phosphorus can be captured in the ash without volatilizing boron and phosphorus at the same time.
  • the acid dissolution step is a step of obtaining an ash solution by dissolving the ash obtained in the ash step in an acid.
  • the acid may be added to a container containing the ash and heated.
  • the acid is not particularly limited as long as the acid can dissolve the ash.
  • an acid that does not dissolve the container (platinum dish, platinum crucible, inorganic glass container, etc.) used in the ashing step is preferable.
  • examples of such preferable acids include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, hydrogen peroxide solution, and perchloric acid, or mixed acids obtained by mixing two or more of these inorganic acids.
  • the acid is usually of a grade of reagent grade or higher.
  • the acid may be an aqueous acid solution.
  • the acid concentration is not particularly limited, and a high concentration acid such as concentrated hydrochloric acid, concentrated nitric acid, concentrated sulfuric acid may be used as it is, or may be diluted with water.
  • a high concentration acid such as concentrated hydrochloric acid, concentrated nitric acid, concentrated sulfuric acid
  • water When the acid is used after being diluted, it is usually diluted with ion-exchanged water or ultrapure water (water having a specific resistance value of 18 M ⁇ ⁇ cm or more).
  • the type of acid to be used may be appropriately selected according to the type of element that can be included in the sample (that is, the element to be measured), and an acid that can dissolve the element that can be included in the sample may be appropriately selected.
  • the amount of acid used when dissolving the ashed product is not particularly limited as long as it can dissolve the entire amount of the ashed product, but is usually 10 to 500 times the amount of the ashed product. It is.
  • the dissolution temperature when the ash is dissolved in the acid is not particularly limited as long as it is not less than the freezing point and not more than the boiling point of the acid aqueous solution, but it must be 50 ° C. or more because it can be dissolved quickly. Is preferred.
  • the said melting temperature can also be said to be a heating temperature when heating the container containing an ashed product and an acid. Examples of the apparatus used for heating include a heater and a hot plate.
  • the dissolution time when the ash is dissolved in the acid is not particularly limited as long as it can dissolve the entire amount of the ash.
  • the dissolution time can also be said to be a heating time when the container containing the incinerated product and the acid is heated.
  • the ashing product has been completely dissolved by the acid. Specifically, for example, by confirming that there is no residue, precipitation, or the like by visual inspection, or by visually confirming that precipitation does not occur after centrifugation, the dissolution of the ash by acid is completed. I can confirm.
  • the obtained ashed product aqueous solution may be diluted with ion-exchanged water or ultrapure water.
  • the cation exchange resin contact step captures the cation of the element derived from the scavenger on the cation exchange resin by bringing the ash exchange solution obtained in the acid dissolution step into contact with the cation exchange resin, and the cation exchange resin contacts the cation exchange resin. This is a step of obtaining an analysis solution containing an element other than an ionic element.
  • the “cation element” is also referred to as a “capture target element” and is an element derived from a trapping agent.
  • the cation of the element derived from the scavenger can be captured by the cation exchange resin by bringing the ash exchange solution obtained in the acid dissolution step into contact with the cation exchange resin.
  • the analysis solution containing elements other than the element to be captured can be obtained. That is, the element in the sample that has been captured by the capture agent (for example, the oxide of the capture agent) is separated from the cation of the element derived from the capture agent to obtain an analysis solution containing the separated element. it can.
  • the capture agent for example, the oxide of the capture agent
  • the cation exchange resin contact step may have the following configuration. That is, the cation exchange resin contact step captures calcium ions contained in the above ash solution by capturing the cation exchange resin by bringing the ash exchange solution obtained in the acid dissolution step into contact with the cation exchange resin. And an analysis solution containing an element other than calcium ions.
  • analysis solution containing an element other than the capture target element intends an analysis solution containing at least one kind of element other than the capture target element contained in the sample. .
  • the analysis solution containing all elements other than the element to be captured contained in the sample is not intended.
  • the element contained in the analysis solution may be an element that is not captured by the cation exchange resin among the elements contained in the ash solution.
  • the analysis solution may contain at least one of the listed elements.
  • the ash product aqueous solution and the cation exchange resin may be mixed, or the column filled with the cation exchange resin may be ashed.
  • An aqueous solution of a chemical compound may be passed therethrough.
  • the cation exchange resin was filled as a method of contacting the aqueous solution of the ash and the cation exchange resin. A method of passing an aqueous ash product solution through the column is preferred.
  • the cation exchange resin is not particularly limited, and usually a granular or powdered one is used.
  • Specific examples of the cation exchange resin include DOWEX strongly acidic cation exchange resin (H type), DOWEX-MARATHON (Na type) (manufactured by Dow Chemical Company), Diaion (manufactured by Mitsubishi Chemical Company), and the like. It is done.
  • the amount of cation exchange resin used is not particularly limited, and is determined based on the total exchange capacity of the cation exchange resin used.
  • the cation exchange resin after mixing is a normal solid resin. It is separated from the incinerated aqueous solution by a liquid separation method. As a result, an analysis solution containing an element other than the element to be captured can be obtained as the ash solution after mixing with the cation exchange resin.
  • the solid-liquid separation method include a gradient method, a centrifugal separation method, and a filtration method.
  • the cation exchange resin after separation from the ash product aqueous solution may be washed with water, but washing with water is not necessarily required. Usually, ion-exchanged water or ultrapure water is used for washing with water.
  • the cation exchange resin is separated from the washing water by performing the solid-liquid separation method again.
  • the separated wash water can be mixed with the previously obtained analysis solution.
  • a column filled with cation exchange resin (also referred to as a cation exchange resin column)
  • a column filled with cation exchange resin using quartz wool as a support is used. It is preferably used.
  • the amount of quartz wool used as the support is not particularly limited, but is preferably 0.01 mass times to 0.1 mass times the cation exchange resin. Further, by using quartz wool as a support for the cation exchange resin column, it is possible to remove impurities contained in the column in the preliminary cleaning of the column.
  • the ash exchange solution after passing through the cation exchange resin column is used as an ash exchange solution other than the element to be captured. It is possible to obtain an analysis solution containing these elements.
  • the cation exchange resin column after passing the ash product aqueous solution may be washed with ion-exchanged water or ultrapure water, but washing with water is not necessarily required.
  • the wash water after passing through the cation exchange resin column can be mixed with the previously obtained analysis solution.
  • the contact temperature and contact time when the ash solution and the cation exchange resin are brought into contact with each other are not particularly limited.
  • the contact temperature include the temperature of a cation exchange resin and the temperature of an incinerated aqueous solution.
  • Examples of the contact time include the mixing time of the ash product aqueous solution and the cation exchange resin, and the flow rate of the ash product aqueous solution in the cation exchange resin column.
  • An analysis method according to another embodiment of the present invention includes an analysis step of measuring an element contained in the analysis solution obtained by the preparation method with an analyzer.
  • an analysis method according to another embodiment of the present invention is also simply referred to as “the present analysis method”.
  • the term “present analysis method” does not limit the analysis method in any way, but merely indicates one embodiment of the analysis method.
  • the analysis step is a step of measuring an element contained in the analysis solution obtained by the above-described preparation method with an analyzer.
  • the above-mentioned “measuring an element with an analyzer” is intended to detect the element and specify its type, to quantify the element, or both.
  • boron, phosphorus, and at least one element other than boron and phosphorus can be simultaneously measured by an analyzer.
  • ICP-MS inductively coupled plasma mass spectrometer
  • ICP-AES inductively coupled plasma emission spectrometer
  • AAS atomic absorption spectrometer
  • ICP-MS is a quadrupole inductively coupled plasma-mass spectrometer (Q-ICP-MS), triple quadrupole inductively coupled plasma-mass spectrometer (ICP-QQQ-MS), or high resolution type.
  • An inductively coupled plasma mass spectrometer double focused inductively coupled plasma mass spectrometer (HR-ICP-MS) may be used.
  • the analysis process it is intended to detect and quantify at least one of the elements contained in the analysis solution.
  • the analysis apparatus and measurement method in the analysis process may be appropriately selected according to the type of element to be measured.
  • the aqueous ash product obtained in the acid dissolution step is brought into contact with the cation exchange resin in the subsequent cation exchange resin contact step without any additional treatment (for example, pH adjustment). It is possible.
  • an ashed product is added by adding alkali to the incinerated aqueous solution. It is necessary to adjust the hydrogen concentration of the aqueous solution.
  • the ash product aqueous solution after contacting with the cation exchange resin in the cation exchange resin contact step of this preparation method is used as an analysis solution without any further special operation. It is possible to provide.
  • boron to be analyzed is captured by an anion exchange resin in a third step. Therefore, it is necessary to elute boron trapped by the anion exchange resin in the subsequent fourth step with an acidic aqueous solution, and the obtained eluent is used for quantitative determination.
  • this preparation method makes it possible to easily analyze the elements contained in the sample as compared with the conventional method.
  • this preparation method since there are few steps (or operations), contamination of the final analysis sample (analysis solution) can be reduced. As a result, this preparation method achieves the same sensitivity as the conventional method that captures, concentrates and isolates the element to be analyzed, despite analyzing the remaining liquid that has captured the element that is not the object of analysis. Can do.
  • the present preparation method can provide a sample for analysis that makes it possible to analyze boron and phosphorus with high sensitivity.
  • the present preparation method can provide an analytical sample preparation method that enables simple analysis without limiting the elements contained in the sample to boron and / or phosphorus.
  • An embodiment of the present invention may have the following configuration.
  • a method for preparing an analytical sample for analyzing an element contained in a sample wherein the ash is obtained by ashing the sample in the presence of a scavenger to capture the element in the sample.
  • An ashing step, and an ashing solution obtained by dissolving the ashing product obtained in the ashing step in an acid to obtain an ashing solution, and the ashing solution obtained in the acid dissolving step The cation exchange resin is contacted with the cation exchange resin to capture the cation of the element derived from the scavenger in the cation exchange resin, thereby obtaining an analysis solution containing an element other than the cation element.
  • Example 1 In Example 1, the following commercially available samples were used: N, N′-diphenyl-N, N′-di (m-tolyl) benzidine, pentacene, 5,5′-di (4-biphenylyl)- 2,2′-bithiophene, N, N′-dioctyl-3,4,9,10-perylenedicarboxymido, and 4,4′-bis (N-carbazolyl) -1,1′-biphenyl.
  • the sample for analysis was prepared based on the preparation method concerning one embodiment of the present invention using the above-mentioned sample. Subsequently, using the obtained analytical sample, elements (specifically, boron (B) and phosphorus (P) in the sample (analytical sample)) based on the analytical method according to one embodiment of the present invention. )) was measured.
  • the specific operation procedure is as follows. In Example 1, calcium carbonate was used as a scavenger.
  • the ashed product aqueous solution obtained in the acid dissolution step was passed through the conditioned column, and the ashed product aqueous solution after passing through the column was recovered as an analysis solution. Further, ultrapure water was added to the quartz beaker containing the ash solution and the quartz beaker was washed, and the washed ultrapure water was passed through the column. The ultrapure water after passing through the column was collected and added to the analysis solution. Thereafter, ultrapure water was passed through the column to wash the column. Ultrapure water (washing liquid) after passing through the column was recovered and further added to the analysis solution.
  • the analysis solution obtained in the cation exchange resin contact step is introduced into an inductively coupled plasma mass spectrometer (ICP-MS) (“ELAN DRCII”, manufactured by Perkin Elmer, USA, quadrupole inductively coupled plasma-mass spectrometer). Then, elements (specifically, boron (B) and phosphorus (P)) in the analysis solution were measured.
  • ICP-MS inductively coupled plasma mass spectrometer
  • Table 1 shows the measurement results.
  • Example 1 Element quantification by microwave decomposition method
  • an analytical sample was prepared based on the conventional microwave decomposition method, and then the elements in the sample (specifically, boron (B) and Phosphorus (P)) was quantified.
  • the specific operation procedure is as follows.
  • a 100 mg powder sample was collected in a microwave decomposition vessel made of fluororesin. Nitric acid (for ultra-trace analysis, Wako Pure Chemical Industries, Ltd.) was added to the vessel and sealed, followed by microwave decomposition. The decomposed sample solution was collected, and an analysis solution having a nitric acid concentration of about 25% by mass was prepared using ultrapure water.
  • Nitric acid for ultra-trace analysis, Wako Pure Chemical Industries, Ltd.
  • the analysis solution obtained by the above microwave decomposition method is introduced into an inductively coupled plasma emission spectrometer (ICP-AES) (“iCAP6500”, manufactured by Thermo Fisher Scientific), and the elements in the analysis solution (specifically Boron (B) and phosphorus (P)) were measured.
  • ICP-AES inductively coupled plasma emission spectrometer
  • Table 1 shows the following. That is, in the microwave decomposition method, in many samples, the quantitative values of boron and phosphorus (particularly boron) were less than the lower limit of quantification and could not be accurately quantified. On the other hand, in this analysis method, boron and phosphorus (particularly phosphorus) could be accurately quantified in many samples even though the amount of the sample used was one-tenth that of the microwave decomposition method. I understood. From this, it was found that this analysis method can measure boron and phosphorus in a sample with a higher sensitivity in a smaller amount of sample than in the conventional method.
  • Example 2 In Example 2, a mixture was prepared by adding some elements to powdered ultra-high purity graphite, and the mixture was used as a sample.
  • the elements added to the graphite were Ge, As, Te, and Re, and the amount of these elements added was 200 ng.
  • an analytical sample was prepared based on the preparation method according to an embodiment of the present invention. Subsequently, using the obtained analytical sample, the elements in the sample (analytical sample) were measured based on the analytical method according to one embodiment of the present invention.
  • the specific operation procedure is as follows. In Example 2, calcium carbonate was used as the scavenger.
  • the ashed product aqueous solution obtained in the acid dissolution step was passed through the conditioned column, and the ashed product aqueous solution after passing through the column was recovered as an analysis solution. Furthermore, ultrapure water was added to the platinum dish containing the incinerated aqueous solution to wash the platinum dish, and the washed ultrapure water was passed through the column. The ultrapure water after passing through the column was collected and added to the analysis solution. Thereafter, ultrapure water was passed through the column to wash the column. Ultrapure water (washing liquid) after passing through the column was recovered and further added to the analysis solution.
  • the analysis solution obtained in the cation exchange resin contact step is introduced into an inductively coupled plasma mass spectrometer (ICP-MS) (“ELAN DRCII”, manufactured by Perkin Elmer, USA, quadrupole inductively coupled plasma-mass spectrometer). Then, the elements in the analysis solution were measured.
  • ICP-MS inductively coupled plasma mass spectrometer
  • sample content refers to the content of various elements contained in the ultra-high purity graphite itself used.
  • the present invention has an effect of providing an analytical sample capable of quantifying elements other than boron and phosphorus.
  • elements contained in a sample can be easily analyzed without being limited to boron and / or phosphorus. Therefore, the present invention can be used for analysis of elements contained in samples (raw materials, foods, etc.) in various fields such as semiconductor-related fields, medical device manufacturing fields, and food component analysis fields.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Provided is a novel method for preparing a sample for analysis which enables convenient analysis without limiting the element contained in the sample to boron and/or phosphorus. This method for preparing a sample for analysis is for analyzing an element contained in the sample, and includes a specific incineration step, a specific acid dissolving step, and a specific cation exchange resin contacting step.

Description

分析用試料の調製方法Analytical sample preparation method
 本発明は、分析用試料の調製方法に関する。 The present invention relates to a method for preparing a sample for analysis.
 半導体関連分野、医療器具製造分野、食品成分分析分野、など様々な分野において、試料(原料、食品など)に含まれる元素を分析し、定量する必要が生じることがある。そのため、それら分析および定量方法のそれぞれに合わせて、分析用試料を適切に調製する必要がある。 In various fields such as semiconductor-related fields, medical device manufacturing fields, food component analysis fields, etc., it may be necessary to analyze and quantify elements contained in samples (raw materials, foods, etc.). Therefore, it is necessary to prepare an analytical sample appropriately for each of these analysis and quantification methods.
 試料中の微量無機不純物元素、特にほう素およびリンを定量する場合、分析用試料の調製方法としては、マイクロウェーブ分解法、および灰化法などが一般的に用いられている。 When quantifying trace inorganic impurity elements, particularly boron and phosphorus, in a sample, a microwave decomposition method, an ashing method, or the like is generally used as a method for preparing an analysis sample.
 マイクロウェーブ分解法は、密閉系にて試料をマイクロ波で加熱溶解するため、高温で揮散しやすいほう素およびリンをロスすることなく回収し、分析および定量に供することが可能である。 In the microwave decomposition method, a sample is heated and dissolved in a closed system with microwaves. Therefore, boron and phosphorus that are easily volatilized at a high temperature can be recovered without loss and subjected to analysis and quantification.
 灰化法は、試料量はあまり制限されず(1g以上処理可能)、ほとんどの有機物試料の分解が可能である。 In the ashing method, the amount of sample is not so limited (1 g or more can be processed), and most organic samples can be decomposed.
 灰化法をさらに改良した方法を含む、ほう素の定量方法として、従来、次の(第一工程)~(第五工程)の工程を含む定量方法が提供されている(特許文献1):(第一工程)黒鉛をカルシウム化合物の存在下に灰化して上記黒鉛中のほう素を灰化物に捕捉する工程;(第二工程)第一工程で得られた灰化物を酸で溶解して灰化物水溶液を得る工程;(第三工程)第二工程で得られた灰化物水溶液に含まれるほう素を陰イオン交換樹脂に捕捉する工程;(第四工程)第三工程で陰イオン交換樹脂に捕捉されたほう素を酸性水溶液に溶離して溶離液を得る工程;(第五工程)第四工程で得た溶離液中のほう素を誘導結合プラズマ-質量分析法により定量する工程。 As a method for quantifying boron, including a method obtained by further improving the ashing method, a quantification method including the following steps (first step) to (fifth step) has been conventionally provided (Patent Document 1): (First step) A step of ashing graphite in the presence of a calcium compound and capturing boron in the graphite in an ash; (Second step) dissolving an ash obtained in the first step with an acid Step of obtaining an ash product aqueous solution; (Third step) Step of capturing boron contained in the ash product aqueous solution obtained in the second step in an anion exchange resin; (Fourth step) Anion exchange resin in the third step A step of eluting boron trapped in the aqueous acid solution to obtain an eluent; (fifth step) a step of quantifying boron in the eluent obtained in the fourth step by inductively coupled plasma-mass spectrometry.
特開2008-203122号公報(2008年9月4日公開)JP 2008-203122 A (published on September 4, 2008)
 しかしながら、一般的なマイクロウェーブ分解法、および灰化法などの従来技術には、以下のような問題がある。 However, conventional techniques such as a general microwave decomposition method and an ashing method have the following problems.
 マイクロウェーブ分解法には、処理可能な試料量が限られる(0.1g程度)という問題、および、試料性状によっては分解が困難であるという問題、がある。 The microwave decomposition method has a problem that the amount of sample that can be processed is limited (about 0.1 g) and a problem that decomposition is difficult depending on sample properties.
 また、従来の灰化法には、開放系でありかつ高温で処理するため、元素によっては(特にほう素およびリンは)、灰化時に揮散してしまうおそれがある、という問題がある。 Also, the conventional ashing method has an issue that it is an open system and is processed at a high temperature, so that some elements (particularly boron and phosphorus) may be volatilized during ashing.
 これらの技術的課題を解決するため、従来、上述したような、灰化法を基とした分析用試料の調製方法を含む、黒鉛中のほう素の定量方法が開発された(特許文献1)。特許文献1に記載の技術は、処理可能な試料量の問題、または、元素が揮発してしまう問題、を解決する上でかなり有用であった。しかし、試料に含まれている元素を分析するための分析用試料を得るために、さらに有用な分析用試料の調製方法の開発が望まれていた。 In order to solve these technical problems, a method for quantifying boron in graphite has been developed, including a method for preparing an analytical sample based on an ashing method as described above (Patent Document 1). . The technique described in Patent Document 1 has been quite useful in solving the problem of the amount of sample that can be processed or the problem of element volatilization. However, in order to obtain an analytical sample for analyzing an element contained in the sample, development of a more useful analytical sample preparation method has been desired.
 例えば、特許文献1において、黒鉛中の定量可能な元素はほう素であり、特許文献1の技術はほう素以外の定量に用いるための技術ではなかった。 For example, in Patent Document 1, the quantifiable element in graphite is boron, and the technique of Patent Document 1 is not a technique for use in quantification other than boron.
 本発明の一実施形態は、上記の問題点に鑑みてなされたものであり、その目的は、試料に含まれている元素を、ほう素および/またはリンに限定することなく、簡便に分析することを可能とする、新規の分析用試料の調製方法を提供することである。 One embodiment of the present invention has been made in view of the above-mentioned problems, and its purpose is to simply analyze an element contained in a sample without limiting it to boron and / or phosphorus. It is to provide a novel method for preparing a sample for analysis.
 すなわち本発明の一実施形態に係る分析用試料の調製方法は、試料に含まれている元素を分析するための分析用試料の調製方法であり、上記試料を捕捉剤の存在下に灰化することによって、上記試料中の元素が捕捉された灰化物を得る、灰化工程と、上記灰化工程において得られた上記灰化物を酸に溶解することによって、灰化物水溶液を得る、酸溶解工程と、上記酸溶解工程において得られた上記灰化物水溶液と陽イオン交換樹脂とを接触させることによって、上記捕捉剤由来の元素の陽イオンを陽イオン交換樹脂に捕捉して、上記陽イオンの元素以外の元素を含んでいる分析溶液を得る、陽イオン交換樹脂接触工程と、を含むことを特徴とする。 That is, the method for preparing an analytical sample according to an embodiment of the present invention is a method for preparing an analytical sample for analyzing elements contained in the sample, and the sample is ashed in the presence of a capture agent. An ashing step in which the elements in the sample are captured, an ashing step, and an acid lysis step in which an ashed product aqueous solution is obtained by dissolving the ashed product obtained in the ashing step in an acid. And the ash exchange solution obtained in the acid dissolution step and a cation exchange resin to capture the cation of the element derived from the scavenger in the cation exchange resin, and the cation element And a cation exchange resin contact step for obtaining an analysis solution containing an element other than the above.
 本発明の一実施形態によれば、試料に含まれている元素を、ほう素および/またはリンに限定することなく、簡便に分析することを可能とする、分析用試料を提供できるという効果を奏する。 According to one embodiment of the present invention, an element that is included in a sample is not limited to boron and / or phosphorus, and an analysis sample that can be easily analyzed can be provided. Play.
 本発明の一実施形態について以下に説明するが、本発明はこれに限定されるものではない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲で種々の変更が可能である。本発明はまた、異なる実施形態および実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態および実施例についても本発明の技術的範囲に含まれる。なお、本明細書中に記載された特許文献の全てが、本明細書中において参考文献として援用される。また、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上(Aを含みかつAより大きい)B以下(Bを含みかつBより小さい)」を意図する。 One embodiment of the present invention will be described below, but the present invention is not limited to this. The present invention is not limited to each configuration described below, and various modifications can be made within the scope shown in the claims. The present invention also includes embodiments and examples obtained by appropriately combining technical means disclosed in different embodiments and examples, and is also included in the technical scope of the present invention. In addition, all the patent documents described in this specification are used as a reference in this specification. Unless otherwise specified in this specification, “A to B” representing a numerical range is intended to be “A or more (including A and greater than A) and B or less (including B and less than B)”.
 本発明の一実施形態に係る分析用試料の調製方法は、試料に含まれている元素を分析するための分析用試料の調製方法であり、上記試料を捕捉剤の存在下に灰化することによって、上記試料中の元素が捕捉された灰化物を得る、灰化工程と、上記灰化工程において得られた上記灰化物を酸に溶解することによって、灰化物水溶液を得る、酸溶解工程と、上記酸溶解工程において得られた上記灰化物水溶液と陽イオン交換樹脂とを接触させることによって、上記捕捉剤由来の元素の陽イオンを陽イオン交換樹脂に捕捉して、上記陽イオンの元素以外の元素を含んでいる分析溶液を得る、陽イオン交換樹脂接触工程と、を含んでいる。 An analytical sample preparation method according to an embodiment of the present invention is an analytical sample preparation method for analyzing an element contained in a sample, and the sample is ashed in the presence of a capture agent. An ashing step for obtaining an ashed product in which the elements in the sample are captured, and an acid dissolving step for obtaining an ashed product aqueous solution by dissolving the ashed product obtained in the ashing step in an acid, In addition, by contacting the ash product aqueous solution obtained in the acid dissolution step with a cation exchange resin, the cation of the element derived from the scavenger is captured by the cation exchange resin, and other than the cation element And a cation exchange resin contact step for obtaining an analysis solution containing the above elements.
 本明細書中では、「本発明の一実施形態に係る分析用試料の調製方法」を単に「本調製方法」とも称する。用語「本調製方法」は、分析用試料の調製方法をなんら限定するものではなく、単に上記分析用試料の調製方法の一実施形態を示すにすぎない。 In the present specification, the “method for preparing an analytical sample according to an embodiment of the present invention” is also simply referred to as “the present preparation method”. The term “present preparation method” does not limit the preparation method of the analytical sample at all, and merely indicates one embodiment of the preparation method of the analytical sample.
 〔試料〕
 本調製方法の対象である試料は、灰化が可能な試料であれば特に限定されるものではなく、炭素非含有試料、炭素含有試料、またはこれらの組み合わせであり得る。
〔sample〕
The sample that is the object of this preparation method is not particularly limited as long as it can be ashed, and may be a carbon-free sample, a carbon-containing sample, or a combination thereof.
 炭素非含有試料は、炭素を含有していない物質のみを含む試料である。炭素非含有試料としては、例えば、金属、セラミックス、および水溶液などが挙げられるが、炭素を含有していない限りこれらに限定されない。 A carbon-free sample is a sample containing only a substance not containing carbon. Examples of the carbon-free sample include metals, ceramics, and aqueous solutions, but are not limited to these as long as they do not contain carbon.
 炭素含有試料は、炭素を含有している物質を含む試料である。上記「炭素を含有している物質」としては、(1)黒鉛、グラフェン、カーボンナノチューブ、ガラス状炭素、炭素繊維、カーボンブラック、活性炭などの、炭素からなる物質、(2)生体試料のような炭素を含有する物質、および、(3)樹脂、有機化合物、およびフッ素樹脂などの炭素を含有している物質が挙げられる。 Carbon sample is a sample containing a substance containing carbon. Examples of the “carbon-containing substance” include (1) a substance made of carbon such as graphite, graphene, carbon nanotube, glassy carbon, carbon fiber, carbon black, activated carbon, and (2) a biological sample. Examples include substances containing carbon, and (3) substances containing carbon such as resins, organic compounds, and fluororesins.
 炭素含有試料は、炭素を含有している物質を含んでいればよく、炭素を含有している物質とそれ以外の物質との複合体(例えば、黒鉛複合材)であってもよい。また、炭素含有試料は、炭素を含有している物質を1種類のみ含んでいてもよく、2種類以上含んでいてもよい。また、炭素含有試料は、天然物に由来するものであってもよく、人工物であってもよい。天然物に由来する炭素含有試料には、例えば、生体試料;米などの穀物等が含まれる。また、人工物に由来する炭素含有試料には、例えば、樹脂等が含まれる。 The carbon-containing sample only needs to contain a substance containing carbon, and may be a composite of a substance containing carbon and another substance (for example, a graphite composite material). Moreover, the carbon-containing sample may contain only one type of substance containing carbon, or may contain two or more types. The carbon-containing sample may be derived from a natural product or an artificial product. Examples of carbon-containing samples derived from natural products include biological samples; grains such as rice. Moreover, resin etc. are contained in the carbon containing sample derived from an artifact.
 本調製方法は、詳しくは後述するように、捕捉剤の存在下に上記試料を灰化することによって、試料中の元素が捕捉された灰化物を得る、灰化工程を含んでいる。試料を効率よく、かつ完全に灰化させる観点から、試料は、炭素含有試料であることが好ましい。 As will be described later in detail, the present preparation method includes an ashing step of ashing the sample in the presence of a scavenger to obtain an ash product in which the elements in the sample are captured. From the viewpoint of efficient and complete ashing of the sample, the sample is preferably a carbon-containing sample.
 本調製方法では、通常、試料は粉末状態で本調製方法の灰化工程に供せられる。試料が塊状または成形された物体である場合には、試料を切削または粉砕して、粉末状とすることにより、本調製方法の灰化工程に供せられ得る。従って、本調製方法では、試料の形態および大きさは特に限定されるものではない。 In this preparation method, the sample is usually used in the ashing step of the preparation method in a powder state. When the sample is a lump or a molded object, the sample can be cut or pulverized to form a powder, which can be used in the ashing step of the preparation method. Therefore, in this preparation method, the form and size of the sample are not particularly limited.
 本調製方法の1回あたりにおける試料の使用量は、通常0.001g~100g、好ましくは0.005g~50g、より好ましくは0.01g~10gである。 The amount of the sample used per time in this preparation method is usually 0.001 g to 100 g, preferably 0.005 g to 50 g, more preferably 0.01 g to 10 g.
 〔灰化工程〕
 灰化工程は、試料を捕捉剤の存在下に灰化することによって、上記試料中の元素が捕捉された灰化物を得る工程である。
[Ashing process]
The ashing step is a step of obtaining an ash in which the elements in the sample are captured by ashing the sample in the presence of the capturing agent.
 捕捉剤は、灰化工程において、灰化物中に、試料に含まれる測定対象元素を捕捉することができる化合物であれば特に限定されない。捕捉剤は、灰化工程において、灰化物中に、試料に含まれる元素の全てを捕捉するものでなくてもよい。すなわち、捕捉剤は、試料に含まれ得るほう素およびリン、ならびにほう素及びリン以外の少なくとも一つの元素、を灰化物中に捕捉できる化合物である。捕捉剤としては、上記化合物を、1種類のみを単独で、または2種以上の上記化合物を組み合わせて用いることができる。 The scavenger is not particularly limited as long as it is a compound that can capture the measurement target element contained in the sample in the ash during the ashing step. The scavenger may not capture all of the elements contained in the sample in the ash during the ashing step. That is, the capture agent is a compound that can capture boron and phosphorus that can be contained in a sample, and at least one element other than boron and phosphorus, in the ash. As the scavenger, only one of the above compounds can be used alone, or two or more of the above compounds can be used in combination.
 また、上記捕捉剤は、当該捕捉剤由来の元素の陽イオンが、後述する陽イオン交換樹脂接触工程において、陽イオン交換樹脂に捕捉され得る捕捉剤である。これにより、上記陽イオンの元素以外の元素を含んでいる分析溶液を得ることができる。 The scavenger is a scavenger that can capture the cation of the element derived from the scavenger in the cation exchange resin contact step described later. Thereby, the analysis solution containing elements other than the element of the said cation can be obtained.
 したがって、上記捕捉剤としては、測定対象とする元素を含まない捕捉剤を用いることが好ましい。上記捕捉剤は、試料に含まれ得るほう素およびリン、ならびにほう素及びリン以外の少なくとも一つの元素を含まないことがより好ましい。 Therefore, it is preferable to use a capture agent that does not contain the element to be measured as the capture agent. More preferably, the scavenger does not contain boron and phosphorus that can be contained in the sample, and at least one element other than boron and phosphorus.
 捕捉剤の具体的な一例としては、アルカリ金属元素、アルカリ土類金属元素(例えばカルシウム)、ランタノイド系列元素(例えばランタン)などを含む化合物を挙げることができる。これら化合物は、1種類のみを単独で、または2種以上の上記化合物を組み合わせて用いることができる。 Specific examples of the scavenger include compounds containing an alkali metal element, an alkaline earth metal element (for example, calcium), a lanthanoid series element (for example, lanthanum), and the like. These compounds can be used alone or in combination of two or more of the above compounds.
 また、上記化合物は酸化物であってもよく、例えば、酸化カルシウム、酸化ランタン等を好適に用いることができる。上記化合物は、通常、灰化工程で酸化されて酸化物となり、試料中の元素は、この酸化物と結合することにより、灰化物中に捕捉されると考えられる。したがって、上記化合物は、酸素を含む雰囲気中で加熱することにより酸化物に酸化されうる酸化物前駆体であってもよい。酸化物前駆体としては、例えば炭酸塩、フッ化物、塩化物、硝酸塩、硫酸塩、および水酸化物等が挙げられる。 Further, the compound may be an oxide, and for example, calcium oxide, lanthanum oxide and the like can be suitably used. The above compound is usually oxidized in the ashing step to become an oxide, and the element in the sample is considered to be trapped in the ash by combining with this oxide. Therefore, the compound may be an oxide precursor that can be oxidized to an oxide by heating in an atmosphere containing oxygen. Examples of the oxide precursor include carbonates, fluorides, chlorides, nitrates, sulfates, and hydroxides.
 捕捉剤としては、試料に含まれ得るほう素およびリン、ならびにほう素及びリン以外の少なくとも一つの元素を捕捉する能力に優れ、かつ、入手が容易なことから、カルシウム化合物を好適に使用できる。 As the scavenger, a calcium compound can be suitably used because it is excellent in ability to capture boron and phosphorus that can be contained in the sample, and at least one element other than boron and phosphorus, and is easily available.
 カルシウム化合物として通常は、酸化カルシウムまたはその前駆体が用いられる。酸化カルシウムの前駆体は、酸素を含む雰囲気中で加熱することにより酸化カルシウムに酸化されうるものである。酸化カルシウムの前駆体としては、具体的には、例えば炭酸カルシウム、フッ化カルシウム、塩化カルシウム、硝酸カルシウム、硫酸カルシウム、および水酸化カルシウムが挙げられる。これらの化合物は、1種類のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。カルシウム化合物として通常は、試薬特級以上のグレードで、粉末状のものが用いられる。 Usually, calcium oxide or a precursor thereof is used as the calcium compound. The precursor of calcium oxide can be oxidized to calcium oxide by heating in an atmosphere containing oxygen. Specific examples of the precursor of calcium oxide include calcium carbonate, calcium fluoride, calcium chloride, calcium nitrate, calcium sulfate, and calcium hydroxide. These compounds may be used alone or in combination of two or more. As the calcium compound, a powdery grade is usually used with a grade higher than reagent special grade.
 本調製方法において、捕捉剤としてカルシウム化合物を含む場合には、灰化工程は、以下のような構成であってもよい。すなわち、灰化工程は、試料をカルシウム化合物の存在下に灰化することによって、試料中の元素が酸化カルシウム(CaO)と結合することにより、試料中の元素が捕捉された灰化物を得る工程である。 In this preparation method, when a calcium compound is included as a scavenger, the ashing step may have the following configuration. That is, in the ashing step, the sample is ashed in the presence of the calcium compound, and the element in the sample is combined with calcium oxide (CaO) to obtain the ashed product in which the element in the sample is captured. It is.
 捕捉剤の使用量は、酸溶解工程にて捕捉剤の全量が溶解され得る量であれば特に限定されるものではないが、試料に対して通常0.01質量倍~10質量倍の量である。 The amount of the scavenger used is not particularly limited as long as the total amount of the scavenger can be dissolved in the acid dissolution step, but is usually 0.01 mass times to 10 mass times with respect to the sample. is there.
 捕捉剤の存在下に試料を灰化するには、例えば試料を捕捉剤と混合し、得られた混合物を加熱すればよい。灰化工程において、試料および捕捉剤は、例えば白金皿、白金ルツボなどのような容器の中で加熱されることが好ましい。白金皿、白金ルツボなどのような容器は、(a)試料、試料中の元素、および捕捉剤に対して不活性であり、かつ(b)耐熱性である。 In order to incinerate the sample in the presence of the capture agent, for example, the sample may be mixed with the capture agent and the resulting mixture may be heated. In the ashing step, the sample and the capture agent are preferably heated in a container such as a platinum dish or a platinum crucible. Containers such as platinum dishes, platinum crucibles and the like are inert to (a) the sample, the elements in the sample, and the scavenger, and (b) are heat resistant.
 また、灰化工程に用いられる容器としては、石英ガラス、ソーダ石灰ガラス、ほうけい酸ガラスなどのような、無機ガラス製容器が用いられてもよい。無機ガラス製容器の中では、特に金属不純物の少ない高純度のものを入手できるという点で、石英ガラスが好適に用いられる。 Also, as a container used in the ashing process, an inorganic glass container such as quartz glass, soda lime glass, borosilicate glass, or the like may be used. Among the inorganic glass containers, quartz glass is preferably used in that a high-purity one with particularly few metal impurities can be obtained.
 灰化は、酸素を含む雰囲気中、具体的には酸素ガス流通雰囲気下、静止空気雰囲気下、または空気流通雰囲気下に行われ、好ましくは酸素ガス流通雰囲気下に行われる。灰化工程が酸素ガス流通雰囲気下にて行われる場合には、試料を効率よく灰化させるために、酸素ガスの流通速度は、0.5L/分~3L/分であることが好ましい。 Ashing is performed in an oxygen-containing atmosphere, specifically in an oxygen gas circulation atmosphere, a still air atmosphere, or an air circulation atmosphere, and preferably in an oxygen gas circulation atmosphere. When the ashing step is performed in an oxygen gas flow atmosphere, the flow rate of oxygen gas is preferably 0.5 L / min to 3 L / min in order to efficiently ash the sample.
 灰化のための加熱は、温度制御を行うことが可能である熱電対温度計付きの電気炉(電気マッフル炉)で行われてもよく、単にバーナーで行われてもよい。 Heating for ashing may be performed in an electric furnace (electric muffle furnace) equipped with a thermocouple thermometer capable of performing temperature control, or may be performed simply by a burner.
 灰化温度は通常500℃~1000℃である。灰化時間は、試料および捕捉剤の使用量、灰化工程が行われる雰囲気中の酸素濃度、並びに加熱温度により異なり、適宜設定され得る。試料を捕捉剤の存在下に灰化することにより、試料中の元素が捕捉剤に捕捉された灰化物を得ることができる。 Ashing temperature is usually 500 ° C to 1000 ° C. The ashing time varies depending on the amount of the sample and the capturing agent used, the oxygen concentration in the atmosphere in which the ashing process is performed, and the heating temperature, and can be set as appropriate. By ashing the sample in the presence of the capture agent, an ash product in which the elements in the sample are captured by the capture agent can be obtained.
 本調製方法における灰化工程では、試料を捕捉剤の存在下に灰化するため、試料が揮発性の高い元素(ほう素およびリンなど)を含む場合であっても、当該元素を灰化物中に捕捉することが可能である。 In the ashing step in this preparation method, the sample is ashed in the presence of the scavenger, so even if the sample contains highly volatile elements (such as boron and phosphorus), the element is contained in the ash. Can be captured.
 本調製方法における灰化工程では、ほう素およびリンを揮発させることなく、かつ同時に、ほう素およびリン以外の少なくとも一つの元素を、灰化物中に捕捉することが可能である。 In the ashing step in the present preparation method, at least one element other than boron and phosphorus can be captured in the ash without volatilizing boron and phosphorus at the same time.
 〔酸溶解工程〕
 酸溶解工程は、灰化工程において得られた灰化物を酸に溶解することによって、灰化物水溶液を得る工程である。
[Acid dissolution step]
The acid dissolution step is a step of obtaining an ash solution by dissolving the ash obtained in the ash step in an acid.
 灰化物を酸に溶解するには、例えば、灰化物を含む容器に酸を加えて加熱すればよい。 In order to dissolve the ash in acid, for example, the acid may be added to a container containing the ash and heated.
 酸としては、灰化物を溶解できる酸であれば、特に限定されるものではない。灰化物を溶解できる酸の中でも、灰化工程において使用した容器(白金皿、白金ルツボ、無機ガラス製容器など)を溶解しない酸が好ましい。そのような好ましい酸としては、例えば、塩酸、硝酸、硫酸、過酸化水素水、過塩素酸等の無機酸またはこれらの無機酸の二種類以上を混合した混酸、が挙げられる。灰化工程において使用した容器を溶解しない酸を用いることにより、分析溶液に容器由来の金属不純物を混入させることなく、灰分(すなわち灰化物)を溶解させることができる。また、酸は通常、試薬特級以上のグレードのものが用いられる。また、酸は、酸水溶液であってもよい。 The acid is not particularly limited as long as the acid can dissolve the ash. Among the acids that can dissolve the ash, an acid that does not dissolve the container (platinum dish, platinum crucible, inorganic glass container, etc.) used in the ashing step is preferable. Examples of such preferable acids include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, hydrogen peroxide solution, and perchloric acid, or mixed acids obtained by mixing two or more of these inorganic acids. By using an acid that does not dissolve the container used in the ashing step, the ash (that is, the ashed product) can be dissolved without mixing metal impurities derived from the container into the analysis solution. In addition, the acid is usually of a grade of reagent grade or higher. The acid may be an aqueous acid solution.
 酸の濃度は特に限定されるものではなく、濃塩酸、濃硝酸、濃硫酸などの高濃度の酸をそのまま用いてもよいし、水で希釈して用いてもよい。酸を希釈して使用する場合には、通常、イオン交換水、または超純水(比抵抗値18MΩ・cm以上の水)により希釈される。 The acid concentration is not particularly limited, and a high concentration acid such as concentrated hydrochloric acid, concentrated nitric acid, concentrated sulfuric acid may be used as it is, or may be diluted with water. When the acid is used after being diluted, it is usually diluted with ion-exchanged water or ultrapure water (water having a specific resistance value of 18 MΩ · cm or more).
 また、使用する酸の種類は、試料が含みうる元素(すなわち、測定対象とする元素)の種類に応じて適宜選択すればよく、試料が含みうる元素を溶解可能な酸を適宜選択すればよい。 Further, the type of acid to be used may be appropriately selected according to the type of element that can be included in the sample (that is, the element to be measured), and an acid that can dissolve the element that can be included in the sample may be appropriately selected. .
 灰化物を溶解するときの酸の使用量は、灰化物の全量を溶解しうる量であれば特に限定されるものではないが、通常は灰化物に対して10質量倍~500質量倍の量である。 The amount of acid used when dissolving the ashed product is not particularly limited as long as it can dissolve the entire amount of the ashed product, but is usually 10 to 500 times the amount of the ashed product. It is.
 灰化物を酸(酸水溶液)に溶解させるときの溶解温度は、酸水溶液の凝固点以上沸点以下であれば特に限定されるものではないが、迅速に溶解しうる点で、50℃以上であることが好ましい。上記溶解温度は、灰化物および酸を含む容器を加熱するときの、加熱温度ともいえる。加熱に用いる装置としては、例えば、ヒーター、ホットプレートなどが挙げられる。 The dissolution temperature when the ash is dissolved in the acid (acid aqueous solution) is not particularly limited as long as it is not less than the freezing point and not more than the boiling point of the acid aqueous solution, but it must be 50 ° C. or more because it can be dissolved quickly. Is preferred. The said melting temperature can also be said to be a heating temperature when heating the container containing an ashed product and an acid. Examples of the apparatus used for heating include a heater and a hot plate.
 灰化物を酸に溶解させるときの溶解時間は、灰化物の全量を溶解しうる時間であれば特に限定されるものではない。上記溶解時間は、灰化物および酸を含む容器を加熱するときの、加熱時間ともいえる。 The dissolution time when the ash is dissolved in the acid is not particularly limited as long as it can dissolve the entire amount of the ash. The dissolution time can also be said to be a heating time when the container containing the incinerated product and the acid is heated.
 酸による灰化物の溶解が完了したことは、目視観察によって確認することができる。具体的には、例えば、目視によって残渣、沈殿等がないことを確認するか、またはさらに遠心分離後に沈殿が生じないことを目視で確認することによって、酸による灰化物の溶解が完了したことを確認できる。 It can be confirmed by visual observation that the ashing product has been completely dissolved by the acid. Specifically, for example, by confirming that there is no residue, precipitation, or the like by visual inspection, or by visually confirming that precipitation does not occur after centrifugation, the dissolution of the ash by acid is completed. I can confirm.
 得られた灰化物水溶液は、イオン交換水または超純水で希釈してもよい。 The obtained ashed product aqueous solution may be diluted with ion-exchanged water or ultrapure water.
 本調製方法における酸溶解工程では、ほう素、リン、ならびに、ほう素およびリン以外の少なくとも一つの元素を、含んでいる灰化物水溶液を得ることが可能である。 In the acid dissolution step in the present preparation method, it is possible to obtain an ash solution containing boron, phosphorus, and at least one element other than boron and phosphorus.
 〔陽イオン交換樹脂接触工程〕
 陽イオン交換樹脂接触工程は、酸溶解工程において得られた灰化物水溶液と陽イオン交換樹脂とを接触させることによって、捕捉剤由来の元素の陽イオンを陽イオン交換樹脂に捕捉して、上記陽イオンの元素以外の元素を含んでいる分析溶液を得る工程である。なお、「上記陽イオンの元素」は、「捕捉対象元素」とも称し、捕捉剤に由来する元素である。
[Cation exchange resin contact process]
The cation exchange resin contact step captures the cation of the element derived from the scavenger on the cation exchange resin by bringing the ash exchange solution obtained in the acid dissolution step into contact with the cation exchange resin, and the cation exchange resin contacts the cation exchange resin. This is a step of obtaining an analysis solution containing an element other than an ionic element. The “cation element” is also referred to as a “capture target element” and is an element derived from a trapping agent.
 陽イオン交換樹脂接触工程では、酸溶解工程において得られた灰化物水溶液と陽イオン交換樹脂とを接触させることによって、捕捉剤由来の元素の陽イオンを陽イオン交換樹脂に捕捉させることができる。これにより、陽イオン交換樹脂接触工程では、捕捉対象元素以外の元素を含んでいる分析溶液を得ることができる。すなわち、捕捉剤(例えば捕捉剤の酸化物)に捕捉されていた上記試料中の元素が、捕捉剤由来の元素の陽イオンから分離されて、当該分離された元素を含む分析溶液を得ることができる。なお、陽イオン交換樹脂接触工程では、捕捉剤由来の元素の陽イオン全てが、陽イオン交換樹脂に捕捉されなくてもよい。 In the cation exchange resin contact step, the cation of the element derived from the scavenger can be captured by the cation exchange resin by bringing the ash exchange solution obtained in the acid dissolution step into contact with the cation exchange resin. Thereby, in a cation exchange resin contact process, the analysis solution containing elements other than the element to be captured can be obtained. That is, the element in the sample that has been captured by the capture agent (for example, the oxide of the capture agent) is separated from the cation of the element derived from the capture agent to obtain an analysis solution containing the separated element. it can. In the cation exchange resin contact step, not all cations of the element derived from the scavenger need be captured by the cation exchange resin.
 本調製方法において、捕捉剤としてカルシウム化合物を含む場合には、陽イオン交換樹脂接触工程は、以下のような構成であってもよい。すなわち、陽イオン交換樹脂接触工程は、酸溶解工程において得られた灰化物水溶液と陽イオン交換樹脂とを接触させることによって、上記灰化物水溶液に含まれるカルシウムイオンを陽イオン交換樹脂に捕捉して、カルシウムイオン以外の元素を含んでいる分析溶液を得る工程でありうる。 In this preparation method, when a calcium compound is included as a scavenger, the cation exchange resin contact step may have the following configuration. That is, the cation exchange resin contact step captures calcium ions contained in the above ash solution by capturing the cation exchange resin by bringing the ash exchange solution obtained in the acid dissolution step into contact with the cation exchange resin. And an analysis solution containing an element other than calcium ions.
 なお、上記「捕捉対象元素以外の元素を含んでいる分析溶液」とは、試料に含まれている捕捉対象元素以外の元素うち、少なくとも一種類の元素を含んでいる分析溶液を意図している。すなわち、試料に含まれている捕捉対象元素以外の全ての元素を含んでいる分析溶液を意図しているのではない。上記分析溶液が含んでいる元素は、具体的には、灰化物水溶液に含まれる元素のうち、陽イオン交換樹脂によって捕捉されない元素でもあり得る。陽イオン交換樹脂接触工程において、陽イオン交換樹脂によって捕捉されない元素としては、例えば、〔遷移金属元素〕Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、Hf、Ta、W、Re、Os、Ir、Pt、Au;〔ホウ素族元素〕B、Al、Ga、In、Tl;〔炭素族元素〕Si、Ge、Sn、Pb;〔ニクトゲン元素〕P、As、Sb、Bi;〔カルコゲン元素〕S、Se、Te;のうちの少なくとも一つの元素が挙げられる。従って、分析溶液は、列挙した元素のうちの少なくとも一つの元素を含んでいてもよい。 The above-mentioned “analysis solution containing an element other than the capture target element” intends an analysis solution containing at least one kind of element other than the capture target element contained in the sample. . In other words, the analysis solution containing all elements other than the element to be captured contained in the sample is not intended. Specifically, the element contained in the analysis solution may be an element that is not captured by the cation exchange resin among the elements contained in the ash solution. In the cation exchange resin contact step, as an element that is not captured by the cation exchange resin, for example, [transition metal element] Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au; [boron group element] B, Al, Ga, In, Tl; [carbon group element] At least one element of Si, Ge, Sn, Pb; [Nictogen element] P, As, Sb, Bi; [Chalkogen element] S, Se, Te; Accordingly, the analysis solution may contain at least one of the listed elements.
 本調製方法における陽イオン交換樹脂接触工程では、ほう素、リン、ならびに、ほう素およびリン以外の少なくとも一つの元素を、含んでいる分析溶液を得ることが可能である。 In the cation exchange resin contact step in this preparation method, it is possible to obtain an analysis solution containing boron, phosphorus, and at least one element other than boron and phosphorus.
 灰化物水溶液と陽イオン交換樹脂とを接触させるには、具体的には、例えば、灰化物水溶液と陽イオン交換樹脂とを混合してもよいし、陽イオン交換樹脂が充填されたカラムに灰化物水溶液を通液させてもよい。灰化物水溶液中の捕捉剤由来の元素の陽イオンを陽イオン交換樹脂に効率よく捕捉させる観点から、灰化物水溶液と陽イオン交換樹脂とを接触させる方法としては、陽イオン交換樹脂が充填されたカラムに灰化物水溶液を通液させる方法が好ましい。 Specifically, in order to bring the ash product aqueous solution into contact with the cation exchange resin, for example, the ash product aqueous solution and the cation exchange resin may be mixed, or the column filled with the cation exchange resin may be ashed. An aqueous solution of a chemical compound may be passed therethrough. From the viewpoint of efficiently capturing the cation of the element derived from the scavenger in the aqueous solution of ash to the cation exchange resin, the cation exchange resin was filled as a method of contacting the aqueous solution of the ash and the cation exchange resin. A method of passing an aqueous ash product solution through the column is preferred.
 陽イオン交換樹脂としては、特に限定されるものではなく、通常、粒状、または粉末状のものが使用される。陽イオン交換樹脂として具体的には、例えばDOWEX強酸性型陽イオン交換樹脂(H型)、およびDOWEX MARATHON(Na型)(ダウ・ケミカル社製);ダイヤイオン(三菱ケミカル社製)等が挙げられる。 The cation exchange resin is not particularly limited, and usually a granular or powdered one is used. Specific examples of the cation exchange resin include DOWEX strongly acidic cation exchange resin (H type), DOWEX-MARATHON (Na type) (manufactured by Dow Chemical Company), Diaion (manufactured by Mitsubishi Chemical Company), and the like. It is done.
 陽イオン交換樹脂の使用量としては、特に限定されるものではなく、使用される陽イオン交換樹脂の総交換容量をもとに決定する。 The amount of cation exchange resin used is not particularly limited, and is determined based on the total exchange capacity of the cation exchange resin used.
 灰化物水溶液と陽イオン交換樹脂とを混合した場合には、混合後(換言すれば、試料中の捕捉剤由来の元素の陽イオンを捕捉させた後)の陽イオン交換樹脂は、通常の固液分離法により灰化物水溶液から分離される。これによって、陽イオン交換樹脂と混合後の灰化物水溶液として、捕捉対象元素以外の元素を含んでいる分析溶液を得ることができる。固液分離法としては、傾斜法、遠心分離法、および濾過法などが挙げられる。 When the ash exchange solution and the cation exchange resin are mixed, the cation exchange resin after mixing (in other words, after capturing the cation of the element derived from the scavenger in the sample) is a normal solid resin. It is separated from the incinerated aqueous solution by a liquid separation method. As a result, an analysis solution containing an element other than the element to be captured can be obtained as the ash solution after mixing with the cation exchange resin. Examples of the solid-liquid separation method include a gradient method, a centrifugal separation method, and a filtration method.
 灰化物水溶液から分離した後の陽イオン交換樹脂は、水洗されてもよいが、水洗は必ずしも必要とされない。水洗には通常、イオン交換水、または超純水が用いられる。陽イオン交換樹脂が水洗された場合には、再度固液分離法が行われることにより、陽イオン交換樹脂は洗浄水から分離される。分離された洗浄水は、先に得られた分析溶液と混合され得る。これら水洗に係る操作によって、捕捉対象元素以外の元素を、分析溶液として、より確実に回収することが可能となる。 The cation exchange resin after separation from the ash product aqueous solution may be washed with water, but washing with water is not necessarily required. Usually, ion-exchanged water or ultrapure water is used for washing with water. When the cation exchange resin is washed with water, the cation exchange resin is separated from the washing water by performing the solid-liquid separation method again. The separated wash water can be mixed with the previously obtained analysis solution. By these operations related to water washing, elements other than the element to be captured can be more reliably recovered as an analysis solution.
 陽イオン交換樹脂が充填されたカラム(陽イオン交換樹脂カラム、とも称する)に灰化物水溶液を通液させる場合、耐酸性の観点から、石英ウールを支持体として陽イオン交換樹脂を充填したカラムが使用されることが好ましい。支持体として使用される石英ウールの使用量は特に限定されないが、陽イオン交換樹脂に対して、0.01質量倍量~0.1質量倍量であることが好ましい。また、陽イオン交換樹脂カラムの支持体として石英ウールを使用することにより、当該カラムの予備洗浄において、当該カラムに含まれる不純物を除去することが可能となる。 When passing an aqueous solution of ashed product through a column filled with a cation exchange resin (also referred to as a cation exchange resin column), from the viewpoint of acid resistance, a column filled with cation exchange resin using quartz wool as a support is used. It is preferably used. The amount of quartz wool used as the support is not particularly limited, but is preferably 0.01 mass times to 0.1 mass times the cation exchange resin. Further, by using quartz wool as a support for the cation exchange resin column, it is possible to remove impurities contained in the column in the preliminary cleaning of the column.
 陽イオン交換樹脂が充填されたカラム(陽イオン交換樹脂カラム、とも称する)に灰化物水溶液を通液させた場合には、陽イオン交換樹脂カラム通液後の灰化物水溶液として、捕捉対象元素以外の元素を含んでいる分析溶液を得ることが可能である。灰化物水溶液が通液された後の陽イオン交換樹脂カラムは、イオン交換水、または超純水などを用いて水洗されてもよいが、水洗は必ずしも必要とされない。陽イオン交換樹脂カラム通液後の洗浄水は、先に得られた分析溶液と混合され得る。これら水洗に係る操作によって、捕捉対象元素以外の元素を、分析溶液として、より確実に回収することが可能となる。 When the ash exchange solution is passed through a column filled with a cation exchange resin (also referred to as a cation exchange resin column), the ash exchange solution after passing through the cation exchange resin column is used as an ash exchange solution other than the element to be captured. It is possible to obtain an analysis solution containing these elements. The cation exchange resin column after passing the ash product aqueous solution may be washed with ion-exchanged water or ultrapure water, but washing with water is not necessarily required. The wash water after passing through the cation exchange resin column can be mixed with the previously obtained analysis solution. By these operations related to water washing, elements other than the element to be captured can be more reliably recovered as an analysis solution.
 陽イオン交換樹脂接触工程において、灰化物水溶液と陽イオン交換樹脂とを接触させるときの接触温度および接触時間は特に限定されない。接触温度としては、例えば、陽イオン交換樹脂の温度、および灰化物水溶液の温度などが挙げられる。接触時間としては、例えば、灰化物水溶液と陽イオン交換樹脂との混合時間、および灰化物水溶液の陽イオン交換樹脂カラムにおける通液速度などが挙げられる。 In the cation exchange resin contact step, the contact temperature and contact time when the ash solution and the cation exchange resin are brought into contact with each other are not particularly limited. Examples of the contact temperature include the temperature of a cation exchange resin and the temperature of an incinerated aqueous solution. Examples of the contact time include the mixing time of the ash product aqueous solution and the cation exchange resin, and the flow rate of the ash product aqueous solution in the cation exchange resin column.
 本発明の他の一実施形態は、分析方法を提供する。本発明の他の一実施形態に係る分析方法は、本調製方法により得られた上記分析溶液に含まれている元素を、分析装置で測定する分析工程を含んでいる。 Another embodiment of the present invention provides an analysis method. An analysis method according to another embodiment of the present invention includes an analysis step of measuring an element contained in the analysis solution obtained by the preparation method with an analyzer.
 本発明書中では、「本発明の他の一実施形態に係る分析方法」を単に「本分析方法」とも称する。用語「本分析方法」は、分析方法をなんら限定するものではなく、単に上記分析方法の一実施形態を示すにすぎない。 In the present specification, “an analysis method according to another embodiment of the present invention” is also simply referred to as “the present analysis method”. The term “present analysis method” does not limit the analysis method in any way, but merely indicates one embodiment of the analysis method.
 〔分析工程〕
 分析工程は、上述した本調製方法により得られた上記分析溶液に含まれている元素を、分析装置で測定する工程である。なお、上記「元素を、分析装置で測定する」とは、元素を検出してその種類を特定すること、元素を定量すること、またはその両方が意図される。
[Analysis process]
The analysis step is a step of measuring an element contained in the analysis solution obtained by the above-described preparation method with an analyzer. The above-mentioned “measuring an element with an analyzer” is intended to detect the element and specify its type, to quantify the element, or both.
 本発明の一実施形態に係る分析工程では、ほう素、リン、ならびに、ほう素およびリン以外の少なくとも一つの元素を、同時に、分析装置で測定することが可能である。 In the analysis step according to an embodiment of the present invention, boron, phosphorus, and at least one element other than boron and phosphorus can be simultaneously measured by an analyzer.
 分析装置としては、公知の分析装置を用いることが可能であり、例えば、誘導結合プラズマ質量分析装置(ICP-MS)、誘導結合プラズマ発光分光分析装置(ICP-AES)、原子吸光分析装置(AAS)などを挙げることができる。また、ICP-MSは、四重極型誘導結合プラズマ-質量分析装置(Q-ICP-MS)、トリプル四重極型誘導結合プラズマ-質量分析装置(ICP-QQQ-MS)、または高分解能型誘導結合プラズマ質量分析装置(二重収束型誘導結合プラズマ質量分析装置(HR-ICP-MS))であってもよい。 As the analyzer, a known analyzer can be used. For example, an inductively coupled plasma mass spectrometer (ICP-MS), an inductively coupled plasma emission spectrometer (ICP-AES), an atomic absorption spectrometer (AAS) ) And the like. ICP-MS is a quadrupole inductively coupled plasma-mass spectrometer (Q-ICP-MS), triple quadrupole inductively coupled plasma-mass spectrometer (ICP-QQQ-MS), or high resolution type. An inductively coupled plasma mass spectrometer (double focused inductively coupled plasma mass spectrometer (HR-ICP-MS)) may be used.
 分析工程では、使用される分析装置に合わせて、適宜公知の方法により元素を測定することが可能である。 In the analysis process, it is possible to measure the element by a known method as appropriate according to the analyzer used.
 分析工程では、分析溶液に含まれている元素のうち、少なくとも一つの元素を検出し、定量することを意図している。 In the analysis process, it is intended to detect and quantify at least one of the elements contained in the analysis solution.
 分析工程における、分析装置および測定方法は、測定対象とする元素の種類に応じて適宜選択すればよい。 The analysis apparatus and measurement method in the analysis process may be appropriately selected according to the type of element to be measured.
 〔本調製方法の効果〕
 従来は、特定の元素を分析するための分析用試料の調製方法として、試料中の元素が捕捉された灰化物を酸に溶解して得た灰化物水溶液から、分析対象の元素を捕捉および濃縮して単離する方法が用いられていた。例えば、特許文献1では、ほう素を分析するために、灰化物水溶液から、陰イオン交換樹脂を用いてほう素を捕捉および濃縮して、単離する方法が用いられている。
[Effect of this preparation method]
Conventionally, as a method for preparing a sample for analysis to analyze a specific element, the element to be analyzed is captured and concentrated from an aqueous solution of an ash obtained by dissolving the ash in which the element in the sample is captured in an acid. The method of isolation was used. For example, in Patent Document 1, in order to analyze boron, a method is used in which boron is captured and concentrated from an ash solution using an anion exchange resin, and then isolated.
 すなわち、従来法では、陰イオン交換樹脂に捕捉した元素のみしか測定することができなかったが、本調製方法では、試料に含まれる多くの元素を一度に測定するための分析用試料を調製することができる。 That is, in the conventional method, only the elements captured by the anion exchange resin can be measured, but in this preparation method, an analytical sample is prepared for measuring many elements contained in the sample at one time. be able to.
 また、本調製方法では、酸溶解工程にて得られた灰化物水溶液を、追加の処理(例えばpH調整など)を行うことなく、続く陽イオン交換樹脂接触工程にて陽イオン交換樹脂と接触させることが可能である。一方、従来技術として、例えば特許文献1では、第二工程において得られた灰化物水溶液を第三工程にて陰イオン交換樹脂と接触させる前に、灰化物水溶液にアルカリを加えるなどして灰化物水溶液の水素濃度を調節する操作を行う必要がある。 In this preparation method, the aqueous ash product obtained in the acid dissolution step is brought into contact with the cation exchange resin in the subsequent cation exchange resin contact step without any additional treatment (for example, pH adjustment). It is possible. On the other hand, as a conventional technique, for example, in Patent Document 1, before contacting the anodized aqueous solution obtained in the second step with an anion exchange resin in the third step, an ashed product is added by adding alkali to the incinerated aqueous solution. It is necessary to adjust the hydrogen concentration of the aqueous solution.
 また、本調製方法では、陽イオン交換樹脂接触工程にて灰化物水溶液と接触させた後の陽イオン交換樹脂を洗浄する操作は不要である。灰化物水溶液と接触させた後の陽イオン交換樹脂を洗浄する場合であっても、実施例で後述するように、陽イオン交換樹脂(陽イオン交換樹脂カラム)を一度洗浄すれば十分である。一方、従来技術として、例えば特許文献1では、灰化物水溶液を接触させた陰イオン交換樹脂から分析対象以外の物質を除去するための洗浄操作が非常に煩雑である。 Further, in this preparation method, it is not necessary to wash the cation exchange resin after contacting with the ash solution in the cation exchange resin contact step. Even when the cation exchange resin after being brought into contact with the incinerated aqueous solution is washed, it is sufficient to wash the cation exchange resin (cation exchange resin column) once as described later in Examples. On the other hand, as a conventional technique, for example, in Patent Document 1, a cleaning operation for removing a substance other than an analysis target from an anion exchange resin brought into contact with an ash solution is very complicated.
 さらに、本調製方法では、本調製方法の陽イオン交換樹脂接触工程にて陽イオン交換樹脂と接触させた後の灰化物水溶液を、さらに特別な操作を行うことなく分析溶液として、本分析方法に供することが可能である。一方、従来技術として、例えば特許文献1では、分析対象であるほう素は、第三工程にて陰イオン交換樹脂に捕捉される。そのため、続く第四工程にて陰イオン交換樹脂に捕捉されたほう素を酸性水溶液で溶離する必要があり、得られた溶離液を定量に用いている。 Furthermore, in this preparation method, the ash product aqueous solution after contacting with the cation exchange resin in the cation exchange resin contact step of this preparation method is used as an analysis solution without any further special operation. It is possible to provide. On the other hand, as a conventional technique, for example, in Patent Document 1, boron to be analyzed is captured by an anion exchange resin in a third step. Therefore, it is necessary to elute boron trapped by the anion exchange resin in the subsequent fourth step with an acidic aqueous solution, and the obtained eluent is used for quantitative determination.
 上述したように、本調製方法は、従来法と比較して、試料に含まれている元素を、簡便に分析することを可能とする。 As described above, this preparation method makes it possible to easily analyze the elements contained in the sample as compared with the conventional method.
 さらに、本調製方法では、工程(または操作)が少ないので、最終的な分析試料(分析溶液)の汚染を低減することができる。その結果、本調製方法は、分析対象ではない元素を捕捉した残りの液を分析するにもかかわらず、分析対象の元素を捕捉および濃縮して単離する従来法と同等の感度を達成することができる。本調製方法では、特に、ほう素およびリンを高感度に分析することを可能とする、分析用試料を提供できる。 Furthermore, in this preparation method, since there are few steps (or operations), contamination of the final analysis sample (analysis solution) can be reduced. As a result, this preparation method achieves the same sensitivity as the conventional method that captures, concentrates and isolates the element to be analyzed, despite analyzing the remaining liquid that has captured the element that is not the object of analysis. Can do. In particular, the present preparation method can provide a sample for analysis that makes it possible to analyze boron and phosphorus with high sensitivity.
 すなわち、本調製方法は、試料に含まれている元素を、ほう素および/またはリンに限定することなく、簡便に分析することを可能とする分析用試料の調製方法を提供可能である。 That is, the present preparation method can provide an analytical sample preparation method that enables simple analysis without limiting the elements contained in the sample to boron and / or phosphorus.
 本発明の一実施形態は、以下の様な構成であってもよい。 An embodiment of the present invention may have the following configuration.
 〔1〕試料に含まれている元素を分析するための分析用試料の調製方法であり、上記試料を捕捉剤の存在下に灰化することによって、上記試料中の元素が捕捉された灰化物を得る、灰化工程と、上記灰化工程において得られた上記灰化物を酸に溶解することによって、灰化物水溶液を得る、酸溶解工程と、上記酸溶解工程において得られた上記灰化物水溶液と陽イオン交換樹脂とを接触させることによって、上記捕捉剤由来の元素の陽イオンを陽イオン交換樹脂に捕捉して、上記陽イオンの元素以外の元素を含んでいる分析溶液を得る、陽イオン交換樹脂接触工程と、を含むことを特徴とする、分析用試料の調製方法。 [1] A method for preparing an analytical sample for analyzing an element contained in a sample, wherein the ash is obtained by ashing the sample in the presence of a scavenger to capture the element in the sample. An ashing step, and an ashing solution obtained by dissolving the ashing product obtained in the ashing step in an acid to obtain an ashing solution, and the ashing solution obtained in the acid dissolving step The cation exchange resin is contacted with the cation exchange resin to capture the cation of the element derived from the scavenger in the cation exchange resin, thereby obtaining an analysis solution containing an element other than the cation element. An exchange resin contact step, and a method for preparing a sample for analysis.
 〔2〕上記試料が、炭素含有試料であることを特徴とする、〔1〕に記載の分析用試料の調製方法。 [2] The analytical sample preparation method according to [1], wherein the sample is a carbon-containing sample.
 〔3〕〔1〕または〔2〕に記載の分析用試料の調製方法により得られた上記分析溶液に含まれている元素を、分析装置で測定する分析工程を含むことを特徴とする、分析方法。 [3] An analysis comprising an analysis step of measuring an element contained in the analysis solution obtained by the method for preparing an analytical sample according to [1] or [2] with an analyzer Method.
 本発明の一実施例について以下に説明する。 An embodiment of the present invention will be described below.
 以下、実施例により本発明をより詳細に説明するが、本発明は、かかる実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to such examples.
 (実施例1)
 実施例1では、以下に示す市販の試料を使用した:N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン、ペンタセン、5,5’-ジ(4-ビフェニルイル)-2,2’-ビチオフェン、N,N’-ジオクチル-3,4,9,10-ペリレンジカルボキシミド、および4,4’-ビス(N-カルバゾリル)-1,1’-ビフェニル。
Example 1
In Example 1, the following commercially available samples were used: N, N′-diphenyl-N, N′-di (m-tolyl) benzidine, pentacene, 5,5′-di (4-biphenylyl)- 2,2′-bithiophene, N, N′-dioctyl-3,4,9,10-perylenedicarboxymido, and 4,4′-bis (N-carbazolyl) -1,1′-biphenyl.
 上記試料を用いて、本発明の一実施形態に係る調製方法に基づいて分析用試料を調製した。続いて、得られた分析用試料を用いて、本発明の一実施形態に係る分析方法に基づいて上記試料(分析用試料)中の元素(具体的にはほう素(B)およびリン(P))を測定した。具体的な操作手順は以下の通りである。なお、実施例1では、捕捉剤として炭酸カルシウムを用いた。 The sample for analysis was prepared based on the preparation method concerning one embodiment of the present invention using the above-mentioned sample. Subsequently, using the obtained analytical sample, elements (specifically, boron (B) and phosphorus (P) in the sample (analytical sample)) based on the analytical method according to one embodiment of the present invention. )) Was measured. The specific operation procedure is as follows. In Example 1, calcium carbonate was used as a scavenger.
 (1.灰化工程)
 粉末状の試料10mgを石英ビーカーに採取した。当該石英ビーカーに炭酸カルシウム(試薬特級、粉末状)を加えて、試料と炭酸カルシウムとを混合し、これらの混合物を得た。その後、石英ビーカーをバーナーで加熱することによって、混合物を灰化し、灰化物を得た。
(1. Ashing process)
A 10 mg powder sample was taken in a quartz beaker. Calcium carbonate (special grade reagent, powder) was added to the quartz beaker, and the sample and calcium carbonate were mixed to obtain a mixture thereof. Thereafter, the quartz beaker was heated with a burner to ash the mixture to obtain an ashed product.
 (2.酸溶解工程)
 得られた灰化物を含む石英ビーカー内に超純水(比抵抗値18Ω・cm以上)、および20質量%塩酸を加えた。次いで、石英ビーカーを100℃~150℃のホットプレート上に設置し、加熱することによって灰化物を溶解させ、灰化物水溶液を得た。ここで、当該灰化物水溶液における塩化水素の濃度は約4質量%であった。
(2. Acid dissolution process)
Ultrapure water (specific resistance value: 18 Ω · cm or more) and 20% by mass hydrochloric acid were added into the quartz beaker containing the obtained ashed product. Next, the quartz beaker was placed on a hot plate at 100 ° C. to 150 ° C. and heated to dissolve the ash, thereby obtaining an ash solution. Here, the concentration of hydrogen chloride in the ash solution was about 4% by mass.
 (3.陽イオン交換樹脂接触工程)
 石英ウール、および陽イオン交換樹脂(DOWEX強酸性型陽イオン交換樹脂(H型);ダウ・ケミカル社製)を順次カラムに充填し、陽イオン交換樹脂カラム(以下、単にカラムとも称する)を作製した。カラムに5質量%塩酸および超純水を通液して、カラムをコンディショニングした。
(3. Cation exchange resin contact process)
Quartz wool and cation exchange resin (DOWEX strongly acidic cation exchange resin (H type); manufactured by Dow Chemical Co., Ltd.) are sequentially packed into a column to produce a cation exchange resin column (hereinafter also simply referred to as a column). did. The column was conditioned by passing 5% by mass hydrochloric acid and ultrapure water through the column.
 次いで、コンディショニングしたカラムに、酸溶解工程で得た灰化物水溶液を通液させ、カラム通過後の灰化物水溶液を、分析溶液として回収した。さらに、灰化物水溶液を含んでいた石英ビーカーに超純水を加えて、当該石英ビーカーを洗浄し、洗浄後の超純水を、カラムに通液した。カラム通過後の超純水を回収し、上記分析溶液に加えた。その後、カラムに超純水を通液し、カラムを洗浄した。カラム通過後の超純水(洗浄液)を回収し、上記分析溶液にさらに加えた。 Next, the ashed product aqueous solution obtained in the acid dissolution step was passed through the conditioned column, and the ashed product aqueous solution after passing through the column was recovered as an analysis solution. Further, ultrapure water was added to the quartz beaker containing the ash solution and the quartz beaker was washed, and the washed ultrapure water was passed through the column. The ultrapure water after passing through the column was collected and added to the analysis solution. Thereafter, ultrapure water was passed through the column to wash the column. Ultrapure water (washing liquid) after passing through the column was recovered and further added to the analysis solution.
 得られた分析溶液に20質量%塩酸を加え、さらに超純水を用いて塩化水素濃度約4質量%の分析溶液を作製した。 20% by mass hydrochloric acid was added to the obtained analysis solution, and an analysis solution having a hydrogen chloride concentration of about 4% by mass was prepared using ultrapure water.
 (4.分析工程)
 上記陽イオン交換樹脂接触工程で得た分析溶液を、誘導結合プラズマ質量分析装置(ICP-MS)(「ELAN DRCII」、米国パーキンエルマー社製、四重極誘導結合プラズマ-質量分析装置)に導入して、分析溶液中の元素(具体的にはほう素(B)およびリン(P))を測定した。
(4. Analysis process)
The analysis solution obtained in the cation exchange resin contact step is introduced into an inductively coupled plasma mass spectrometer (ICP-MS) (“ELAN DRCII”, manufactured by Perkin Elmer, USA, quadrupole inductively coupled plasma-mass spectrometer). Then, elements (specifically, boron (B) and phosphorus (P)) in the analysis solution were measured.
 測定結果を表1に示す。 Table 1 shows the measurement results.
 (比較例1:マイクロウェーブ分解法による元素の定量)
 実施例1で用いたのと同じ試料を用いて、従来法であるマイクロウェーブ分解法に基づいて分析用試料を調製し、続いて上記試料中の元素(具体的にはほう素(B)およびリン(P))を定量した。具体的な操作手順は以下の通りである。
(Comparative Example 1: Element quantification by microwave decomposition method)
Using the same sample as used in Example 1, an analytical sample was prepared based on the conventional microwave decomposition method, and then the elements in the sample (specifically, boron (B) and Phosphorus (P)) was quantified. The specific operation procedure is as follows.
 粉末状の試料100mgをフッ素樹脂製のマイクロウェーブ分解容器に採取した。当該容器に硝酸(超微量分析用、和光純薬工業株式会社)を加えて密閉し、その後マイクロウェーブ分解した。分解後の試料溶液を回収し、超純水を用いて硝酸濃度約25質量%の分析溶液を作製した。 A 100 mg powder sample was collected in a microwave decomposition vessel made of fluororesin. Nitric acid (for ultra-trace analysis, Wako Pure Chemical Industries, Ltd.) was added to the vessel and sealed, followed by microwave decomposition. The decomposed sample solution was collected, and an analysis solution having a nitric acid concentration of about 25% by mass was prepared using ultrapure water.
 上記マイクロウェーブ分解法で得た分析溶液を、誘導結合プラズマ発光分光分析装置(ICP-AES)(「iCAP6500」、サーモフィッシャーサイエンティフィック社製)に導入して、分析溶液中の元素(具体的にはほう素(B)およびリン(P))を測定した。 The analysis solution obtained by the above microwave decomposition method is introduced into an inductively coupled plasma emission spectrometer (ICP-AES) (“iCAP6500”, manufactured by Thermo Fisher Scientific), and the elements in the analysis solution (specifically Boron (B) and phosphorus (P)) were measured.
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
*表1において、「B」はほう素を表しており、「P」はリンを示している。
*表1において、「<(数値)」は数値(定量下限値)よりも小さい値であったことから、定量できなかったことを示している。
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
* In Table 1, “B” represents boron, and “P” represents phosphorus.
* In Table 1, “<(numerical value)” was smaller than the numerical value (lower limit of quantification), indicating that quantification was not possible.
 表1より、以下のことが分かった。すなわち、マイクロウェーブ分解法では、多くの試料において、ほう素及びリン(特にほう素)の定量値が定量下限値未満であり、正確に定量できなかった。一方、本分析方法では、使用した試料の量がマイクロウェーブ分解法の10分の1の量であるにもかかわらず、多くの試料においてほう素及びリン(特にリン)を正確に定量できたことが分かった。このことより、本分析方法は、従来法よりも、より微量の試料において、試料中のほう素およびリンをより高感度に測定できることが分かった。 Table 1 shows the following. That is, in the microwave decomposition method, in many samples, the quantitative values of boron and phosphorus (particularly boron) were less than the lower limit of quantification and could not be accurately quantified. On the other hand, in this analysis method, boron and phosphorus (particularly phosphorus) could be accurately quantified in many samples even though the amount of the sample used was one-tenth that of the microwave decomposition method. I understood. From this, it was found that this analysis method can measure boron and phosphorus in a sample with a higher sensitivity in a smaller amount of sample than in the conventional method.
 (実施例2)
 実施例2では、粉末状にした超高純度黒鉛にいくつかの元素を添加して混合物を調製し、当該混合物を試料として用いた。黒鉛に添加した元素は、Ge、As、Te、およびReであり、それら元素の添加量は全て200ngであった。
(Example 2)
In Example 2, a mixture was prepared by adding some elements to powdered ultra-high purity graphite, and the mixture was used as a sample. The elements added to the graphite were Ge, As, Te, and Re, and the amount of these elements added was 200 ng.
 上記試料(黒鉛)を用いて、本発明の一実施形態に係る調製方法に基づいて分析用試料を調製した。続いて、得られた分析用試料を用いて、本発明の一実施形態に係る分析方法に基づいて上記試料(分析用試料)中の元素を測定した。具体的な操作手順は以下の通りである。なお、実施例2では、捕捉剤として炭酸カルシウムを用いた。 Using the sample (graphite), an analytical sample was prepared based on the preparation method according to an embodiment of the present invention. Subsequently, using the obtained analytical sample, the elements in the sample (analytical sample) were measured based on the analytical method according to one embodiment of the present invention. The specific operation procedure is as follows. In Example 2, calcium carbonate was used as the scavenger.
 (1.灰化工程)
 粉末状の試料10gを白金皿に採取した。当該白金皿に炭酸カルシウム(試薬特級、粉末状)を加えて、試料と炭酸カルシウムとを混合し、これらの混合物を得た。その後、白金皿を電気炉内にて3L/分で酸素を流通させながら900℃、3時間の条件で混合物を灰化し、灰化物を得た。
(1. Ashing process)
A 10 g powder sample was collected in a platinum dish. Calcium carbonate (special grade reagent, powder) was added to the platinum dish, and the sample and calcium carbonate were mixed to obtain a mixture thereof. Thereafter, the mixture was incinerated at 900 ° C. for 3 hours while oxygen was passed through the platinum dish at 3 L / min in an electric furnace to obtain an incinerated product.
 (2.酸溶解工程)
 得られた灰化物を含む白金皿内に超純水(比抵抗値18Ω・cm以上)、および20質量%塩酸を加えた。次いで、白金皿を100℃のホットプレート上に設置し、加熱することによって灰化物を溶解させ、灰化物水溶液を得た。ここで、当該灰化物水溶液における塩化水素の濃度は約4質量%である。
(2. Acid dissolution process)
Ultrapure water (specific resistance value: 18 Ω · cm or more) and 20% by mass hydrochloric acid were added to the platinum dish containing the obtained ashed product. Next, the platinum dish was placed on a hot plate at 100 ° C., and the ashed product was dissolved by heating to obtain a ashed product aqueous solution. Here, the concentration of hydrogen chloride in the ash solution is about 4% by mass.
 (3.陽イオン交換樹脂接触工程)
 石英ウール、および陽イオン交換樹脂(DOWEX強酸性型陽イオン交換樹脂(H型);ダウ・ケミカル社製)を順次カラムに充填し、陽イオン交換樹脂カラム(以下、単にカラムとも称する)を作製した。カラムに5質量%塩酸および超純水を通液して、カラムをコンディショニングした。
(3. Cation exchange resin contact process)
Quartz wool and cation exchange resin (DOWEX strongly acidic cation exchange resin (H type); manufactured by Dow Chemical Co., Ltd.) are sequentially packed into a column to produce a cation exchange resin column (hereinafter also simply referred to as a column). did. The column was conditioned by passing 5% by mass hydrochloric acid and ultrapure water through the column.
 次いで、コンディショニングしたカラムに、酸溶解工程で得た灰化物水溶液を通液させ、カラム通過後の灰化物水溶液を、分析溶液として回収した。さらに、灰化物水溶液を含んでいた白金皿に超純水を加えて、当該白金皿を洗浄し、洗浄後の超純水を、カラムに通液した。カラム通過後の超純水を回収し、上記分析溶液に加えた。その後、カラムに超純水を通液し、カラムを洗浄した。カラム通過後の超純水(洗浄液)を回収し、上記分析溶液にさらに加えた。 Next, the ashed product aqueous solution obtained in the acid dissolution step was passed through the conditioned column, and the ashed product aqueous solution after passing through the column was recovered as an analysis solution. Furthermore, ultrapure water was added to the platinum dish containing the incinerated aqueous solution to wash the platinum dish, and the washed ultrapure water was passed through the column. The ultrapure water after passing through the column was collected and added to the analysis solution. Thereafter, ultrapure water was passed through the column to wash the column. Ultrapure water (washing liquid) after passing through the column was recovered and further added to the analysis solution.
 得られた分析溶液に20質量%塩酸を加え、さらに超純水を用いて塩化水素濃度約4質量%の分析溶液を作製した。 20% by mass hydrochloric acid was added to the obtained analysis solution, and an analysis solution having a hydrogen chloride concentration of about 4% by mass was prepared using ultrapure water.
 (4.分析工程)
 上記陽イオン交換樹脂接触工程で得た分析溶液を、誘導結合プラズマ質量分析装置(ICP-MS)(「ELAN DRCII」、米国パーキンエルマー社製、四重極誘導結合プラズマ-質量分析装置)に導入して、分析溶液中の元素を測定した。
(4. Analysis process)
The analysis solution obtained in the cation exchange resin contact step is introduced into an inductively coupled plasma mass spectrometer (ICP-MS) (“ELAN DRCII”, manufactured by Perkin Elmer, USA, quadrupole inductively coupled plasma-mass spectrometer). Then, the elements in the analysis solution were measured.
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2において、「サンプル含有量」とは、使用した超高純度黒鉛そのものに含まれている各種元素の含有量を指している。
The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
In Table 2, “sample content” refers to the content of various elements contained in the ultra-high purity graphite itself used.
 表2より、本発明は、ほう素及びリン以外の元素も定量可能な、分析用試料を提供できる、という効果を奏することが分かった。 From Table 2, it was found that the present invention has an effect of providing an analytical sample capable of quantifying elements other than boron and phosphorus.
 本発明は、試料に含まれている元素を、ほう素および/またはリンに限定することなく、簡便に分析することができる。従って、本発明は、半導体関連分野、医療器具製造分野、食品成分分析分野、など様々な分野において、試料(原料、食品など)に含まれる元素の分析に利用することができる。 In the present invention, elements contained in a sample can be easily analyzed without being limited to boron and / or phosphorus. Therefore, the present invention can be used for analysis of elements contained in samples (raw materials, foods, etc.) in various fields such as semiconductor-related fields, medical device manufacturing fields, and food component analysis fields.

Claims (3)

  1.  試料に含まれている元素を分析するための分析用試料の調製方法であり、
     上記試料を捕捉剤の存在下に灰化することによって、上記試料中の元素が捕捉された灰化物を得る、灰化工程と、
     上記灰化工程において得られた上記灰化物を酸に溶解することによって、灰化物水溶液を得る、酸溶解工程と、
     上記酸溶解工程において得られた上記灰化物水溶液と陽イオン交換樹脂とを接触させることによって、上記捕捉剤由来の元素の陽イオンを陽イオン交換樹脂に捕捉して、上記陽イオンの元素以外の元素を含んでいる分析溶液を得る、陽イオン交換樹脂接触工程と、を含むことを特徴とする、分析用試料の調製方法。
    An analytical sample preparation method for analyzing an element contained in a sample,
    An ashing step of ashing the sample in the presence of a scavenger to obtain an ash product in which the elements in the sample are captured;
    An acid dissolution step of obtaining an aqueous solution of an ash by dissolving the ash obtained in the ashing step in an acid; and
    By contacting the ash solution obtained in the acid dissolution step with a cation exchange resin, the cation of the element derived from the scavenger is captured on a cation exchange resin, and the cation exchange resin other than the cation element is used. A method for preparing a sample for analysis, comprising: a cation exchange resin contact step for obtaining an analysis solution containing an element.
  2.  上記試料が、炭素含有試料であることを特徴とする、請求項1に記載の分析用試料の調製方法。 The method for preparing a sample for analysis according to claim 1, wherein the sample is a carbon-containing sample.
  3.  請求項1または2に記載の分析用試料の調製方法により得られた上記分析溶液に含まれている元素を、分析装置で測定する分析工程を含むことを特徴とする、分析方法。 3. An analysis method comprising an analysis step of measuring an element contained in the analysis solution obtained by the method for preparing an analysis sample according to claim 1 or 2 with an analyzer.
PCT/JP2019/002368 2018-02-21 2019-01-24 Method for preparing sample for analysis WO2019163394A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020501606A JP7252936B2 (en) 2018-02-21 2019-01-24 Method for preparing sample for analysis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018029213 2018-02-21
JP2018-029213 2018-02-21

Publications (1)

Publication Number Publication Date
WO2019163394A1 true WO2019163394A1 (en) 2019-08-29

Family

ID=67687431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002368 WO2019163394A1 (en) 2018-02-21 2019-01-24 Method for preparing sample for analysis

Country Status (3)

Country Link
JP (1) JP7252936B2 (en)
TW (1) TWI794403B (en)
WO (1) WO2019163394A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110927144A (en) * 2019-12-10 2020-03-27 辽宁科技大学 ICP-AES (inductively coupled plasma-atomic emission Spectrometry) measuring method for content of impurity phosphorus in steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203122A (en) * 2007-02-21 2008-09-04 Sumika Chemical Analysis Service Ltd Method for determining amount of boron in graphite

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW407137B (en) * 1996-10-21 2000-10-01 Food Industry Res & Dev Inst Process for separating organogermanium compounds and inorganogermanium compounds from a germanium-containing pharmaceutical plant or its processed products

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203122A (en) * 2007-02-21 2008-09-04 Sumika Chemical Analysis Service Ltd Method for determining amount of boron in graphite

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KRAMER, H.: "Determination of boron in silicates after ion exchange separation", ANALYTICAL CHEMISTRY, vol. 27, no. 1, 18 January 1955 (1955-01-18), pages 144 - 145, XP055632858 *
MARTIN, J. R. ET AL.: "Application of ion exchange to determination of boron", ANALYTICAL CHEMISTRY, vol. 24, no. 1, January 1952 (1952-01-01), pages 182 - 185, XP055632863 *
MURAKI, ISAO: "On the determination of a small amount of boron", JAPAN ANALYST, vol. 6, 1957, pages 319 - 327 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110927144A (en) * 2019-12-10 2020-03-27 辽宁科技大学 ICP-AES (inductively coupled plasma-atomic emission Spectrometry) measuring method for content of impurity phosphorus in steel

Also Published As

Publication number Publication date
TW201937148A (en) 2019-09-16
TWI794403B (en) 2023-03-01
JP7252936B2 (en) 2023-04-05
JPWO2019163394A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
Hu et al. 15.5-Sample digestion methods
Zhang et al. Recent advances in sample preparation methods for elemental and isotopic analysis of geological samples
Cruz et al. Microwave-induced combustion method for the determination of trace and ultratrace element impurities in graphite samples by ICP-OES and ICP-MS
JP4342466B2 (en) Quantitative analysis of trace metal elements
O'Hara et al. Decomposition of diverse solid inorganic matrices with molten ammonium bifluoride salt for constituent elemental analysis
JP3768442B2 (en) Analytical sample preparation method and element quantification method
JP6325358B2 (en) Method for separating and analyzing trace noble metals
JP2009014512A (en) Method for determining quantity of halide in sample containing organic compound
WO2019163394A1 (en) Method for preparing sample for analysis
JP2020085894A (en) Evaluation methods for tungsten and element
de Mello et al. Evaluation of recycle and reuse of nitric acid from sample digests by sub-boiling distillation
Han et al. Efficiency of acid digestion procedures for geochemical analysis of tungsten mining wastes
JP2008082951A (en) Method for quantitatively determining impurity in ruthenium hydroxide
JP4995596B2 (en) Quantitative determination of boron in graphite
Takeda et al. Determination of ultra-trace amounts of uranium and thorium in high-purity aluminium by inductively coupled plasma mass spectrometry
Kang et al. Preparation of silver vanadate glass containing PbO or TeO2 for radioactive iodine immobilization
JP2011252711A (en) Impurity analyzing method of sample containing metal main component
JP4559932B2 (en) Method for analyzing metal impurities
JP2002267634A (en) Method of analyzing impurity in silicon material
CN104003446B (en) Preparation method of high-purity molybdenum trioxide
JP2015118083A (en) Sample preparation method, analytic method, and quality management method
Balarama Krishna et al. Studies on the determination of trace elements in high-purity Sb using GFAAS and ICP-QMS
JP2020193939A (en) Method for preparing sample for quantification and method for manufacturing silver chloride
Kuboyama et al. Wet digestion
Cai et al. Improved alkaline fusion method for B isotope and concentration measurements of silicate materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19756534

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501606

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19756534

Country of ref document: EP

Kind code of ref document: A1