JPH11287571A - Egr cooler - Google Patents

Egr cooler

Info

Publication number
JPH11287571A
JPH11287571A JP10086764A JP8676498A JPH11287571A JP H11287571 A JPH11287571 A JP H11287571A JP 10086764 A JP10086764 A JP 10086764A JP 8676498 A JP8676498 A JP 8676498A JP H11287571 A JPH11287571 A JP H11287571A
Authority
JP
Japan
Prior art keywords
cooling
chamber
gas
water
gas chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10086764A
Other languages
Japanese (ja)
Other versions
JP3783395B2 (en
Inventor
Koji Natsume
浩司 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP08676498A priority Critical patent/JP3783395B2/en
Publication of JPH11287571A publication Critical patent/JPH11287571A/en
Application granted granted Critical
Publication of JP3783395B2 publication Critical patent/JP3783395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the heat dissipating property of EGR gas. SOLUTION: An EGR cooler 1 is formed of an inlet port side gas chamber 7, an outlet port side gas chamber 19 and a cooling liquid chamber 8, which are defined by partitioning the inside of a casing 2, and intermediate gas chambers 20, 21 are formed in the cooling liquid chamber 8 by defining the same while the inlet port side gas chamber 7 communicates with the intermediate gas chambers 20, 21 and the outlet port side gas chamber 19 communicates with the intermediate gas chambers 20, 21 through cooling pipes 29, 30, 31 respectively. In this case, the cooling pipes 20, 30, 31 are penetrated through and fixed to respective plates 9,... while respective chambers communicate with each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はEGRクーラに係
り、特に、エンジンの排ガスの一部を排気経路から取り
出して再びエンジンの吸気経路に戻すEGR(Exhaust
Gas Recirculation:排気再循環)を行う際、途中でEG
Rガスを冷却するためのEGRクーラに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an EGR cooler, and more particularly, to an EGR (Exhaust) system for extracting a part of exhaust gas from an engine from an exhaust path and returning the exhaust gas to an intake path of the engine again.
EG during gas recirculation)
The present invention relates to an EGR cooler for cooling R gas.

【0002】[0002]

【従来の技術】ディーゼルエンジン等の排ガス中のNOx
を低減するためEGRが有効であることは知られてい
る。即ち、EGRを行うと、吸気中の酸素濃度が低下し
て燃焼が緩慢となり、燃焼温度の低下によりNOx の生成
が抑制されると考えられるからである。
2. Description of the Related Art NOx in exhaust gas from diesel engines, etc.
It is known that EGR is effective to reduce the EGR. That is, it is considered that when EGR is performed, the oxygen concentration in the intake air decreases and combustion becomes slow, and the generation of NOx is suppressed by the decrease in combustion temperature.

【0003】一方、吸気にEGRガスを混入させること
でその分新気量が減り、スモークが悪化するという問題
がある。これを解決するために、EGR通路中にEGR
クーラを設け、高温のEGRガスを冷却して体積を減少
させることにより、新気量の増大を図り、スモークの発
生を防止しようという提案がなされている(特開平6-14
7028号公報等参照)。
On the other hand, mixing EGR gas into the intake air causes a problem that the fresh air amount is reduced by that amount and the smoke is deteriorated. In order to solve this, the EGR
It has been proposed to provide a cooler and cool the high-temperature EGR gas to reduce the volume, thereby increasing the amount of fresh air and preventing the generation of smoke (Japanese Patent Laid-Open No. 6-14).
No. 7028).

【0004】図22はEGRクーラが適用されたエンジ
ンの構成図で、EGRクーラ51はEGR通路をなすE
GR配管52の途中に設けられ、エンジン53との間で
冷却水配管54を介して冷却水(冷却液)を循環させ、
その冷却水を冷媒として内部でEGRガスを冷却するよ
うになっている。EGR配管52は、排気マニホールド
55及び排気管56からなる排気経路から排ガスの一部
(EGRガス)を取り出し、吸気マニホールド57及び
吸気管58からなる吸気経路にそれを戻す。EGR配管
52の途中にはEGR量を制御するための流量制御弁5
9が設けられる。
FIG. 22 is a configuration diagram of an engine to which an EGR cooler is applied. An EGR cooler 51 has an EGR passage E
Provided in the middle of the GR pipe 52, circulates cooling water (cooling liquid) between the engine 53 and the engine 53 through a cooling water pipe 54,
The cooling water is used as a coolant to cool the EGR gas inside. The EGR pipe 52 extracts a part of the exhaust gas (EGR gas) from the exhaust path including the exhaust manifold 55 and the exhaust pipe 56 and returns it to the intake path including the intake manifold 57 and the intake pipe 58. In the middle of the EGR pipe 52, a flow control valve 5 for controlling the EGR amount is provided.
9 are provided.

【0005】一般的なEGRクーラの構成は図19、2
0、21に示す通りである。EGRクーラ51は、一方
向に延出して両端が絞られた筒状のケーシング60を有
し、ケーシング60の長手方向両端には入口側フランジ
61及び出口側フランジ62が一体的に設けられる。入
口側フランジ61及び出口側フランジ62は、それぞれ
ガス導入口63及びガス導出口64を区画して上述のE
GR配管52にそれぞれ接続される。ケーシング60内
部には長手方向(ガス流れ方向)に離間する一対のエン
ドプレート、即ち入口側エンドプレート65及び出口側
エンドプレート66が設けられる。これらエンドプレー
ト65,66は、ケーシング60内部を、両端の入口側
ガス室67、出口側ガス室68及び中央の水室69(冷
却液室)とに仕切るためのものである。水室69には、
その長手方向に離間して冷却水導入口70及び冷却水導
出口71が設けられる。これらは径方向の対向側に設け
られる。
The structure of a general EGR cooler is shown in FIGS.
0 and 21. The EGR cooler 51 has a cylindrical casing 60 extending in one direction and narrowed at both ends. An inlet flange 61 and an outlet flange 62 are integrally provided at both longitudinal ends of the casing 60. The inlet-side flange 61 and the outlet-side flange 62 define a gas inlet 63 and a gas outlet 64, respectively, to form the above-described E.
Each is connected to the GR pipe 52. A pair of end plates separated in the longitudinal direction (gas flow direction), that is, an inlet end plate 65 and an outlet end plate 66 are provided inside the casing 60. These end plates 65 and 66 partition the inside of the casing 60 into an inlet gas chamber 67 at both ends, an outlet gas chamber 68 and a central water chamber 69 (coolant chamber). In the water chamber 69,
A cooling water inlet 70 and a cooling water outlet 71 are provided apart from each other in the longitudinal direction. These are provided on the radially opposite side.

【0006】両エンドプレート65,66を掛け渡して
複数の直管状冷却管72が設けられる。冷却管72は両
エンドプレート65,66に挿通固定され、入口側及び
出口側ガス室67,68を連通すると共に、両エンドプ
レート65,66間で水室69内を通過するようになっ
ている。
[0006] A plurality of straight tubular cooling pipes 72 are provided so as to bridge both end plates 65 and 66. The cooling pipe 72 is inserted and fixed to both end plates 65 and 66, communicates the inlet side and outlet side gas chambers 67 and 68, and passes through the water chamber 69 between the both end plates 65 and 66. .

【0007】こうして、ガス導入口63から入口側ガス
室67内に導入されたEGRガスは、入口側ガス室67
内で径方向に拡散し、各冷却管72に分配される。そし
て各冷却管72を通過した後、出口側ガス室68内で再
度集合されてガス導出口64から導出される。特に水室
69内を通過する際、冷却水との間で熱交換されて冷却
される。
The EGR gas introduced from the gas inlet 63 into the inlet gas chamber 67 in this manner is supplied to the inlet gas chamber 67.
Inside, it is diffused in the radial direction and distributed to each cooling pipe 72. Then, after passing through each cooling pipe 72, they are gathered again in the outlet side gas chamber 68 and are led out from the gas outlet 64. In particular, when passing through the water chamber 69, heat is exchanged with cooling water to be cooled.

【0008】冷却管72は、冷却効率を高めるべくでき
るだけ薄肉( 0.5〜1mm 程度)とされる。またEGRガ
スが高温で硫黄分を含むことから、高温強度と耐腐食性
に優れたステンレス等の材料が採用される。本クーラは
複数の部品を接合して作るが、製造の簡便化のため全て
の部品が炉内ロー付けにて一度に組み付けられるように
なっている。このため、冷却管72以外の部品も冷却管
72と同種の材料で形成される。
The cooling pipe 72 is made as thin as possible (about 0.5 to 1 mm) in order to increase the cooling efficiency. Further, since the EGR gas contains sulfur at high temperature, a material such as stainless steel excellent in high-temperature strength and corrosion resistance is employed. Although this cooler is made by joining a plurality of parts, all parts are assembled at once by brazing in the furnace to simplify manufacturing. For this reason, parts other than the cooling pipe 72 are formed of the same material as the cooling pipe 72.

【0009】[0009]

【発明が解決しようとする課題】ところで、EGRガス
は、入口側ガス室67から冷却管72に流入した直後
は、急激な断面変化の影響を受けて速度・方向が一定で
ない乱流となる。この乱流領域ではガスから冷却管72
へ活発な放熱が行われる。
Immediately after the EGR gas flows from the inlet side gas chamber 67 into the cooling pipe 72, the EGR gas is affected by a sudden change in cross-section, and becomes a turbulent flow in which the speed and direction are not constant. In this turbulent region, the cooling pipe 72
Active heat dissipation is performed.

【0010】一方、この乱流領域を過ぎると、ガスの流
れは冷却管72の軸方向に流れる層流となる。このた
め、ガスの流速が軸心側ほど速く、冷却管72内壁部近
傍では遅くなり、放熱が活発に行われなくなる。
On the other hand, after passing through the turbulent flow region, the gas flow becomes a laminar flow flowing in the axial direction of the cooling pipe 72. For this reason, the flow velocity of the gas is higher on the axial center side and is lower in the vicinity of the inner wall of the cooling pipe 72, so that heat is not actively radiated.

【0011】この対策として、冷却管72内部に薄肉の
フィンを設けて放熱面積を増やしたり、冷却管72内部
に凹凸を設けて層流部の境界層を乱す方法があるが、E
GRガスに含まれたすすがフィン等に付着し、そこでE
GRガス中に含まれる硫黄分と水分とで硫酸が形成され
るため、耐久性の面で問題が生じる。
As a countermeasure, there are methods of increasing the heat radiation area by providing thin fins inside the cooling pipe 72 and providing irregularities inside the cooling pipe 72 to disturb the boundary layer of the laminar flow portion.
Soot contained in the GR gas adheres to the fins and the like, where E
Since sulfuric acid is formed by the sulfur content and water contained in the GR gas, a problem occurs in terms of durability.

【0012】なお、EGRガス流量(EGR率)がエン
ジン回転数、エンジン負荷等のエンジン運転状態に応じ
て変化すること、及び各気筒の排気脈動によりEGRガ
スも脈動を伴うことから、前述の乱流領域の範囲ないし
長さは一定でない。
Since the EGR gas flow rate (EGR rate) changes according to the engine operating conditions such as the engine speed and the engine load, and the EGR gas also pulsates due to the exhaust pulsation of each cylinder, the above-described disturbance is caused. The extent or length of the flow region is not constant.

【0013】[0013]

【課題を解決するための手段】本発明に係るEGRクー
ラは、ケーシング内を仕切って入口側ガス室、出口側ガ
ス室及び冷却液室を区画し、上記冷却液室内に中間ガス
室を区画形成すると共に、入口側ガス室と中間ガス室、
中間ガス室と出口側ガス室をそれぞれ冷却管で連絡した
ものである。
An EGR cooler according to the present invention partitions an inlet side gas chamber, an outlet side gas chamber, and a coolant chamber by partitioning the inside of a casing, and forms an intermediate gas chamber in the coolant chamber. And the inlet gas chamber and the intermediate gas chamber,
The intermediate gas chamber and the outlet gas chamber are connected by a cooling pipe.

【0014】これによれば、入口側ガス室から冷却管に
導入したEGRガスを中間ガス室に放出し、再度冷却管
内に導入できる。よって乱流領域を増大でき、放熱を活
発化できる。
According to this, the EGR gas introduced into the cooling pipe from the inlet gas chamber can be discharged to the intermediate gas chamber and introduced again into the cooling pipe. Therefore, the turbulence region can be increased, and the heat radiation can be activated.

【0015】ここで、上記中間ガス室が複数設けられ、
これら中間ガス室同士が別の冷却管で連絡されるのが好
ましい。
Here, a plurality of the intermediate gas chambers are provided,
It is preferable that these intermediate gas chambers are connected by another cooling pipe.

【0016】また、上記中間ガス室が上記冷却液室を分
割し、これら分割された冷却液室同士が連絡通路で連絡
されるのが好ましい。
Preferably, the intermediate gas chamber divides the cooling liquid chamber, and the divided cooling liquid chambers are connected to each other by a communication passage.

【0017】また、上記連絡通路が中間ガス室内を通過
する連絡管で形成され、この連絡管が冷却管と交差する
方向に延出されるのが好ましい。
Preferably, the communication passage is formed by a communication pipe passing through the intermediate gas chamber, and the communication pipe extends in a direction crossing the cooling pipe.

【0018】また、上記冷却液室内の冷却液を冷却管と
交差する方向に流すための案内手段が設けられるのが好
ましい。
Further, it is preferable that a guide means for flowing the cooling liquid in the cooling liquid chamber in a direction intersecting with the cooling pipe is provided.

【0019】[0019]

【発明の実施の形態】以下、本発明の好適な実施の形態
を添付図面に基づいて詳述する。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0020】[第1実施形態]図1、2、3は第1実施
形態に係るEGRクーラを示す。従来同様、EGRクー
ラ1は、一方向(図の左右方向)に長い円筒状のケーシ
ング2を有している。ケーシング2は、所定の一定径に
形成された外筒部3と、外筒部3からガス入口側(図中
左側)及び出口側(図中右側)に向けて半球状に絞られ
た入口側タンク部4及び出口側タンク部13とからな
る。入口側タンク部4の入口端及び出口側タンク部13
の出口端には、前述のEGR配管に接続するためのフラ
ンジ部5,14が設けられる。これらフランジ部5,1
4には、それぞれガス導入口15及びガス導出口16と
一対のボルト穴(雌ねじ穴)17とが設けられる。これ
ら外筒部3、タンク部4,13及びフランジ部5,14
は同軸に配置される。
[First Embodiment] FIGS. 1, 2 and 3 show an EGR cooler according to a first embodiment. As in the related art, the EGR cooler 1 has a cylindrical casing 2 that is long in one direction (the left-right direction in the drawing). The casing 2 has an outer cylindrical portion 3 formed to have a predetermined constant diameter, and an inlet side narrowed hemispherically from the outer cylindrical portion 3 toward a gas inlet side (left side in the figure) and an outlet side (right side in the figure). It comprises a tank part 4 and an outlet side tank part 13. Inlet end of outlet side tank part 4 and outlet side tank part 13
Are provided with flange portions 5 and 14 for connection to the aforementioned EGR pipe. These flange parts 5, 1
4 has a gas inlet 15 and a gas outlet 16 and a pair of bolt holes (female screw holes) 17 respectively. These outer cylinder part 3, tank parts 4, 13 and flange parts 5, 14
Are arranged coaxially.

【0021】外筒部3とタンク部4,13との継ぎ目位
置には、ケーシング2内を入口側と出口側とで仕切る一
対のエンドプレート、即ち入口側エンドプレート9と出
口側エンドプレート18とが設けられる。これによりケ
ーシング2内には、入口側エンドプレート9の左側に入
口側ガス室7が、両エンドプレート9,18間に冷却水
(冷却液)を通過させるための水室8(冷却液室)が、
出口側エンドプレート18の右側に出口側ガス室19
が、それぞれ区画形成される。
At the joint position between the outer cylindrical portion 3 and the tank portions 4 and 13, a pair of end plates partitioning the inside of the casing 2 between the inlet side and the outlet side, that is, the inlet side end plate 9 and the outlet side end plate 18, Is provided. Thus, in the casing 2, an inlet gas chamber 7 is provided on the left side of the inlet end plate 9, and a water chamber 8 (coolant chamber) for passing cooling water (coolant) between the end plates 9 and 18. But,
An outlet side gas chamber 19 is provided on the right side of the outlet side end plate 18.
Are respectively formed.

【0022】ただし、この水室8内には2つの中間ガス
室20,21が区画形成され、これら中間ガス室20,
21により水室8は3つに分割されている。
However, two intermediate gas chambers 20, 21 are formed in the water chamber 8, and these two intermediate gas chambers 20, 21 are formed.
The water chamber 8 is divided into three by 21.

【0023】即ち、両エンドプレート9,18間に4枚
の中間プレート22,23,24,25が設けられ、こ
れら中間プレート22…が外筒部3内を仕切ることによ
り、ガス流れ方向上流側から順に第1水室26、第2水
室27、第3水室28が区画形成され、これら水室26
…間に第1中間ガス室20、第2中間ガス室21が区画
形成される。
That is, four intermediate plates 22, 23, 24, and 25 are provided between the end plates 9 and 18, and these intermediate plates 22 partition the inside of the outer cylinder portion 3 so that the upstream side in the gas flow direction. A first water chamber 26, a second water chamber 27, and a third water chamber 28 are formed in this order from
, A first intermediate gas chamber 20 and a second intermediate gas chamber 21 are defined between them.

【0024】このように、本クーラ1ではガス室と水室
とがガス流れ方向に沿って交互直列的に設けられる。
As described above, in the present cooler 1, the gas chamber and the water chamber are provided alternately in series along the gas flow direction.

【0025】各エンドプレート9…及び中間プレート2
2…はケーシング長手方向に対し垂直に配置される。ま
た各水室26…同士、或いは各中間ガス室20…同士
は、ケーシング長手方向の長さがそれぞれ等しくされ
る。さらに各水室26…は放熱面積を確保するため各中
間ガス室20…より長くされる。
Each end plate 9 and the intermediate plate 2
Are arranged perpendicular to the longitudinal direction of the casing. Each of the water chambers 26 or each of the intermediate gas chambers 20 has the same length in the casing longitudinal direction. Further, each of the water chambers 26 is made longer than each of the intermediate gas chambers 20 to secure a heat radiation area.

【0026】入口側ガス室7と第1中間ガス室20、第
1中間ガス室20と第2中間ガス室21、第2中間ガス
室21と出口側ガス室19は、それぞれ複数且つ同数ず
つの第1冷却管29、第2冷却管30、第3冷却管31
で連絡されている。これら冷却管29…は各プレート9
…に挿通固定され、各室同士を連通するようになってい
る。
The inlet-side gas chamber 7 and the first intermediate gas chamber 20, the first intermediate gas chamber 20 and the second intermediate gas chamber 21, the second intermediate gas chamber 21 and the outlet-side gas chamber 19 are plural and equal in number, respectively. First cooling pipe 29, second cooling pipe 30, third cooling pipe 31
Has been contacted. These cooling pipes 29 ...
... are fixed to each other so as to communicate with each other.

【0027】同様に、第1水室26と第2水室27、第
2水室27と第3水室28が、それぞれ連絡通路をなす
第1連絡管32、第2連絡管33で連絡され、互いに連
通されている。第1連絡管32は第1中間ガス室20内
を、第2連絡管33は第2中間ガス室21内をそれぞれ
通過される。これら連絡管32…は直管で、各冷却管2
9…と同方向に延出される。第1水室26の下部に冷却
水導入口12が、第3水室28の上部に冷却水導出口1
0が設けられる。これによって冷却水導入口12から第
1水室26に導入された冷却水が、第1連絡管32、第
2水室27、第2連絡管33、第3水室28を順に通じ
て冷却水導出口10から導出されるようになる。
Similarly, the first water chamber 26 and the second water chamber 27 are connected to each other, and the second water chamber 27 and the third water chamber 28 are connected to each other by a first communication pipe 32 and a second communication pipe 33 forming communication paths. Are communicated with each other. The first connecting pipe 32 passes through the first intermediate gas chamber 20, and the second connecting pipe 33 passes through the second intermediate gas chamber 21. These connecting pipes 32 are straight pipes, and each cooling pipe 2
9 ... are extended in the same direction. A cooling water inlet 12 is provided at a lower part of the first water chamber 26, and a cooling water outlet 1 is provided at an upper part of the third water chamber 28.
0 is provided. As a result, the cooling water introduced from the cooling water inlet 12 into the first water chamber 26 flows through the first connecting pipe 32, the second water chamber 27, the second connecting pipe 33, and the third water chamber 28 in this order. It is derived from the outlet 10.

【0028】これら冷却管29…と連絡管32…とは、
図3に示すように、互いに同一径とされると共に、合わ
せてケーシング2内全体に広がる千鳥配列とされる。た
だし第1及び第2連絡管32,33は、図中ハッチング
で示すように、最外周に 120°間隔で3本設けられ
るに過ぎず、図2に示すように、この位置の分は冷却管
29…が除かれている。このように連絡管32…の数が
少なく、連絡管32…の総断面積が冷却管29…の総断
面積に比べ小さいのは、冷却水の体積流量がEGRガス
の体積流量より少なくて済むからである。第1乃至第3
冷却管29…或いは第1乃至第2連絡管32…は、ケー
シング長手方向に沿ってそれぞれ直線的に配置される。
The cooling pipes 29 and the communication pipes 32 are:
As shown in FIG. 3, they have the same diameter as each other, and are staggered so as to spread over the entire casing 2 together. However, as shown by hatching in the figure, the first and second communication pipes 32 and 33 are provided only at the outermost periphery at intervals of 120 °, and as shown in FIG. 29 ... has been removed. The reason why the number of the connecting pipes 32 is small and the total cross-sectional area of the connecting pipes 32 is smaller than the total cross-sectional area of the cooling pipes 29 is that the volume flow rate of the cooling water is smaller than the volume flow rate of the EGR gas. Because. First to third
The cooling pipes 29 or the first and second communication pipes 32 are linearly arranged along the longitudinal direction of the casing.

【0029】さて、この構成においては、ガス導入口1
5から導入されたEGRガスが、入口側ガス室7内で拡
散して各第1冷却管29内に分配導入された後、各第1
冷却管29内を流通する。そして第1水室26内を通過
する際に最初の冷却がなされ、この後第1中間ガス室2
0内に放出、拡散される。そしてここで集合された後、
さらに次の各第2冷却管30内に分配導入される。次も
同様に第2水室27内での2回目の冷却、第2中間ガス
室21内への放出、第3水室28内での3回目の冷却、
出口側ガス室19への放出という行程を経た後、ガス導
出口16から導出される。
Now, in this configuration, the gas inlet 1
After the EGR gas introduced from 5 diffuses in the inlet side gas chamber 7 and is distributed and introduced into each first cooling pipe 29,
It flows through the cooling pipe 29. Then, first cooling is performed when passing through the first water chamber 26, and thereafter, the first intermediate gas chamber 2
It is released and diffused within zero. And after being assembled here,
Further, it is distributed and introduced into the next second cooling pipes 30. Next, similarly, the second cooling in the second water chamber 27, the discharge into the second intermediate gas chamber 21, the third cooling in the third water chamber 28,
After passing through the process of discharge to the outlet side gas chamber 19, the gas is drawn out from the gas outlet 16.

【0030】このように、本クーラでは、中間ガス室を
設けて冷却管へのガス分配導入を再度行うようにしたの
で、断面変化の場所を増やして乱流領域の増大を図り、
ガスからの放熱を活発化させ、クーラの冷却効率を向上
することができる。特に本実施形態では複数の中間ガス
室を設けたので、冷却管へのガス導入を複数回行え、冷
却効率をさらに向上できる。
As described above, in the present cooler, the intermediate gas chamber is provided, and the gas distribution and introduction to the cooling pipe are performed again.
Heat radiation from the gas is activated, and the cooling efficiency of the cooler can be improved. In particular, in the present embodiment, since a plurality of intermediate gas chambers are provided, gas can be introduced into the cooling pipe a plurality of times, and the cooling efficiency can be further improved.

【0031】また、中間プレート22…や連絡管32…
が冷却水に接触して冷却されるので、各中間ガス室20
…内においてもガスの冷却が行える。
Further, the intermediate plates 22 and the connecting pipes 32 are provided.
Is cooled by contact with the cooling water.
The gas can be cooled in the inside of.

【0032】なお、ここでは図を分かり易くするため、
ケーシング寸法や冷却管の配置を変えず連絡管32…を
追加しており、この分冷却管の本数が従来(図19〜2
1)より減少し、ガスの通路面積も減少している。しか
し、これにより圧力損失、放熱量増加等の問題が生じた
場合は、冷却管の本数や径の見直しにより対処可能であ
る。ただし、これでも解消されないときはケーシング拡
大、冷却管数増大等の対処が必要である。
Here, in order to make the figure easy to understand,
The communication pipes 32 are added without changing the dimensions of the casing and the arrangement of the cooling pipes, and the number of cooling pipes is reduced by the corresponding amount (FIGS. 19 to 2).
1) and the gas passage area is also reduced. However, when problems such as a pressure loss and an increase in the amount of heat radiation occur, this can be dealt with by reviewing the number and diameter of the cooling pipes. However, if this does not solve the problem, it is necessary to take measures such as enlarging the casing and increasing the number of cooling pipes.

【0033】[第2実施形態]図4、5、6、7は第2
実施形態に係るEGRクーラを示す。なお後述の実施形
態も同様だが、同一構成の部分については説明を省略す
る。本実施形態は第1実施形態に比べ、各冷却管29…
の本数と連絡管32…の配置を変えた点が異なる。
[Second Embodiment] FIGS. 4, 5, 6, and 7 show a second embodiment.
1 shows an EGR cooler according to an embodiment. The same applies to the embodiments described below, but the description of the same components will be omitted. This embodiment is different from the first embodiment in that each cooling pipe 29 ...
And the arrangement of the communication tubes 32 are different.

【0034】即ち、図1に示すように、第1実施形態で
は、第1及び第2連絡管32,33が直線的に配置され
ているため、第2水室27内で冷却水の軸方向成分が強
くなり、各第2冷却管30への当たりが弱くなる可能性
がある。また、第2連絡管33の中の1本が冷却水導出
口10の近傍に開口するため、第3水室28内でも第3
冷却管31への当たりが弱くなる可能性がある。
That is, as shown in FIG. 1, in the first embodiment, since the first and second communication pipes 32 and 33 are linearly arranged, the axial direction of the cooling water in the second water chamber 27 is increased. There is a possibility that the components become strong and the contact with each second cooling pipe 30 becomes weak. Also, since one of the second connecting pipes 33 opens near the cooling water outlet 10, the third water chamber 28 also has a third
The contact with the cooling pipe 31 may be weakened.

【0035】本実施形態では、図4、6、7に示すよう
に、第1及び第2連絡管32,33を同数としながら
も、3本まとめて互いに反対側となるよう配置してい
る。即ち、第1連絡管32は、ケーシング2内の上方且
つ最外周に3本並列され、第2連絡管33は、ケーシン
グ2内の下方且つ最外周に3本並列されている。これに
よりこれら連絡管32…と冷却水導入口12、冷却水導
出口10とがそれぞれ交互に反対側に配置されるように
なり、各水室26…内において、冷却水の流れを各冷却
管29…に直交する流れとし、冷却管29…に冷却水を
十分当てることができるようになる。これによってガス
の放熱を一層活発化でき、冷却効率も向上できるように
なる。
In the present embodiment, as shown in FIGS. 4, 6 and 7, the first and second connecting pipes 32 and 33 are arranged so as to be opposite to each other as a whole while having the same number. That is, three first communication pipes 32 are arranged in parallel in the upper and outermost periphery in the casing 2, and three second communication pipes 33 are arranged in parallel in the lower and outermost periphery in the casing 2. As a result, the connecting pipes 32 and the cooling water inlets 12 and the cooling water outlets 10 are alternately arranged on the opposite sides, respectively. In each of the water chambers 26. 29, so that the cooling water can be sufficiently applied to the cooling pipes 29. Thereby, the heat radiation of the gas can be further activated, and the cooling efficiency can be improved.

【0036】ただし、本実施形態では、図5に示すよう
に、第1及び第2連絡管32,33がある位置の各冷却
管29…が除かれ、冷却管29…の本数はさらに減少さ
れている。これによりガスの通路面積が減少し、圧力損
失等の問題が助長される可能性がある。
However, in the present embodiment, as shown in FIG. 5, the cooling pipes 29 where the first and second communication pipes 32 and 33 are located are removed, and the number of the cooling pipes 29 is further reduced. ing. As a result, the gas passage area is reduced, and problems such as pressure loss may be promoted.

【0037】よって、これを解決し得るのが次に示す第
3実施形態である。
Therefore, the third embodiment described below can solve this problem.

【0038】[第3実施形態]図8、9、10、11に
示す第3実施形態は以下のように構成される。即ち、第
1水室26及び第3水室28の上部にそれぞれ冷却水導
入口12及び冷却水導出口10が設けられ、第1及び第
2連絡管32,33がそれぞれケーシング2内の下方の
みに3本並列状態で配設されている。これら連絡管3
2,33のある位置を除き、ケーシング2内全体に第1
乃至第3冷却管29,30,31が千鳥配列される。そ
して第2水室27内に中間プレート34が追加される。
中間プレート34は第2水室27をそのケーシング軸方
向中間位置で仕切るよう配置されるが、その上部には開
口部35が設けられ、ここから冷却水の流通を許容する
ようになっている。開口部35はここでは中間プレート
34の一部を直線的に切り欠いて形成されるが、他の方
法、例えば穴の穿設によって形成しても構わない。
[Third Embodiment] A third embodiment shown in FIGS. 8, 9, 10 and 11 is configured as follows. That is, the cooling water inlet 12 and the cooling water outlet 10 are respectively provided above the first water chamber 26 and the third water chamber 28, and the first and second communication pipes 32 and 33 are respectively provided only in the lower part of the casing 2. Are arranged in parallel. These connecting pipes 3
The first inside the casing 2 except for the positions where
The third cooling pipes 29, 30, 31 are arranged in a staggered manner. Then, an intermediate plate 34 is added in the second water chamber 27.
The intermediate plate 34 is disposed so as to partition the second water chamber 27 at an intermediate position in the axial direction of the casing. An opening 35 is provided at an upper portion of the intermediate plate 34 so as to allow the cooling water to flow therethrough. The opening 35 is formed by cutting a part of the intermediate plate 34 straight, but may be formed by another method, for example, by drilling a hole.

【0039】これによると、第1実施形態と同数の冷却
管29…の本数が確保され、ガスの通路面積減少の問題
は防げる。そして中間プレート34によって、第1連絡
管32から出てきた冷却水を直接第2連絡管33に向か
わせず、第2冷却管30と直交する方向に蛇行させるこ
とができ、冷却管30に冷却水を十分当てることができ
る。勿論、第1水室26と第3水室28においても冷却
水の入口と出口とが反対側に形成され、各冷却管29,
31と直交する流れにできる。なお第1水室26又は第
3水室28に中間プレートを設ければ、冷却水導入口1
2又は導出口10の位置ないし向きを変えられ、これら
向きを異なる方向とすることも可能である。
According to this, the same number of cooling pipes 29 as in the first embodiment is ensured, and the problem of reducing the gas passage area can be prevented. The cooling water flowing out of the first connecting pipe 32 can be meandered in the direction orthogonal to the second cooling pipe 30 without being directly directed to the second connecting pipe 33 by the intermediate plate 34. We can pour water enough. Of course, in the first water chamber 26 and the third water chamber 28 as well, the inlet and outlet of the cooling water are formed on opposite sides, and the cooling pipes 29,
The flow can be orthogonal to 31. If an intermediate plate is provided in the first water chamber 26 or the third water chamber 28, the cooling water inlet 1
The position or direction of the outlet 2 or the outlet 10 can be changed, and these directions can be made different directions.

【0040】ただし、この実施形態では中間プレートの
数が増え部品点数が増加する欠点がある。
However, this embodiment has a disadvantage that the number of intermediate plates increases and the number of parts increases.

【0041】[第4実施形態]図12、13、14、1
5に示すように、この実施形態では第2実施形態(図4
〜7)同様に第1乃至第3冷却管29…が配置され、各
水室26…には上部及び下部に3本分の空きスペースが
ある。よって上流側の上部の空きスペースから下流側の
下部の空きスペースを連絡するように、クランク状の第
1及び第2連絡管32,33が各3本ずつ配設されてい
る。
[Fourth Embodiment] FIGS. 12, 13, 14, 1
As shown in FIG. 5, in this embodiment, the second embodiment (FIG.
7) Similarly, the first to third cooling pipes 29 are arranged, and each of the water chambers 26 has three empty spaces in the upper part and the lower part. Therefore, three crank-shaped first and second connecting pipes 32 and 33 are provided so as to connect the upper empty space on the upstream side to the empty space on the lower downstream side.

【0042】本実施形態では、第1及び第2中間ガス室
20,21内で、第1及び第2連絡管32,33がガス
流れ方向と直交する方向に延出される。よってこれらガ
ス室20,21内におけるガスからの放熱が促進され、
冷却性能が向上する。
In this embodiment, the first and second connecting pipes 32 and 33 extend in the first and second intermediate gas chambers 20 and 21 in a direction orthogonal to the gas flow direction. Therefore, heat radiation from the gas in these gas chambers 20 and 21 is promoted,
Cooling performance is improved.

【0043】また第2実施形態と同数の部品点数である
ので、その実施形態に対する部品点数の増加はない。し
かし、第1及び第2連絡管32,33を作る際、パイプ
の曲げ加工等が必要で、これの組み付けも容易ではない
ため、製造コストの上昇は免れられない。さらに冷却管
29…の本数も従来よりは少ないので圧力損失等の問題
が解決されない。
Since the number of components is the same as that of the second embodiment, there is no increase in the number of components compared to the second embodiment. However, when the first and second connecting pipes 32 and 33 are formed, bending of the pipes and the like are required, and the assembling of the pipes is not easy, so that an increase in manufacturing cost is inevitable. Further, since the number of cooling pipes 29 is smaller than in the conventional case, problems such as pressure loss cannot be solved.

【0044】[第5実施形態]図16、17、18に示
すように、この実施形態では前記実施形態と異なりケー
シング2内が中間プレート22…では完全に仕切られて
ない。即ち、水室8においては、そのガス入口側の下部
に冷却水導入口12が、ガス出口側の上部に冷却水導出
口10が設けられる。これによって冷却水は、主の流れ
としてはガス流れ方向と同じ方向に流れることとなる。
そして冷却水流れ方向上流側から下流側にかけて、水室
8内を仕切るように4枚の中間プレート22,23,2
4,25が設けられ、前者2枚と後者2枚とがそれぞれ
筒状プレート36,37で連結され、これらプレートに
よって第1中間ガス室20と第2中間ガス室21とが区
画形成されている。
[Fifth Embodiment] As shown in FIGS. 16, 17, and 18, in this embodiment, unlike the previous embodiment, the inside of the casing 2 is not completely partitioned by the intermediate plates 22. That is, in the water chamber 8, a cooling water inlet 12 is provided at a lower portion on the gas inlet side, and a cooling water outlet 10 is provided at an upper portion on the gas outlet side. As a result, the cooling water flows as the main flow in the same direction as the gas flow direction.
The four intermediate plates 22, 23, and 2 partition the inside of the water chamber 8 from the upstream side to the downstream side in the cooling water flow direction.
4 and 25 are provided, the former two sheets and the latter two sheets are connected by cylindrical plates 36 and 37, respectively, and the first intermediate gas chamber 20 and the second intermediate gas chamber 21 are defined by these plates. .

【0045】各ガス室20,21をなす中間プレート2
2…のうち、上流側のものは上部に開口部38を、下流
側のものは下部に開口部39をそれぞれ有している。こ
れら開口部38,39は各プレートの一部を直線的に切
り欠いてなる。開口部38,39の部分を除き、各中間
プレート22…はケーシング内壁に固着されてケーシン
グ内を仕切る。一方筒状プレート36,37は、図1
7、18に示すように(37のみ図示)円筒状に形成さ
れると共に、隣り合う中間プレート22…の直線状切欠
端縁間の距離に等しい外径を有する。これにより、筒状
プレート36,37の外周全周に上記連絡管32…に代
わる第1及び第2連絡通路40,41が区画形成され
る。そして各中間ガス室20…によって水室8が第1水
室26、第2水室27、第3水室28に分割され、第1
水室26と第2水室27が第1連絡通路40で、第2水
室27と第3水室28が第2連絡通路41で連絡ないし
連通されることとなる。
Intermediate plate 2 forming each gas chamber 20, 21
Of the two, the upstream one has an opening 38 at the top, and the downstream one has an opening 39 at the bottom. These openings 38 and 39 are formed by linearly cutting a part of each plate. Except for the openings 38 and 39, the intermediate plates 22 are fixed to the inner wall of the casing to partition the inside of the casing. On the other hand, the cylindrical plates 36 and 37 are
As shown in FIGS. 7 and 18 (only 37 is shown), it is formed in a cylindrical shape and has an outer diameter equal to the distance between the linear cut edges of the adjacent intermediate plates 22. As a result, first and second communication passages 40 and 41 are formed around the entire circumference of the cylindrical plates 36 and 37 in place of the communication pipes 32. The water chamber 8 is divided into a first water chamber 26, a second water chamber 27, and a third water chamber 28 by the intermediate gas chambers 20.
The water chamber 26 and the second water chamber 27 are communicated or communicated by the first communication passage 40, and the second water chamber 27 and the third water chamber 28 are communicated or communicated by the second communication passage 41.

【0046】この構成では、筒状プレート36,37の
径方向内側の範囲内において、従来(図19〜21参
照)と同数の冷却管29,30,31を配設できる。よ
ってケーシング外径が多少大きくなるものの、ガス通路
面積を減少させずに済み、圧力損失等の問題は招かずに
済む。
In this configuration, the same number of cooling pipes 29, 30, and 31 as in the conventional case (see FIGS. 19 to 21) can be provided within a range radially inside the cylindrical plates 36 and 37. Therefore, although the casing outer diameter is slightly increased, the gas passage area does not need to be reduced, and problems such as pressure loss do not occur.

【0047】また、第1水室26から第2水室27(第
2水室27から第3水室28)に至る冷却水の流れは、
上部の開口部38から第1連絡通路40(第2連絡通路
41)に入り、下部の開口部39から出ていく流れとな
る。第1水室27には下部の冷却水導入口12から冷却
水が入り、第2水室28では上部の冷却水導出口10か
ら冷却水が出て行くので、結局、各水室26…内の流れ
が下方から上方に至る流れ即ち各冷却管29…に直交す
る流れとなる。これによりガスからの放熱を促進し、ク
ーラ冷却効率を向上できる。
The flow of the cooling water from the first water chamber 26 to the second water chamber 27 (from the second water chamber 27 to the third water chamber 28) is as follows.
The flow enters the first communication passage 40 (the second communication passage 41) from the upper opening 38 and exits from the lower opening 39. Since the cooling water enters the first water chamber 27 from the lower cooling water inlet 12 and the second water chamber 28, the cooling water exits from the upper cooling water outlet 10, so that each of the water chambers 26. Is a flow from the bottom to the top, that is, a flow orthogonal to each cooling pipe 29. Thereby, heat radiation from the gas is promoted, and the cooler cooling efficiency can be improved.

【0048】以上の説明から分かるように、本発明によ
れば、EGRガスの乱流領域を増大して放熱量を増し、
クーラ冷却効率を向上できる。そしてEGRガス温度を
低減して吸気温度低下によるNOx低減を達成できると
共に、EGRガスの体積減少分新気量を増し、スモーク
低減も図れる。
As can be seen from the above description, according to the present invention, the turbulence region of the EGR gas is increased to increase the heat radiation amount,
Cooler cooling efficiency can be improved. The EGR gas temperature can be reduced to achieve NOx reduction due to a decrease in intake air temperature, and the amount of fresh air can be increased by the volume reduction of the EGR gas to reduce smoke.

【0049】また、本発明は冷却管を長手方向に分割し
た格好となるので、それぞれに対し好ましい特性を与
え、放熱性向上に大いに貢献できる。例えば、入口側エ
ンドプレート9の近傍では流入ガスが高温、高流量のと
き冷却水の沸騰が発生し、熱伝達が悪化する場合があ
る。よってこの場合はガス入口側の冷却管を厚肉化した
りして、放熱を制限し、沸騰の未然防止を図ることがで
きる。逆にこれより下流側の冷却管は、薄肉化により高
い放熱性を確保できる。こうしてEGRガスの流量、温
度制限が緩和され、良好なエンジン性能を確保できるよ
うになる。
Further, since the present invention has a shape in which the cooling pipe is divided in the longitudinal direction, preferable characteristics are given to each of them, and it is possible to greatly contribute to improvement of heat radiation. For example, when the inflow gas has a high temperature and a high flow rate in the vicinity of the inlet-side end plate 9, the cooling water may boil and the heat transfer may be deteriorated. Therefore, in this case, the cooling pipe on the gas inlet side can be made thicker to limit heat radiation and prevent boiling before it occurs. Conversely, the cooling pipe on the downstream side can secure high heat dissipation by reducing the thickness. In this way, the restrictions on the flow rate and temperature of the EGR gas are relaxed, and good engine performance can be secured.

【0050】なお、上記実施形態では入口側エンドプレ
ート9、出口側エンドプレート18、各中間プレート2
2…、冷却水導入口12及び導出口10、連絡管32…
並びに開口部35…が、本発明の案内手段を構成する。
In the above embodiment, the inlet end plate 9, the outlet end plate 18, the intermediate plates 2
2, ... cooling water inlet 12 and outlet 10, connecting pipe 32 ...
And the openings 35 constitute the guide means of the present invention.

【0051】本発明は上記実施形態に限られず種々の実
施形態が可能である。例えば中間ガス室や水室の数、長
さ、配置等を変更したり、冷却水流れ方向と冷却管の交
差角を90°(直交)以外としても構わない。これは連
絡管と冷却管の関係についても同様のことがいえる。ま
た、水室内にバッフルプレートを追加して冷却水をさら
に蛇行させたり、エンジン冷却水以外の液体を冷却液に
用いることも可能である。
The present invention is not limited to the above embodiment, and various embodiments are possible. For example, the number, length, arrangement, and the like of the intermediate gas chambers and water chambers may be changed, and the intersection angle between the cooling water flow direction and the cooling pipe may be other than 90 ° (orthogonal). The same can be said for the relationship between the communication pipe and the cooling pipe. It is also possible to add a baffle plate in the water chamber to further meander the cooling water, or to use a liquid other than the engine cooling water as the cooling liquid.

【0052】[0052]

【発明の効果】以上要するに本発明によれば以下の如き
優れた効果が発揮される。
In summary, according to the present invention, the following excellent effects are exhibited.

【0053】(1)EGRガスの乱流領域を増大して放
熱量を増し、クーラ冷却効率を向上できる。
(1) The turbulence region of the EGR gas is increased to increase the amount of heat radiation, and the cooler cooling efficiency can be improved.

【0054】(2)中間ガス室内でもガスの冷却が好適
に行え、放熱量を増大できる。
(2) The gas can be suitably cooled even in the intermediate gas chamber, and the amount of heat radiation can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施形態に係るEGRクーラの縦断面図で
ある。
FIG. 1 is a longitudinal sectional view of an EGR cooler according to a first embodiment.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1のB−B断面図である。FIG. 3 is a sectional view taken along line BB of FIG. 1;

【図4】第2実施形態に係るEGRクーラの縦断面図で
ある。
FIG. 4 is a longitudinal sectional view of an EGR cooler according to a second embodiment.

【図5】図4のC−C断面図である。FIG. 5 is a sectional view taken along line CC of FIG. 4;

【図6】図4のD−D断面図である。FIG. 6 is a sectional view taken along line DD of FIG. 4;

【図7】図4のE−E断面図である。FIG. 7 is a sectional view taken along the line EE of FIG. 4;

【図8】第3実施形態に係るEGRクーラの縦断面図で
ある。
FIG. 8 is a longitudinal sectional view of an EGR cooler according to a third embodiment.

【図9】図8のF−F断面図である。FIG. 9 is a sectional view taken along line FF of FIG. 8;

【図10】図8のG−G断面図である。FIG. 10 is a sectional view taken along line GG of FIG. 8;

【図11】図8のH−H断面図である。FIG. 11 is a sectional view taken along the line HH in FIG. 8;

【図12】第4実施形態に係るEGRクーラの縦断面図
である。
FIG. 12 is a longitudinal sectional view of an EGR cooler according to a fourth embodiment.

【図13】図12のI−I断面図である。FIG. 13 is a sectional view taken along the line II of FIG. 12;

【図14】図12のJ−J断面図である。FIG. 14 is a sectional view taken along the line JJ of FIG. 12;

【図15】図12のK−K断面図である。FIG. 15 is a sectional view taken along line KK of FIG.

【図16】第5実施形態に係るEGRクーラの縦断面図
である。
FIG. 16 is a longitudinal sectional view of an EGR cooler according to a fifth embodiment.

【図17】図16のL−L断面図である。FIG. 17 is a sectional view taken along line LL of FIG. 16;

【図18】図16のM−M断面図である。FIG. 18 is a sectional view taken along line MM of FIG. 16;

【図19】従来のEGRクーラを示す縦断面図である。FIG. 19 is a longitudinal sectional view showing a conventional EGR cooler.

【図20】図19の右側面図である。FIG. 20 is a right side view of FIG. 19;

【図21】図19のX−X断面図である。21 is a sectional view taken along line XX of FIG.

【図22】EGRクーラが適用されたエンジンの構成図
である。
FIG. 22 is a configuration diagram of an engine to which an EGR cooler is applied.

【符号の説明】[Explanation of symbols]

1 EGRクーラ 2 ケーシング 7 入口側ガス室 8 水室 9 入口側エンドプレート 10 冷却水導出口 12 冷却水導入口 18 出口側エンドプレート 19 出口側ガス室 20 第1中間ガス室 21 第2中間ガス室 22,23,24,25 中間プレート 26 第1水室 27 第2水室 28 第3水室 29 第1冷却管 30 第2冷却管 31 第3冷却管 32 第1連絡管 33 第2連絡管 35,38,39 開口部 36,37 筒状プレート 40 第1連絡通路 41 第2連絡通路 Reference Signs List 1 EGR cooler 2 Casing 7 Inlet gas chamber 8 Water chamber 9 Inlet end plate 10 Cooling water outlet 12 Cooling water inlet 18 Outlet end plate 19 Outlet gas chamber 20 First intermediate gas chamber 21 Second intermediate gas chamber 22, 23, 24, 25 Intermediate plate 26 First water chamber 27 Second water chamber 28 Third water chamber 29 First cooling pipe 30 Second cooling pipe 31 Third cooling pipe 32 First connecting pipe 33 Second connecting pipe 35 , 38, 39 Opening 36, 37 Tubular plate 40 First communication passage 41 Second communication passage

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ケーシング内を仕切って入口側ガス室、
出口側ガス室及び冷却液室を区画し、上記冷却液室内に
中間ガス室を区画形成すると共に、入口側ガス室と中間
ガス室、中間ガス室と出口側ガス室をそれぞれ冷却管で
連絡したことを特徴とするEGRクーラ。
1. An inlet-side gas chamber which partitions the inside of a casing,
An outlet gas chamber and a cooling liquid chamber are defined, and an intermediate gas chamber is formed in the cooling liquid chamber, and the inlet gas chamber and the intermediate gas chamber, and the intermediate gas chamber and the outlet gas chamber are connected by cooling pipes. An EGR cooler, characterized in that:
【請求項2】 上記中間ガス室が複数設けられ、これら
中間ガス室同士が別の冷却管で連絡された請求項1記載
のEGRクーラ。
2. The EGR cooler according to claim 1, wherein a plurality of the intermediate gas chambers are provided, and the intermediate gas chambers are connected to each other by another cooling pipe.
【請求項3】 上記中間ガス室が上記冷却液室を分割
し、これら分割された冷却液室同士が連絡通路で連絡さ
れた請求項1又は2記載のEGRクーラ。
3. The EGR cooler according to claim 1, wherein the intermediate gas chamber divides the cooling liquid chamber, and the divided cooling liquid chambers are connected to each other by a communication passage.
【請求項4】 上記連絡通路が中間ガス室内を通過する
連絡管で形成され、該連絡管が冷却管と交差する方向に
延出された請求項3記載のEGRクーラ。
4. The EGR cooler according to claim 3, wherein the communication passage is formed by a communication pipe passing through the intermediate gas chamber, and the communication pipe extends in a direction crossing the cooling pipe.
【請求項5】 上記冷却液室内の冷却液を冷却管と交差
する方向に流すための案内手段が設けられた請求項1乃
至4いずれかに記載のEGRクーラ。
5. The EGR cooler according to claim 1, further comprising guide means for flowing the coolant in the coolant chamber in a direction intersecting with the cooling pipe.
JP08676498A 1998-03-31 1998-03-31 EGR cooler Expired - Fee Related JP3783395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08676498A JP3783395B2 (en) 1998-03-31 1998-03-31 EGR cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08676498A JP3783395B2 (en) 1998-03-31 1998-03-31 EGR cooler

Publications (2)

Publication Number Publication Date
JPH11287571A true JPH11287571A (en) 1999-10-19
JP3783395B2 JP3783395B2 (en) 2006-06-07

Family

ID=13895824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08676498A Expired - Fee Related JP3783395B2 (en) 1998-03-31 1998-03-31 EGR cooler

Country Status (1)

Country Link
JP (1) JP3783395B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201923A (en) * 2002-01-07 2003-07-18 Denso Corp Exhaust heat exchanger
WO2004076951A1 (en) * 2003-02-25 2004-09-10 Behr Gmbh & Co. Kg Heat-exchanger device and method for conditioning a working medium
KR100679002B1 (en) 2003-06-11 2007-02-07 우수이 고쿠사이 산교 가부시키가이샤 Gas cooling device
JP2007155158A (en) * 2005-12-01 2007-06-21 T Rad Co Ltd Connecting structure of heat exchanger
US7527088B2 (en) 2001-07-10 2009-05-05 Denso Corporation Exhaust gas heat exchanger
WO2009131646A1 (en) * 2008-04-21 2009-10-29 Mikutay Corporation Tube for a heat exchanger
KR100994378B1 (en) 2008-05-02 2010-11-16 지엠대우오토앤테크놀로지주식회사 Expansion Gas tube type EGR Cooler
US8307886B2 (en) 2008-04-21 2012-11-13 Mikutay Corporation Heat exchanging device and method of making same
CN102777236A (en) * 2012-08-24 2012-11-14 重庆海特汽车排气系统有限公司 Cooling device for vehicle gas discharge pipeline
US8393385B2 (en) 2008-04-21 2013-03-12 Mikutay Corporation Heat exchanging apparatus and method of making same
US8584741B2 (en) 2008-04-21 2013-11-19 Mikutay Corporation Heat exchanger with heat exchange chambers utilizing protrusion and medium directing members and medium directing channels
JP2015194324A (en) * 2014-03-27 2015-11-05 株式会社ティラド Header plate-less heat exchanger
US10208714B2 (en) 2016-03-31 2019-02-19 Mikutay Corporation Heat exchanger utilized as an EGR cooler in a gas recirculation system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7527088B2 (en) 2001-07-10 2009-05-05 Denso Corporation Exhaust gas heat exchanger
JP2003201923A (en) * 2002-01-07 2003-07-18 Denso Corp Exhaust heat exchanger
WO2004076951A1 (en) * 2003-02-25 2004-09-10 Behr Gmbh & Co. Kg Heat-exchanger device and method for conditioning a working medium
KR100679002B1 (en) 2003-06-11 2007-02-07 우수이 고쿠사이 산교 가부시키가이샤 Gas cooling device
JP2007155158A (en) * 2005-12-01 2007-06-21 T Rad Co Ltd Connecting structure of heat exchanger
US8393385B2 (en) 2008-04-21 2013-03-12 Mikutay Corporation Heat exchanging apparatus and method of making same
WO2009131646A1 (en) * 2008-04-21 2009-10-29 Mikutay Corporation Tube for a heat exchanger
US7987900B2 (en) 2008-04-21 2011-08-02 Mikutay Corporation Heat exchanger with heat exchange chambers utilizing respective medium directing members
US8307886B2 (en) 2008-04-21 2012-11-13 Mikutay Corporation Heat exchanging device and method of making same
US8584741B2 (en) 2008-04-21 2013-11-19 Mikutay Corporation Heat exchanger with heat exchange chambers utilizing protrusion and medium directing members and medium directing channels
RU2470245C2 (en) * 2008-04-21 2012-12-20 Микутай Корпорейшн Heat exchanger with heat exchange chambers in which corresponding medium direction components are used
KR100994378B1 (en) 2008-05-02 2010-11-16 지엠대우오토앤테크놀로지주식회사 Expansion Gas tube type EGR Cooler
CN102777236A (en) * 2012-08-24 2012-11-14 重庆海特汽车排气系统有限公司 Cooling device for vehicle gas discharge pipeline
JP2015194324A (en) * 2014-03-27 2015-11-05 株式会社ティラド Header plate-less heat exchanger
US10208714B2 (en) 2016-03-31 2019-02-19 Mikutay Corporation Heat exchanger utilized as an EGR cooler in a gas recirculation system

Also Published As

Publication number Publication date
JP3783395B2 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
US8069905B2 (en) EGR gas cooling device
KR101455881B1 (en) Multifluid two-dimensional heat exchanger
EP2096294A2 (en) Exhaust gas heat exchanger
US20090050302A1 (en) Cooling device for an internal combustion engine
US20090260786A1 (en) U-flow heat exchanger
JPH11287571A (en) Egr cooler
BRPI0620525A2 (en) egr exhaust three way heat exchanger system
JP5579428B2 (en) Exhaust gas cooler
GB2299397A (en) Plate heat exchanger
US7774937B2 (en) Heat exchanger with divided coolant chamber
JP2001027157A (en) Strut for egr cooler
JPH1113551A (en) Egr cooler
JP4247942B2 (en) EGR gas cooling device
JP2003090693A (en) Exhaust gas heat exchanger
JPH11303688A (en) Egr cooler
JPH1113549A (en) Egr cooler
JPH11280564A (en) Egr cooler
JPH1113550A (en) Egr cooler
JPH11193992A (en) Multitubular egr gas cooling device
JPH11183062A (en) Double piped heat exchanger
JP2000265908A (en) Egr gas cooling device
JPH11287588A (en) Egr cooler
JP2000038963A (en) Egr cooler
JP3958302B2 (en) Heat exchanger
JP2004077024A (en) Exhaust heat exchanger device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060306

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees