JP3958302B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP3958302B2
JP3958302B2 JP2004133885A JP2004133885A JP3958302B2 JP 3958302 B2 JP3958302 B2 JP 3958302B2 JP 2004133885 A JP2004133885 A JP 2004133885A JP 2004133885 A JP2004133885 A JP 2004133885A JP 3958302 B2 JP3958302 B2 JP 3958302B2
Authority
JP
Japan
Prior art keywords
shell
pipe
heat exchanger
coolant
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004133885A
Other languages
Japanese (ja)
Other versions
JP2005315507A (en
Inventor
晋 古財
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Radiator Mfg Co Ltd
Original Assignee
Tokyo Radiator Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Radiator Mfg Co Ltd filed Critical Tokyo Radiator Mfg Co Ltd
Priority to JP2004133885A priority Critical patent/JP3958302B2/en
Publication of JP2005315507A publication Critical patent/JP2005315507A/en
Application granted granted Critical
Publication of JP3958302B2 publication Critical patent/JP3958302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

本発明は、エンジンのEGRシステム等に用いられる熱交換器に関する。   The present invention relates to a heat exchanger used in an engine EGR system or the like.

熱交換器は、例えばEGR(排気再循環)システムにおいて排気ガスの冷却装置として用いられている。このEGRシステムでは、エンジンの排気系のエキゾーストマニホールドから排出される排気ガスの一部を熱交換器(EGRクーラ)で冷却し、この排気ガスを吸気系の混合気に加える。   The heat exchanger is used as an exhaust gas cooling device in, for example, an EGR (exhaust gas recirculation) system. In this EGR system, a part of the exhaust gas discharged from the exhaust manifold of the engine exhaust system is cooled by a heat exchanger (EGR cooler), and this exhaust gas is added to the air-fuel mixture in the intake system.

上記熱交換器1は、図11に示すように、円筒状のシェル2の両端部にそれぞれヘッダー4,5が設けられ、またシェル2の一端部側には冷却液13(冷却水)の流入口6が、他端部側には冷却液の流出口7が設けられている。そして、流入口6及び流出口7には、それぞれ冷却液の流路を形成するエルボパイプ14,15が連結されている。これらエルボパイプ14,15は、シェル2との連結部の近傍が90°に屈曲され、エンジンルームのスペース上の問題等で、配管がシェル2の近傍を沿うように形成されている。   As shown in FIG. 11, the heat exchanger 1 is provided with headers 4 and 5 at both ends of a cylindrical shell 2, and a flow of a coolant 13 (cooling water) flows at one end of the shell 2. The inlet 6 is provided with a coolant outlet 7 on the other end side. The inlet 6 and the outlet 7 are connected to elbow pipes 14 and 15 that form a coolant flow path, respectively. These elbow pipes 14 and 15 are bent at 90 ° in the vicinity of the connecting portion with the shell 2, and the piping is formed along the vicinity of the shell 2 due to a problem in the space of the engine room.

図12に示すように、シェル2内には複数のチューブ8が配置され、これらチューブ8の端部は、シェル2の各端部を閉塞するエンドプレート10,11に固定され、かつエンドプレートに設けた貫通口から突出した状態である。上記ヘッダー4から流入した排気ガス12は、チューブ8内を通過し、その間に冷却されてヘッダー5から流出する。EGRシステムでは、混合気に上記冷却した排気ガス12を加えることで吸入空気に含まれる酸素の量をコントロールし、排気ガス中のNOxの量を低減している。   As shown in FIG. 12, a plurality of tubes 8 are arranged in the shell 2, and the end portions of these tubes 8 are fixed to end plates 10 and 11 that close the respective end portions of the shell 2, and are attached to the end plates. It is the state which protruded from the provided through-hole. The exhaust gas 12 flowing in from the header 4 passes through the tube 8, is cooled during that time, and flows out from the header 5. In the EGR system, the amount of oxygen contained in the intake air is controlled by adding the cooled exhaust gas 12 to the air-fuel mixture, and the amount of NOx in the exhaust gas is reduced.

ここで、熱交換器1におけるガスの冷却が不十分であると、吸気系に戻された排気ガスの温度が高くなり、そのため体積が膨張してガスの濃度が希薄となり必要な排気ガスの量が確保できない。一般に、熱交換器1における放熱量(冷却量)と流通抵抗(排気ガスの圧力損失)とは、正比例の関係にある。ガスの冷却を効率よく行う技術として、特許文献1〜3などに記載の発明が開示されている。特許文献1の発明は、流体供給路を、流体経路の垂直断面の接線に対応した位置に配置し、シェル内に渦流や旋回流の流れを形成し冷却水のよどみを阻止し冷却を効率的に行うようにしたものである。   Here, if the cooling of the gas in the heat exchanger 1 is insufficient, the temperature of the exhaust gas returned to the intake system becomes high, so that the volume expands and the gas concentration becomes lean, and the amount of exhaust gas required. Cannot be secured. In general, the heat release amount (cooling amount) and the flow resistance (exhaust gas pressure loss) in the heat exchanger 1 are in a directly proportional relationship. As techniques for efficiently cooling the gas, the inventions described in Patent Documents 1 to 3 are disclosed. In the invention of Patent Document 1, the fluid supply path is arranged at a position corresponding to the tangent of the vertical cross section of the fluid path, and a vortex or swirl flow is formed in the shell to prevent stagnation of the cooling water, thereby efficiently cooling. This is what I did.

特開2003−83174号公報JP 2003-83174 A 特開2000−292089号公報JP 2000-292089 A 特開2000−266494号公報JP 2000-266494 A

さて、上記シェル&チューブ式(シェル2内にチューブ8が内蔵)の高温ガスのEGRクーラは、冷却液が少ないと局部的な沸騰が起り、またガス温度が高温である為、チューブのダメージ等、耐久性への影響が懸念される。一方、車両用の冷却器では差圧によって冷却液の流通を確保する必要があり、EGRクーラの冷却液の流通抵抗を下げることは重要な課題である。   Now, the above-mentioned EGR cooler of high-temperature gas of the shell & tube type (in which the tube 8 is built in the shell 2) causes local boiling when there is little coolant, and because the gas temperature is high, damage of the tube, etc. There are concerns about the impact on durability. On the other hand, in the cooler for vehicles, it is necessary to ensure the circulation of the coolant by the differential pressure, and it is an important issue to reduce the flow resistance of the coolant of the EGR cooler.

また、ディーゼルの排気ガス規制が強化されるに従って、EGRガス流量や要求される放熱量も大きくなる。このためシェル径の増大やシェル内のチューブ本数を増やすなどの対応が図られているが、この場合、シェル内のチューブ密度が増加することとなるので、冷却液の抵抗増加を抑えることが課題となる。   Further, as diesel exhaust gas regulations are strengthened, the EGR gas flow rate and the required heat dissipation amount also increase. For this reason, measures such as increasing the shell diameter and increasing the number of tubes in the shell have been attempted, but in this case, the tube density in the shell will increase, so it is a problem to suppress an increase in the resistance of the coolant. It becomes.

特に、エンジンルームではスペース上の問題から、配管に際しては90°等に屈曲したエルボパイプを用いて機器の近傍を沿わせる構造を採ることが多く、またパイプ径も大きく取れないため、冷却液の流通に対する抵抗が増大し、このため必要な冷却液の流量が確保できないなどの問題が起きている。   Especially in the engine room, due to space problems, it is often the case that the elbow pipe bent at 90 ° is used for piping, so that the vicinity of the equipment is often used and the pipe diameter cannot be made large. As a result, there is a problem that a necessary flow rate of the coolant cannot be secured.

本発明は、上記問題点に鑑みてなされたものであり、冷却液の抵抗の低減により冷却効率に優れ、また省スペース化にも優れた熱交換器を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a heat exchanger that is excellent in cooling efficiency and space saving due to reduction in resistance of the coolant.

以上の技術的課題を解決するため、本発明に係る熱交換器は、図1及び図2に示すように、内部で熱交換が行われる筒状のシェル22と、このシェルの各端部側にそれぞれ設けられ、ガスの入口部又は出口部が形成されたヘッダー24,25と、上記シェルと上記各ヘッダーとの間に介在するエンドプレート30,31と、これらエンドプレート間に、端部が各エンドプレートを貫通して設けられる複数のチューブ28と、流体液が通過するパイプ34,35と、を有し、上記エンドプレート間のシェルの表面部に設けられた流体液の流入口26又は流出口27に、上記パイプよりも内径を拡大した拡大室部32,33を連結させ、この拡大室部に上記パイプを連通した構成である。   In order to solve the above technical problem, as shown in FIGS. 1 and 2, the heat exchanger according to the present invention includes a cylindrical shell 22 in which heat is exchanged internally and each end side of the shell. Headers 24 and 25 having gas inlets or outlets formed therein, end plates 30 and 31 interposed between the shell and the headers, and end portions between the end plates. A plurality of tubes 28 provided through each end plate, and pipes 34 and 35 through which fluid liquid passes, and a fluid liquid inlet 26 provided on a surface portion of the shell between the end plates or The expansion chamber portions 32 and 33 having an inner diameter larger than that of the pipe are connected to the outlet 27, and the pipe is communicated with the expansion chamber portion.

また本発明に係る熱交換器は、上記パイプの途中を屈曲形成し、この屈曲部位より先の部分は上記シェルの表面とは略一定間隔を維持する状態に配設した構成である。また、上記拡大室部の先端部に上記パイプを横向きに連通し、このパイプを上記シェルの表面とは略一定間隔を維持する状態に配設した構成である。   In addition, the heat exchanger according to the present invention has a configuration in which the middle of the pipe is bent, and the portion beyond the bent portion is disposed so as to maintain a substantially constant distance from the surface of the shell. In addition, the pipe communicates with the front end of the expansion chamber sideways, and the pipe is arranged in a state of maintaining a substantially constant distance from the surface of the shell.

また本発明に係る熱交換器は、上記流入口及び流出口を円形に形成し、これらの径を円管状に形成した上記パイプの内径の1.3倍以上としたものである。さらに、上記流入口及び流出口を、上記シェルの最も外側に配置される上記チューブ同士の中央部に設けたものである。   In the heat exchanger according to the present invention, the inflow port and the outflow port are formed in a circular shape, and the diameter thereof is 1.3 times or more the inner diameter of the pipe formed in a circular tube shape. Furthermore, the said inlet and outlet are provided in the center part of the said tubes arrange | positioned on the outermost side of the said shell.

また本発明に係る熱交換器は、図8及び図9に示すように、内部で熱交換が行われる筒状のシェル23と、このシェルの各端部側に設けられガスの入口部又は出口部が形成されたヘッダー24,25と、上記シェルと上記各ヘッダーとの間に介在するエンドプレート30,31と、これらエンドプレート間に、端部が各エンドプレートを貫通して設けられる複数のチューブ28と、流体液が通過するパイプ62,63と、を有し、上記エンドプレート間のシェルの表面部に設けられた流体液の流入口60又は流出口61に、ここに連結させる上記パイプの開口部を斜め断面状に形成し、このパイプを上記シェルの面に対して傾斜させて取り付けた構成である。   Further, as shown in FIGS. 8 and 9, the heat exchanger according to the present invention has a cylindrical shell 23 in which heat is exchanged, and a gas inlet or outlet provided at each end of the shell. Headers 24 and 25 having portions formed therein, end plates 30 and 31 interposed between the shell and the headers, and a plurality of end plates provided between the end plates through the end plates. The pipe having the tube 28 and pipes 62 and 63 through which the fluid passes, and connected to the fluid liquid inlet 60 or outlet 61 provided on the surface of the shell between the end plates. The opening is formed in an oblique cross section, and this pipe is attached to be inclined with respect to the surface of the shell.

また本発明に係る熱交換器は、上記パイプを、上記シェルの面に対して45°〜75°の傾斜角度を設けて取り付けた構成である。また、上記パイプの途中を、90°より大きな角度に屈曲形成し、この屈曲部位より先の部分を上記シェルの表面とは略一定間隔を維持する状態に配設したものである。   The heat exchanger according to the present invention has a configuration in which the pipe is attached with an inclination angle of 45 ° to 75 ° with respect to the surface of the shell. Further, the middle of the pipe is bent at an angle larger than 90 °, and the portion ahead of the bent portion is arranged in a state maintaining a substantially constant distance from the surface of the shell.

以上説明したように、本発明に係る熱交換器によれば、エンドプレート間のシェルの表面部に設けられた流体液の流入口又は流出口に、パイプよりも内径を拡大した拡大室部を連結させ、この拡大室部にパイプを連通した構成としたから、流入口及び流出口を通過する冷却液の流通抵抗が低減され、ガスの冷却効果が高められるという効果を奏する。   As described above, according to the heat exchanger according to the present invention, the expansion chamber portion whose inner diameter is larger than the pipe is provided at the fluid liquid inlet or outlet provided on the surface portion of the shell between the end plates. Since the pipe is connected to the expansion chamber, the flow resistance of the coolant passing through the inlet and the outlet is reduced, and the gas cooling effect is enhanced.

また本発明に係る熱交換器によれば、パイプの途中を屈曲形成し、また拡大室部の先端部にパイプを横向きに連通したから、熱交換器の周辺の省スペース化が図られるという効果がある。   Further, according to the heat exchanger according to the present invention, the pipe is bent in the middle, and the pipe communicates laterally with the distal end of the expansion chamber, so that the space can be saved around the heat exchanger. There is.

また本発明に係る熱交換器によれば、流入口及び流出口を円形に形成し、この径をエルボパイプの内径の1.3倍以上としたから、冷却液の流通抵抗が効率良く低減されるという効果がある。さらに、流入口及び流出口を、最も外側のチューブ同士の中央部に設けたから、冷却液の流通抵抗がさらに低減されるという効果がある。   Further, according to the heat exchanger according to the present invention, the inlet and outlet are formed in a circular shape, and the diameter thereof is set to 1.3 times or more of the inner diameter of the elbow pipe, so that the flow resistance of the coolant is efficiently reduced. There is an effect. Furthermore, since the inflow port and the outflow port are provided in the central portion between the outermost tubes, there is an effect that the flow resistance of the coolant is further reduced.

また本発明に係る熱交換器によれば、エンドプレート間のシェルの表面部に設けられた流体液の流入口又は流出口に、ここに連結させるパイプの開口部を斜め断面状に形成し、このパイプをシェルの面に対して傾斜させて取り付けた構成としたから、流入口及び流出口を通過する冷却液の流通抵抗が低減され、冷却効果が高められるという効果を奏する。   Further, according to the heat exchanger according to the present invention, the fluid liquid inlet or outlet provided in the surface portion of the shell between the end plates is formed with an oblique opening in the pipe connected thereto. Since this pipe is configured to be inclined with respect to the surface of the shell, the flow resistance of the coolant passing through the inlet and outlet is reduced and the cooling effect is enhanced.

また本発明に係る熱交換器によれば、パイプを、シェルの面に対して45°〜75°の傾斜角度を設けて取り付け、またパイプの途中を、90°より大きな角度に屈曲形成し、たから、熱交換器の周辺の省スペース化が図られるととともに、パイプを通過する冷却液の流通抵抗が低減されるという効果がある。   Further, according to the heat exchanger according to the present invention, the pipe is attached with an inclination angle of 45 ° to 75 ° with respect to the surface of the shell, and the middle of the pipe is bent and formed at an angle larger than 90 °. Therefore, the space around the heat exchanger can be saved, and the flow resistance of the coolant passing through the pipe can be reduced.

以下、本発明の実施の形態を図面に基づいて説明する。この実施の形態は、熱交換器をEGRシステムにおける排気ガスの冷却装置に適用したものである。この熱交換器20は、図1及び図2に示すように、円筒状のシェル22の両端部にそれぞれ排気ガス12の流入及び流出のためのヘッダー24,25が設けられている。またシェル22内には、シェル22の軸方向と平行に複数のチューブ28が所定の間隔をおいて配置され、各チューブの両端部はそれぞれエンドプレート30,31に固定されている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In this embodiment, the heat exchanger is applied to an exhaust gas cooling device in an EGR system. As shown in FIGS. 1 and 2, the heat exchanger 20 is provided with headers 24 and 25 for inflow and outflow of the exhaust gas 12 at both ends of a cylindrical shell 22, respectively. A plurality of tubes 28 are arranged in the shell 22 at a predetermined interval in parallel with the axial direction of the shell 22, and both end portions of each tube are fixed to end plates 30 and 31, respectively.

さらに、シェル22の一端部側(エンドプレート30,31間の内側)には冷却液13(冷却水)が流入する流入口26が、他端部側には冷却液の流出口27が設けられている。そして、流入口26には拡大室部32を介して、エルボパイプ34が連結され、また流出口27には拡大室部33を介して、エルボパイプ35が連結されている。   Further, an inlet 26 through which the coolant 13 (cooling water) flows is provided on one end side (inside between the end plates 30 and 31) of the shell 22, and a coolant outlet 27 is provided on the other end side. ing. An elbow pipe 34 is connected to the inflow port 26 through an expansion chamber portion 32, and an elbow pipe 35 is connected to the outflow port 27 through an expansion chamber portion 33.

上記エルボパイプ34,35は円管であり、スペースの確保のため上記拡大室部32,33との連結部の近傍が90°に屈曲されている。そして、エルボパイプ34,35の先端部はシェル22の表面とは平行或いは略一定間隔を維持した状態に配設されている。このように、エルボパイプをシェル22の表面に沿う状態に配設することで、省スペース化を図っている。なお、エルボパイプ34,35の屈曲方向はシェル22に対して自由であり、レイアウト等に応じて決められる。また、ここでの熱交換器を構成する部材は鋼製からなり、それぞれロウ付けにより接合されたものであるが、これは一般の溶接により接合するものであってもよい。   The elbow pipes 34 and 35 are circular pipes, and the vicinity of the connecting portion with the expansion chamber portions 32 and 33 is bent at 90 ° in order to secure a space. The tips of the elbow pipes 34 and 35 are arranged parallel to the surface of the shell 22 or maintained at a substantially constant interval. In this way, space is saved by arranging the elbow pipe along the surface of the shell 22. The bending direction of the elbow pipes 34 and 35 is free with respect to the shell 22 and is determined according to the layout or the like. Moreover, although the member which comprises a heat exchanger here consists of steel, and each was joined by brazing, this may be joined by general welding.

上記拡大室部32は、上記エルボパイプ34の内径よりも、大きな内径を有する円筒部36と、この上部に形成され中央に円形の孔部が設けられた円板部37とからなる形態である。拡大室部33についても形態は同様である。上記円筒部36の内径は、シェル22の流入口26、流出口27の直径と同様な寸法である。そして、上記シェル22の流入口26の周辺表面部に上記拡大室部33の円筒部36の下端部が連結され、また上記円板部37の孔部の周辺表面部にエルボパイプ34が連通されている。   The expansion chamber portion 32 has a cylindrical portion 36 having an inner diameter larger than the inner diameter of the elbow pipe 34 and a disk portion 37 formed at the upper portion and provided with a circular hole at the center. The configuration of the expansion chamber 33 is the same. The inner diameter of the cylindrical portion 36 is similar to the diameter of the inlet 26 and outlet 27 of the shell 22. The lower end portion of the cylindrical portion 36 of the expansion chamber portion 33 is connected to the peripheral surface portion of the inlet 26 of the shell 22, and the elbow pipe 34 is connected to the peripheral surface portion of the hole portion of the disc portion 37. Yes.

流入口26及び流出口27の大きさは、エルボパイプ34から流入する冷却液13が抵抗なく拡散し得る範囲、またエルボパイプ35に流入する冷却液13が抵抗なく通過し得る範囲の大きさが適当である。この実施の形態では、シェル22に設けた円形の流入口26の径は、上記エルボパイプ34の内径の1.5倍の大きさとしたが、これは1.3倍〜2倍の範囲(好ましくは1.5倍〜2倍)が好適である。この範囲が1.3倍以内だと、流入口26及び流出口27における冷却液の抵抗の影響が大きく、一方上記範囲を2倍以上に拡大しても冷却液の抵抗低減の効果が期待できなく、また強度上、接合上の問題が生じる。   The size of the inflow port 26 and the outflow port 27 is appropriate in a range in which the coolant 13 flowing from the elbow pipe 34 can diffuse without resistance, and in a range in which the coolant 13 flowing in the elbow pipe 35 can pass without resistance. is there. In this embodiment, the diameter of the circular inlet 26 provided in the shell 22 is 1.5 times larger than the inner diameter of the elbow pipe 34, but this is in the range of 1.3 times to 2 times (preferably 1.5 times to 2 times) is preferable. If the range is within 1.3 times, the influence of the resistance of the coolant at the inlet 26 and the outlet 27 is large. On the other hand, the effect of reducing the resistance of the coolant can be expected even if the above range is expanded more than twice. In addition, there are problems in strength and bonding.

さらに図2に示すように、上記流入口26及び流出口27は、各口の中央部が、シェル22内に配置される最外側のチューブ28同士の中央部に位置するように配置されている。上記チューブ28同士の間は、冷却液の流通のために隙間が設けられており、この中央部位に流入口及び流出口を位置させることで、チューブ28による流通抵抗の影響が少なくなり、冷却液の流通が良くなって流通抵抗が低減し、熱交換器として排気ガスの冷却効果が改善される。   Further, as shown in FIG. 2, the inlet 26 and the outlet 27 are arranged such that the center of each mouth is located at the center between the outermost tubes 28 arranged in the shell 22. . A gap is provided between the tubes 28 for circulation of the cooling liquid. By positioning the inlet and the outlet at the central portion, the influence of the circulation resistance by the tubes 28 is reduced, and the cooling liquid As a heat exchanger, the exhaust gas cooling effect is improved.

このように上記熱交換器20では、エルボパイプの内径より大きな内径を有する拡大室部32,33を設け、この拡大室部を介して冷却液を通過させることで、冷却液の流通抵抗を低減する。これは図2に示すように、上記拡大室部によりシェルの流入口、流出口を通過する冷却液の流れが拡散して流通がよくなり、また流れの先のチューブ28による抵抗も緩和されるためである。一方、拡大室部を設けない場合は、シェルの流入口、流出口における抵抗、及び流れの先のチューブ28の抵抗の影響が大きく、冷却液の流通抵抗が大きいものとなる。   As described above, in the heat exchanger 20, the expansion chamber portions 32 and 33 having an inner diameter larger than the inner diameter of the elbow pipe are provided, and the cooling liquid is passed through the expansion chamber portion, thereby reducing the flow resistance of the cooling liquid. . As shown in FIG. 2, the flow of the cooling liquid that passes through the inlet and outlet of the shell is diffused by the above-described expansion chamber, so that the circulation is improved, and the resistance by the tube 28 at the end of the flow is also reduced. Because. On the other hand, when the expansion chamber is not provided, the influence of the resistance at the inlet and outlet of the shell and the resistance of the tube 28 at the end of the flow is large, and the flow resistance of the coolant is large.

図3は、パイプの根元を拡大(φ22)し上記拡大室部を設けた熱交換器20と、拡開部を設けないエルボパイプ(φ16)を直接連結した従来の熱交換器とについての社内試験の結果を示したものである。この拡大室部以外の構成については、各熱交換器の条件は同じである。ここでは、エルボパイプの外径がφ=16mm(内径は14mm)のものと、拡大室部の外径がφ=22mm(内径は20mm)のものを用いて試験を行った。この試験は、水流量(Vw:ボリューム水)L/minに対する水抵抗(ΔPw:プレッシャ水)kPaを測定したものである。この結果、水流量によらず、略一定の割合でパイプの根元を拡大した拡大室部を設けた方が水抵抗が低減される結果が得られ、効果が確認できた。   FIG. 3 shows an in-house test of the heat exchanger 20 having the pipe base expanded (φ22) and provided with the expansion chamber, and a conventional heat exchanger directly connected to the elbow pipe (φ16) not provided with the expansion portion. This shows the results. About the structure except this expansion chamber part, the conditions of each heat exchanger are the same. Here, the test was performed using an elbow pipe having an outer diameter of φ = 16 mm (inner diameter of 14 mm) and an expansion chamber having an outer diameter of φ = 22 mm (inner diameter of 20 mm). This test measures water resistance (ΔPw: pressure water) kPa against water flow rate (Vw: volumetric water) L / min. As a result, regardless of the water flow rate, it was possible to obtain a result that the water resistance was reduced by providing the expansion chamber portion in which the root of the pipe was expanded at a substantially constant rate, and the effect could be confirmed.

図4及び図5は、他の形態の拡大室部を設けた熱交換器の排気ガスの流入側を示したものである(排気ガスの流出側についての形態も同様)。図4の熱交換器の拡大室部40は、エルボパイプ34と接続される先端部から内径が徐々に拡大され、後端部はこの内径と略同じ寸法の径が形成された流入口26に連結される形態である。   4 and 5 show the exhaust gas inflow side of a heat exchanger provided with another embodiment of the expansion chamber (the same applies to the exhaust gas outflow side). The expansion chamber portion 40 of the heat exchanger of FIG. 4 is gradually enlarged in inner diameter from the tip portion connected to the elbow pipe 34, and the rear end portion is connected to the inlet 26 formed with a diameter substantially the same as this inner diameter. It is a form to be done.

また、図5に示す熱交換器の拡大室部42は、エルボパイプ34と接続される先端部から内径がキャップ状に拡大され、後端部は略同じ内径の流入口26に連結される形態である。上記何れの形態についても、拡大室部を設けることで流入口26を拡径することができ、これにより冷却液の流れが拡散して流れが良くなり、また流れ方向の先に位置するチューブ28による抵抗が低減される。   In addition, the expansion chamber portion 42 of the heat exchanger shown in FIG. 5 has a configuration in which the inner diameter is expanded in a cap shape from the tip portion connected to the elbow pipe 34 and the rear end portion is connected to the inlet 26 having substantially the same inner diameter. is there. In any of the above forms, the diameter of the inlet 26 can be increased by providing the expansion chamber portion, whereby the flow of the cooling liquid is diffused to improve the flow, and the tube 28 positioned ahead in the flow direction. The resistance due to is reduced.

また、図6は、さらに他の形態の拡大室部44を設けた熱交換器の排気ガスの流入側を示したものである(排気ガスの流出側についての形態も同様)。この形態の拡大室部44は、先端部が平坦状に閉塞された所定の長さの円筒状の筒部材48からなり、下端部をシェル22の流入口26に連結する一方、この筒部材48の上部の側面に設けた孔部49にストレート状のパイプ46を直角向きに連通したものである。したがって、上記拡大室部44は上記エルボパイプの一部をなす形態であり、この形態においてはエルボパイプを特に必用としない。   FIG. 6 shows the exhaust gas inflow side of the heat exchanger provided with the expansion chamber 44 of still another form (the same is true for the exhaust gas outflow side). The enlarged chamber portion 44 of this form is composed of a cylindrical tube member 48 of a predetermined length whose front end portion is closed in a flat shape, and the lower end portion is connected to the inlet 26 of the shell 22, while the tube member 48. A straight pipe 46 is communicated in a right angle direction with a hole 49 provided on the side surface of the upper portion. Therefore, the expansion chamber portion 44 has a form forming a part of the elbow pipe. In this form, the elbow pipe is not particularly necessary.

図7(a)に示す熱交換器の拡大室部50は、先端部が球面状に形成された円筒状の筒部材52からなり、下端部をシェル22の流入口26に連結し、上記筒部材52の上部の側面に設けた孔部53に直角向きにパイプ46を連結したものである。図7(b)に示す熱交換器の拡大室部54は、先端部が閉塞されたラッパ状の筒部材56からなり、下端部をシェル22の流入口26に連結し、上記筒部材56の上部の側面に設けた孔部57に、筒部材56の軸と直交する向きにパイプ46を接続したものである。   The expansion chamber portion 50 of the heat exchanger shown in FIG. 7A is composed of a cylindrical tube member 52 having a tip formed in a spherical shape, and a lower end portion is connected to the inlet 26 of the shell 22, and the tube The pipe 46 is connected to the hole 53 provided on the side surface of the upper part of the member 52 at a right angle. The expansion chamber portion 54 of the heat exchanger shown in FIG. 7B is composed of a trumpet-shaped cylindrical member 56 whose front end portion is closed, and a lower end portion is connected to the inlet 26 of the shell 22, A pipe 46 is connected to a hole 57 provided on the upper side surface in a direction orthogonal to the axis of the cylindrical member 56.

これら図6及び図7に示す熱交換器の何れの形態についても、拡大室部を設けることでシェル22の流入口26を拡径することができ、これにより冷却液の流れが拡散して流れが良くなり、流れの先に位置するチューブ28による抵抗が低減される。また、これらの拡大室部44,50は、パイプ46の内径に比べて、大きな内径が形成されているため、パイプ46から直角向きの拡大室部に流通する(又は拡大室部からパイプ46に流通する)冷却液の流通抵抗が少なく、この点でも冷却液の流れが良い。   In any of the forms of the heat exchangers shown in FIGS. 6 and 7, the diameter of the inlet 26 of the shell 22 can be increased by providing the enlarged chamber portion, whereby the flow of the coolant is diffused and flows. And the resistance by the tube 28 located at the tip of the flow is reduced. Moreover, since these expansion chamber parts 44 and 50 have a larger inner diameter than the inner diameter of the pipe 46, they circulate from the pipe 46 to the expansion chamber part at a right angle (or from the expansion chamber part to the pipe 46). The circulation resistance of the coolant is small, and the flow of the coolant is good also in this respect.

このように、上記実施の形態によれば、熱交換器の流入口及び流出口における冷却液の流通抵抗が低減され、ガスの冷却効果が高められるという効果がある。また、冷却液の流入口及び流出口の位置を、近傍のチューブ同士の間の中央部に合せ、この部位に流入口及び流出口を位置させることで、冷却液の流通が良くなり、通過抵抗が低減して排気ガスの冷却効果が改善されEGRシステムが良好に機能する。さらに、パイプを、円管の途中が直角に屈曲形成されたエルボパイプとした構成としたから、エンジンルームにおける熱交換器(EGRクーラ)の周辺のスペースが少なくて済むという効果がある。   Thus, according to the above embodiment, there is an effect that the flow resistance of the cooling liquid at the inlet and outlet of the heat exchanger is reduced and the gas cooling effect is enhanced. Also, by aligning the position of the inlet and outlet of the coolant with the central part between adjacent tubes, and positioning the inlet and outlet at this part, the circulation of the coolant is improved and the passage resistance is increased. As a result, the cooling effect of the exhaust gas is improved and the EGR system functions well. Furthermore, since the pipe is configured as an elbow pipe in which the middle of the circular tube is bent at a right angle, there is an effect that the space around the heat exchanger (EGR cooler) in the engine room can be reduced.

図8及び図9は、第二の実施の形態に係る熱交換器(EGRクーラ)を示したものである。この熱交換器21の全体の形態は、上記熱交換器20と同様、円筒状のシェル23の両端部にそれぞれヘッダー24,25が設けられ、またシェル23内には、シェルの軸方向と平行に複数のチューブ28が所定の間隔をおいて配置され、各チューブ28の両端部はそれぞれエンドプレート30,31に固定されたものである。   8 and 9 show a heat exchanger (EGR cooler) according to the second embodiment. As in the case of the heat exchanger 20, the heat exchanger 21 as a whole is provided with headers 24 and 25 at both ends of a cylindrical shell 23, and the shell 23 is parallel to the axial direction of the shell. A plurality of tubes 28 are arranged at predetermined intervals, and both end portions of each tube 28 are fixed to end plates 30 and 31, respectively.

さらに上記熱交換器21は、シェル23の一端部側(エンドプレート30,31間の内側)には冷却液13が流入する流入口60が、他端部側には冷却液が流出する流出口61が形成され、これら流入口60及び流出口61には、それぞれ屈曲円管からなるエルボパイプ62,63が連結されている。また図9に示すように、冷却液の流入口60及び流出口61は、各口の中央部が、シェル23内に配置される最外側のチューブ28同士の中央部に位置するように配置し、冷却液の流通抵抗を低減している。   Further, the heat exchanger 21 has an inlet 60 through which the coolant 13 flows into one end side (the inner side between the end plates 30 and 31) of the shell 23, and an outlet through which the coolant flows out to the other end side. 61 are formed, and elbow pipes 62 and 63 each formed of a bent circular pipe are connected to the inlet 60 and the outlet 61, respectively. Further, as shown in FIG. 9, the coolant inlet 60 and outlet 61 are arranged so that the center of each port is located at the center between the outermost tubes 28 arranged in the shell 23. The flow resistance of the coolant is reduced.

そして図10に示すように、上記流入口60は、楕円形状をなしている。このように流入口60を楕円形状にするのは、上記エルボパイプ62をシェル23の表面(接線方向)に対して90°の直立位置から傾斜させて固定するためであるが、併せて楕円形にすることにより流入口60の面積を広く形成することができ、冷却液13の抵抗を低減する効果がある。なお、流出口61についても同様に楕円形状をなしている。   As shown in FIG. 10, the inflow port 60 has an elliptical shape. The reason why the inflow port 60 is thus elliptical is that the elbow pipe 62 is inclined and fixed from the upright position of 90 ° with respect to the surface of the shell 23 (tangential direction). By doing so, the area of the inflow port 60 can be increased, and the resistance of the coolant 13 can be reduced. The outflow port 61 is similarly elliptical.

また、このエルボパイプ62は、省スペース化のためシェル23との連結部の近傍が90°以上の角度に屈曲されている。この屈曲角度(β°)は、上記エルボパイプ62の傾斜角度(α°)と関連するが、通常、この屈曲角度(β°)は180°から傾斜角度(α°)を引いた角度(β°=180°−α°)とする。この実施の形態では上記傾斜角度α°を約50°としたが、この場合、屈曲角度β°は130°となる。   Further, the elbow pipe 62 is bent at an angle of 90 ° or more in the vicinity of the connecting portion with the shell 23 in order to save space. The bending angle (β °) is related to the inclination angle (α °) of the elbow pipe 62. Normally, the bending angle (β °) is an angle obtained by subtracting the inclination angle (α °) from 180 ° (β °). = 180 ° −α °). In this embodiment, the inclination angle α ° is about 50 °. In this case, the bending angle β ° is 130 °.

このような傾斜角度(α°)と屈曲角度(β°)との関係により、エルボパイプ62の屈曲後の先端部の向きは、シェル23の表面と平行になる。このようにエルボパイプをシェルに傾斜角度を設けて固定し、このエルボパイプの屈曲角度を90°以上の鈍角に形成することで、エルボパイプ内を通過する冷却液の抵抗が低減される。   Due to the relationship between the inclination angle (α °) and the bending angle (β °), the direction of the tip of the elbow pipe 62 after being bent is parallel to the surface of the shell 23. In this way, the elbow pipe is fixed to the shell with an inclination angle, and the elbow pipe is bent at an obtuse angle of 90 ° or more, whereby the resistance of the coolant passing through the elbow pipe is reduced.

上記傾斜角度は、ここでは50°程度としたが、これは45°〜75°の範囲が好適である。傾斜角度が45°よりも小さいと、シェル内に流入する冷却液の流入方向がシェルの表面側に偏り過ぎて冷却に支障をきたし、また75°よりも大きいと、エルボパイプの屈曲角度が大きく形成できないことから、冷却液の抵抗の低減が十分に図れなくなる。   The inclination angle is about 50 ° here, but this is preferably in the range of 45 ° to 75 °. If the angle of inclination is less than 45 °, the inflow direction of the coolant flowing into the shell is too biased toward the surface of the shell, which hinders cooling, and if it is greater than 75 °, the elbow pipe has a large bending angle. Since this is not possible, the resistance of the coolant cannot be sufficiently reduced.

また、図10(c)に示すように、エルボパイプ62の傾斜角度の方向を、シェル23のエンドプレート30に向けて配置することにより、エルボパイプ62から放出される冷却液13はエンドプレート30に向けて流れ、やがてこのエンドプレート30により向きを変えて、流出口61の方向へ流れる。このため、冷却液13が比較的シェル23の全体に行き渡るようになり、この点でも冷却効率が高められる。   Further, as shown in FIG. 10C, the cooling liquid 13 discharged from the elbow pipe 62 is directed toward the end plate 30 by arranging the direction of the inclination angle of the elbow pipe 62 toward the end plate 30 of the shell 23. After a while, the direction is changed by the end plate 30 and flows toward the outlet 61. For this reason, the coolant 13 spreads over the entire shell 23 relatively, and the cooling efficiency is also improved in this respect.

したがって、上記第二の実施の形態によれば、シェルに対してエルボパイプを傾斜させシェルに楕円形状の開口部を設けて、液体の通過範囲を大きく形成することで、熱交換器の流入口及び流出口における冷却液の流通抵抗が低減され、ガスの冷却効果が高められる。また、冷却液の流入口及び流出口の位置を、近傍のチューブ同士の間の中央部に合せ、この部位に流入口及び流出口を位置させることで、冷却液の流通が良くなり流通抵抗が低減される。さらに、エルボパイプの曲げ角度を90°よりも大きく形成することで、エルボパイプを通過する冷却液の流通抵抗が低減され、排気ガスの冷却効果が改善され、併せてエンジンルームにおける熱交換器(EGRクーラ)の周辺のスペースが少なくて済むという効果がある。   Therefore, according to the second embodiment described above, the elbow pipe is inclined with respect to the shell and the shell is provided with an elliptical opening so as to form a large liquid passage range. The flow resistance of the coolant at the outlet is reduced, and the gas cooling effect is enhanced. In addition, the position of the inlet and outlet of the coolant is aligned with the central portion between the adjacent tubes, and the inlet and outlet are positioned at this location, so that the coolant can flow and resistance to flow is reduced. Reduced. Further, by forming the elbow pipe at a bending angle larger than 90 °, the flow resistance of the coolant passing through the elbow pipe is reduced, the exhaust gas cooling effect is improved, and the heat exchanger (EGR cooler in the engine room) is also improved. ) Has the effect of requiring less space around.

本発明の第一の実施の形態に係る熱交換器を示す図である。It is a figure which shows the heat exchanger which concerns on 1st embodiment of this invention. 第一の実施の形態に係り、シェルの断面を示す図である。It is a figure which concerns on 1st embodiment and shows the cross section of a shell. 第一の実施の形態に係り、社内試験の結果を示す図である。It is a figure which concerns on 1st embodiment and shows the result of an in-house test. 実施の形態に係り他の形態の拡大室部を示す図で、(a)は部分平面を、(b)は側面を、(c)は部分正面をそれぞれ示す図である。It is a figure which shows the expansion chamber part of another form in connection with embodiment, (a) is a partial plane, (b) is a side view, (c) is a figure which shows a partial front. 実施の形態に係り、他の形態の拡大室部のさらに他の形態の部分正面図である。It is a partial front view of the further another form of the expansion chamber part of another form in connection with embodiment. 実施の形態に係り、さらに他の形態の一の拡大室部を示す図で、(a)は部分平面を、(b)は側面を、(c)は部分正面をそれぞれ示す図である。It is a figure which shows one expanded chamber part concerning embodiment, (a) is a partial plane, (b) is a side view, (c) is a figure which shows a partial front. 実施の形態に係り、さらに他の形態の他の拡大室部を示す図で、(a)(b)はそれぞれ部分正面を示す図である。It is a figure which concerns on embodiment, and is a figure which shows the other expansion chamber part of another form, (a) (b) is a figure which shows a partial front, respectively. 本発明の第二の実施の形態に係る熱交換器を示す図である。It is a figure which shows the heat exchanger which concerns on 2nd embodiment of this invention. 第二の実施の形態に係り、シェルの断面を示す図である。It is a figure which concerns on 2nd embodiment and shows the cross section of a shell. 実施の形態に係り、(a)は部分平面を、(b)は側面を、(c)は部分正面をそれぞれ示す図である。It is related with embodiment, (a) is a figure which shows a partial plane, (b) is a side surface, (c) is a figure which shows a partial front. 従来例に係る熱交換器を示す図である。It is a figure which shows the heat exchanger which concerns on a prior art example. 従来例に係り、シェルの断面を示す図である。It is a figure which concerns on a prior art example and is a figure which shows the cross section of a shell.

符号の説明Explanation of symbols

22,23 シェル
24,25 ヘッダー
26,60 流入口
27,61 流出口
28 チューブ
30,31 エンドプレート
32,33,40,42,44,50,54 拡大室部
34,35,46,62,63 パイプ(エルボパイプ)
22, 23 Shell 24, 25 Header 26, 60 Inlet 27, 61 Outlet 28 Tube 30, 31 End plate 32, 33, 40, 42, 44, 50, 54 Expansion chamber 34, 35, 46, 62, 63 Pipe (elbow pipe)

Claims (4)

内部で熱交換が行われる筒状のシェルと、
このシェルの各端部側にそれぞれ設けられ、ガスの入口部又は出口部が形成されたヘッダーと、
上記シェルと上記各ヘッダーとの間に介在するエンドプレートと、
これらエンドプレート間に、端部が各エンドプレートを貫通して設けられる複数のチューブと、
冷却液が通過するパイプと、を有し、
上記エンドプレート間のシェルの表面部に設けられた冷却液の流入口及び流出口を円形に形成し、これらの径を円管状に形成した上記パイプの内径の1.5倍〜2倍の範囲とするとともに、上記流入口及び流出口と同様な寸法の内径を有する拡大室部を連結させ、この拡大室部に上記パイプを連通し、かつ上記パイプの先の部分は上記シェルの表面とは略一定間隔を維持する状態に配設し、上記流入口及び流出口を、上記シェルの最も外側に配置される上記チューブ同士の中央部に設けたことを特徴とする熱交換器。
A cylindrical shell with heat exchange inside;
A header provided on each end side of the shell, and formed with a gas inlet or outlet;
An end plate interposed between the shell and each header;
Between these end plates, a plurality of tubes provided with end portions penetrating each end plate;
A pipe through which the coolant passes,
The coolant inlet and outlet provided on the surface of the shell between the end plates are formed in a circular shape, and the diameter thereof is in the range of 1.5 to 2 times the inner diameter of the pipe formed in a circular tube shape. In addition, an expansion chamber portion having an inner diameter similar to that of the inflow port and the outflow port is connected, the pipe is connected to the expansion chamber portion , and the tip portion of the pipe is the surface of the shell. disposed in a state to maintain a substantially constant spacing, the heat exchanger, wherein the inlet and outlet, and this was provided in the central portion of the tube between which is disposed on the outermost side of the shell.
上記パイプの途中を屈曲形成し、この屈曲部位より先の部分は上記シェルの表面とは略一定間隔を維持する状態に配設したことを特徴とする請求項1記載の熱交換器。   2. The heat exchanger according to claim 1, wherein the pipe is bent in the middle, and a portion ahead of the bent portion is disposed so as to maintain a substantially constant distance from the surface of the shell. 上記拡大室部の先端部に上記パイプを横向きに連通し、このパイプを上記シェルの表面とは略一定間隔を維持する状態に配設したことを特徴とする請求項1記載の熱交換器。   2. The heat exchanger according to claim 1, wherein the pipe communicates laterally with the tip of the expansion chamber, and the pipe is disposed in a state of maintaining a substantially constant distance from the surface of the shell. 内部で熱交換が行われる筒状のシェルと、
このシェルの各端部側に設けられ、ガスの入口部又は出口部が形成されたヘッダーと、
上記シェルと上記各ヘッダーとの間に介在するエンドプレートと、
これらエンドプレート間に、端部が各エンドプレートを貫通して設けられる複数のチューブと、
冷却液が通過する円形のパイプと、を有し、
上記エンドプレート間のシェルの表面部に設けられた冷却液の流入口及び流出口を楕円形状に形成し、ここに連結させる上記パイプの開口部を斜め断面状に形成し、このパイプを上記シェルの面に対して45°〜75°の傾斜角度を設け、パイプの方向を上記シェルのエンドプレートに向けて取り付けてこのパイプからの冷却液を上記エンドプレートに向けて放出させる一方、
上記パイプの途中を、90°より大きな角度に屈曲形成し、この屈曲部位より先の部分を上記シェルの長手方向と平行に配設したことを特徴とする熱交換器。
A cylindrical shell with heat exchange inside;
A header provided on each end side of the shell, in which a gas inlet or outlet is formed;
An end plate interposed between the shell and each header;
Between these end plates, a plurality of tubes provided with end portions penetrating each end plate;
A circular pipe through which the coolant passes,
The coolant inlet and outlet provided on the surface of the shell between the end plates are formed in an elliptical shape, and the opening of the pipe to be connected thereto is formed in an oblique cross-section, and the pipe is connected to the shell. An inclination angle of 45 ° to 75 ° is provided with respect to the surface of the pipe, and the direction of the pipe is attached toward the end plate of the shell to discharge the coolant from the pipe toward the end plate,
A heat exchanger characterized in that an intermediate portion of the pipe is bent at an angle larger than 90 °, and a portion ahead of the bent portion is disposed in parallel with the longitudinal direction of the shell .
JP2004133885A 2004-04-28 2004-04-28 Heat exchanger Expired - Lifetime JP3958302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133885A JP3958302B2 (en) 2004-04-28 2004-04-28 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133885A JP3958302B2 (en) 2004-04-28 2004-04-28 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2005315507A JP2005315507A (en) 2005-11-10
JP3958302B2 true JP3958302B2 (en) 2007-08-15

Family

ID=35443118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133885A Expired - Lifetime JP3958302B2 (en) 2004-04-28 2004-04-28 Heat exchanger

Country Status (1)

Country Link
JP (1) JP3958302B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101817183B1 (en) * 2012-10-30 2018-01-10 한화파워시스템 주식회사 Heat exchanger
JP2022186183A (en) * 2021-06-04 2022-12-15 東京ラヂエーター製造株式会社 Egr cooler and vehicular waste heat recovery device
WO2024045139A1 (en) * 2022-09-01 2024-03-07 宁德时代新能源科技股份有限公司 Water cooling joint, thermal management part, battery, and electric device

Also Published As

Publication number Publication date
JP2005315507A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
US8069905B2 (en) EGR gas cooling device
JP5193310B2 (en) Recirculation exhaust gas cooler for internal combustion engines
US6820682B2 (en) Heat exchanger
EP1411315B1 (en) Exhaust gas heat exchanger
US8573286B2 (en) Heat exchanger for a motor vehicle
US8720536B2 (en) Heat exchanger having flow diverter
JP4938610B2 (en) EGR cooler
JP3991786B2 (en) Exhaust heat exchanger
JP2010270982A (en) Heat exchanger
JP4247942B2 (en) EGR gas cooling device
JP4386215B2 (en) EGR gas cooling device
JP3744432B2 (en) Exhaust heat exchanger
JP3956097B2 (en) Exhaust heat exchanger
JP2006046846A (en) Double pipe heat exchanger
JP2003279293A (en) Exhaust heat exchanger
JP3783395B2 (en) EGR cooler
JP3958302B2 (en) Heat exchanger
JP2007225137A (en) Multitubular heat exchanger and heat transfer tube for exhaust gas cooling device
JP2016142509A (en) Water-cooling cooler
JPH1113549A (en) Egr cooler
JP2007064606A (en) Heat exchanger tube for egr cooler
JPH11193992A (en) Multitubular egr gas cooling device
JP2001248980A (en) Multitubular heat exchanger
JP3948638B2 (en) EGR gas cooling device
JP3982650B2 (en) Multi-tube EGR gas cooling system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070509

R150 Certificate of patent or registration of utility model

Ref document number: 3958302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term