JPH11287104A - Platform for gas turbine moving blade - Google Patents

Platform for gas turbine moving blade

Info

Publication number
JPH11287104A
JPH11287104A JP10090016A JP9001698A JPH11287104A JP H11287104 A JPH11287104 A JP H11287104A JP 10090016 A JP10090016 A JP 10090016A JP 9001698 A JP9001698 A JP 9001698A JP H11287104 A JPH11287104 A JP H11287104A
Authority
JP
Japan
Prior art keywords
platform
cooling
cavity
cavities
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10090016A
Other languages
Japanese (ja)
Other versions
JP3510477B2 (en
Inventor
Yasuoki Tomita
康意 富田
Kiyoshi Suenaga
潔 末永
Eiji Akita
栄司 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP09001698A priority Critical patent/JP3510477B2/en
Priority to US09/255,793 priority patent/US6190130B1/en
Priority to CA002263012A priority patent/CA2263012C/en
Priority to DE69913221T priority patent/DE69913221T2/en
Priority to EP99104183A priority patent/EP0940561B1/en
Publication of JPH11287104A publication Critical patent/JPH11287104A/en
Application granted granted Critical
Publication of JP3510477B2 publication Critical patent/JP3510477B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify the cooling structure of the platform of a gas turbine moving blade for improving its cooling efficiency. SOLUTION: Cavities 2, 8 are provided in the platform 1 of a moving blade 51. In the cavities 2, 8, the inside of a plat form base part 10 is formed in a concave thin structure, and its lower part is covered with a bottom plate to form the cavity 2. In the cavity 2, portions 2a, 2b, 2c are formed in protruding parts 4, 5, and a portion 2d is opened toward a rear end. A protruding part 3 is protruded into the portion 2a, and a protruding part 6 is protruded into the portion 2b, and a protruding part 7 is protruded into the portion 2c to form a wave-shaped detour flow path. In addition, the cavity 8 is also composed of a portion 8a having a protruded protruding part 9, a linear portion 8b, a portion 8c on a rear end side and an opening portion 8d. A cooling air passes through cooling pathes 11, 32 from a flowing in port 11 and detouringly flows in the cavities 2, 8 and increases a cooling effect and flows out from a rear end face. A cooling route is formed of the cavity to improve a processability and to increase the cooling effect.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガスタービン動翼の
プラットフォームに関し、冷却性能を向上させるように
したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine rotor blade platform, which has improved cooling performance.

【0002】[0002]

【従来の技術】図4はガスタービン動翼の代表的なプラ
ットフォームの内部断面図であり、主に一段動翼に用い
られている例である。図において、50はプラットフォ
ーム全体であり、51は一段動翼である。52は動翼5
1の前縁の通路であり、この通路52にはそれぞれ両側
に伸びる冷却通路53,54が連通して設けられてい
る。冷却通路53,54はそれぞれ両側の冷却通路5
5,56に接続し、通路55,56はそれぞれプラット
フォーム50の後方端で開口している。
2. Description of the Related Art FIG. 4 is an internal sectional view of a typical platform of a gas turbine moving blade, which is an example mainly used for a single-stage moving blade. In the figure, 50 is the entire platform, and 51 is a single stage rotor blade. 52 is a moving blade 5
The cooling passages 53 and 54 extending to both sides are provided in communication with the passage 52. The cooling passages 53 and 54 are respectively provided on the cooling passages 5 on both sides.
5 and 56, the passages 55 and 56 each being open at the rear end of the platform 50.

【0003】プラットフォーム50の前方端には両側に
それぞれ冷却通路57,58及び59,60が設けられ
ており、これら冷却通路57〜60はプラットフォーム
50の下面から上面に向って傾斜して穿設されており上
面で開口し、冷却空気を吹き出すようになっている。
又、プラットフォーム50の後方には冷却通路60,6
1,62が穿設されており、同じくプラットフォーム5
0の下面より上面に向かって傾斜して設けられ、後方端
において開口し、冷却空気を吹き出すようになってい
る。
At the front end of the platform 50, cooling passages 57, 58 and 59, 60 are provided on both sides, respectively. The cooling passages 57 to 60 are formed by being inclined from the lower surface to the upper surface of the platform 50. It opens at the top and blows out cooling air.
The cooling passages 60, 6 are located behind the platform 50.
1,62 are drilled and the platform 5
0 is provided so as to be inclined from the lower surface toward the upper surface, is opened at the rear end, and blows out cooling air.

【0004】更に、プラットフォームの中央部には冷却
通路64,65,66,67,68が設けられ、これら
も同様にプラットフォーム下面より上面へ向って斜めに
設けられ、冷却空気を上面に吹き出すようになってお
り、上面において冷却空気を拡散させるために出口端が
末広がり状に加工されている。
Further, cooling passages 64, 65, 66, 67, and 68 are provided at the center of the platform, and are similarly provided obliquely from the lower surface of the platform toward the upper surface so as to blow cooling air to the upper surface. The outlet end is formed in a divergent shape on the upper surface to diffuse cooling air.

【0005】図5は図4におけるD−D断面図であり、
プラットフォーム50の両端内部には冷却通路55,5
6が設けられており、冷却通路67がプラットフォーム
50の下面より上面へ向かって斜めに穿設されている状
態を示している。
FIG. 5 is a sectional view taken along the line DD in FIG.
Cooling passages 55 and 5 are provided inside both ends of the platform 50.
6, and shows a state where the cooling passage 67 is formed obliquely from the lower surface of the platform 50 toward the upper surface.

【0006】図6は図4におけるE−E断面図であり、
プラットフォーム50の前方から後方に向い、開口する
冷却通路55と斜めに設けられた冷却通路57、64〜
68が設けられ、それぞれ冷却空気を後方、上面へと吹
き出す状態を示している。
FIG. 6 is a sectional view taken along line EE in FIG.
The cooling passage 55 opens from the front to the back of the platform 50 and the cooling passages 57 and 64 provided diagonally.
68 are provided, and show a state in which the cooling air is blown back and to the upper surface, respectively.

【0007】上記構成のプラットフォーム50において
前縁の通路52から動翼51内に供給される冷却空気の
一部を冷却通路55,56に流してプラットフォーム5
0両側を冷却し、プラットフォーム50の後方へ流出さ
せ、又、プラットフォームの前後に冷却通路57〜6
0、及び61〜63をそれぞれ斜めに設けてプラットフ
ォーム50の下部より冷却空気を導き、前後の端部周辺
の上面に流出し、更に中央部では冷却通路64〜68を
斜めに設け、プラットフォーム50の下部より上面に流
出させるようにしている。このような冷却空気の流れと
流出によりプラットフォーム50の全体を冷却してい
る。
In the platform 50 having the above-described structure, a part of the cooling air supplied from the leading edge passage 52 into the moving blade 51 flows through the cooling passages 55 and 56 so that the platform 5
0 Both sides are cooled and discharged to the rear of the platform 50, and the cooling passages 57-6
The cooling air is guided from the lower part of the platform 50 by flowing the cooling air from the lower part of the platform 50 to the upper surface around the front and rear ends. The liquid flows out from the lower part to the upper part. The entire platform 50 is cooled by the flow and outflow of the cooling air.

【0008】[0008]

【発明が解決しようとする課題】前述のように従来の代
表的なガスタービン動翼のプラットフォームにおいて
は、冷却通路55,56の直線状の主冷却通路に加え、
斜めにプラットフォーム50を貫通し、しかも比較的傾
斜ルートの長い冷却通路57〜60、61〜63等が多
数設けられており、冷却空気の供給経路が多く、プラッ
トフォーム自体の加工も複雑となり、加工を容易にし、
かつ冷却効果もプラットフォーム全体を均一に冷却でき
る形状が望まれていた。
As described above, in the conventional typical gas turbine blade platform, in addition to the linear main cooling passages of the cooling passages 55 and 56,
A large number of cooling passages 57-60, 61-63, etc., which penetrate the platform 50 obliquely and have a relatively long inclined route, are provided, there are many cooling air supply paths, and the processing of the platform itself becomes complicated. Facilitate and
In addition, the cooling effect has been desired to have a shape capable of uniformly cooling the entire platform.

【0009】そこで本発明はプラットフォームの冷却空
気の経路を簡素化し、冷却空気の供給経路も単純化して
加工を容易にすると共に、プラットフォーム全体を均一
に冷却して冷却効果を高めることのできるガスタービン
動翼のプラットフォームを提供することを課題としてな
されたものである。
Accordingly, the present invention provides a gas turbine which simplifies the path of the cooling air of the platform, simplifies the supply path of the cooling air to facilitate processing, and uniformly cools the entire platform to enhance the cooling effect. The task was to provide a platform for the moving blade.

【0010】[0010]

【課題を解決するための手段】本発明は前述の課題を解
決するために次の(1),(2)の手段を提供する。
The present invention provides the following means (1) and (2) to solve the above-mentioned problems.

【0011】(1)プラットフォームの動翼基部の両側
に前縁側から後縁側にわたって設けられ同プラットフォ
ーム内側を凹状に形成した冷却空気の流路であって、そ
の流路を波状に迂回し、後縁側端面で開口するように形
成された両側空洞と、前記プラットフォームの前縁側に
設けられ同プラットフォーム内側を凹状に形成し前記両
側空洞と連通する流入側空洞と、同流入側空洞にプラッ
トフォーム内側より冷却空気を導く流入口と、前記流入
側空洞及び両側空洞の凹状開口部を覆う底板とを具備し
てなることを特徴とするガスタービン動翼のプラットフ
ォーム。
(1) A cooling air flow path which is provided on both sides of the blade base of the platform from the leading edge side to the trailing edge side, and has a concave inside inside the platform. Both side cavities formed so as to open at the end face, an inflow side cavity provided on the leading edge side of the platform, forming the inside of the platform in a concave shape and communicating with the both side cavities, and cooling air from the inside of the platform in the inflow side cavity. And a bottom plate that covers the concave openings of the inflow-side cavity and the two-sided cavity.

【0012】(2)上記(1)の発明において、前記両
側空洞及び流入側空洞は同一幅の溝であり、前記流入口
は動翼内前縁の冷却通路であることを特徴とするガスタ
ービン動翼。
(2) In the invention of the above (1), the two-sided cavity and the inflow-side cavity are grooves having the same width, and the inflow port is a cooling passage at a leading edge in a moving blade. Bucket.

【0013】本発明の(1)のプラットフォームでは、
冷却空気は流入口より流入側空洞に入り、前縁側を冷却
して流入側空洞より両側の空洞に流入する。両側の空洞
に流入した冷却空気は空洞の流路が波形をした迂回流路
となっているので、その変化した流れにより伝熱効果が
増し、プラットフォームの両側を効果的に冷却して後方
端より流出する。又、両側の空洞と流入側空洞はプラッ
トフォームの内側を凹状に加工した形状であり、この凹
状の空洞は内側より凹状開口部を底板で覆っている構造
であり、プラットフォームの冷却通路を一体形成しやす
くしている。従って従来のように複雑な流路や傾斜した
流路がなく、空洞やプラットフォーム自体の加工性が良
好となると共に、冷却効果も増すものである。
In the platform (1) of the present invention,
The cooling air enters the inflow-side cavity from the inflow port, cools the leading edge side, and flows into the two-sided cavity from the inflow-side cavity. Since the cooling air that has flowed into the cavities on both sides is a detour channel with a corrugated flow path in the cavities, the changed flow increases the heat transfer effect, effectively cooling both sides of the platform, and leak. The cavities on both sides and the inflow-side cavities have a shape in which the inside of the platform is processed into a concave shape. Making it easier. Therefore, there is no complicated flow path or inclined flow path as in the prior art, and the workability of the cavity and the platform itself is improved, and the cooling effect is increased.

【0014】本発明の(2)のプラットフォームでは、
両側の空洞及び流入側空洞は共に同一幅の溝で形成され
ており、冷却空気の流入口も動翼前縁の通路となってい
る。従って、空洞の加工はすべて同一幅の溝加工のみで
良く、その蓋も同様に同一幅のもので良いことになり、
上記(1)の発明において、その加工性が良好となり、
冷却効果も冷却空気の流路が迂回路となっており、
(1)と同様に冷却効果を増すものである。
In the platform (2) of the present invention,
The cavities on both sides and the inflow-side cavities are formed by grooves having the same width, and the inflow port of the cooling air is also a passage at the leading edge of the moving blade. Therefore, all processing of the cavities need only be grooves with the same width, and the lids may also be of the same width.
In the invention of the above (1), the workability is improved,
As for the cooling effect, the cooling air flow path is a detour,
As in (1), the cooling effect is increased.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づいて具体的に説明する。図1は本発明の実
施の第1形態に係るガスタービン動翼のプラットフォー
ムを示し、(a)は平面図、(b)は(a)におけるA
−A断面図である。
Embodiments of the present invention will be specifically described below with reference to the drawings. 1A and 1B show a platform of a gas turbine blade according to a first embodiment of the present invention, wherein FIG. 1A is a plan view, and FIG.
It is -A sectional drawing.

【0016】図1において、1はプラットフォームであ
り、51は動翼である。2はプラットフォーム1内の空
洞であり、動翼51の腹側にプラットフォーム1の中央
寄りの部分を図(b)に示すように凹状に減肉して形成
され、底部には後述するように底板14を設けて形成さ
れている。
In FIG. 1, reference numeral 1 denotes a platform, and 51 denotes a moving blade. Reference numeral 2 denotes a cavity in the platform 1, which is formed on the ventral side of the moving blade 51 by reducing the thickness of the portion near the center of the platform 1 in a concave shape as shown in FIG. 14 are provided.

【0017】上記の空洞2は動翼51の前縁から後縁に
わたってプラットフォーム1の基部10周辺から突出す
る突起部4,5により2a,2b,2cの空洞が連通す
るように形成され、後方端には直線状の2dで開口部を
形成している。又、空洞2a内には動翼51側の基部1
0から突出する突起部3が、空洞2b内には突起部6
が、空胴2c間には突起部7がそれぞれ突出して空洞2
内に連通する波形、もしくはS字状の迂回流路を形成し
ている。
The cavity 2 is formed so that the cavities 2a, 2b and 2c communicate with each other by protrusions 4 and 5 projecting from the periphery of the base 10 of the platform 1 from the leading edge to the trailing edge of the rotor blade 51. Has an opening with a linear 2d. In the cavity 2a, the base 1 on the blade 51 side is provided.
0, a projection 6 is provided in the cavity 2b.
However, the protrusions 7 protrude between the cavities 2c to form the cavities 2c.
, Or a S-shaped bypass flow path communicating therewith.

【0018】8も同様に空洞であり、動翼51の背側に
設けられ、空洞2と同様にプラットフォーム1内に凹状
に減肉して形成され、底部が底板14で閉じられて形成
されている。空洞8は8a、直線状の部分8b、迂回部
分の8c、開口部である8dがそれぞれ連通して形成さ
れ、空洞8a内には基部10から突出する突起部9が入
り込んでS字状の流路を形成している。
Similarly, a cavity 8 is provided on the back side of the moving blade 51 and is formed in the platform 1 like the cavity 2 so as to be concavely reduced in thickness, and is formed by closing the bottom with the bottom plate 14. I have. The cavity 8 is formed so as to communicate with 8a, a linear portion 8b, a detour portion 8c, and an opening 8d, and a projection 9 projecting from the base 10 enters the cavity 8a to form an S-shaped flow. Forming a road.

【0019】11はプラットフォーム1内側底面に貫通
して設けられた冷却空気の流入口であり、プラットフォ
ーム1の内側から冷却空気が導かれる。12,13は冷
却通路であり、空洞2,8と同じくプラットフォーム1
内に凹状に減肉して形成され、導入口11からの冷却空
気を両側の空洞2,8に導く通路である。
Reference numeral 11 denotes an inlet for cooling air provided through the bottom surface inside the platform 1, and the cooling air is guided from inside the platform 1. Numerals 12 and 13 denote cooling passages, and the same as the cavities 2 and 8, the platform 1
It is a passage that is formed to have a concavely reduced thickness inside and guides cooling air from the inlet 11 to the cavities 2 and 8 on both sides.

【0020】図2は図1におけるB−B断面図であり、
流入口11が中央部底面に開口しており、冷却空気70
を導き、左右の冷却通路12,13に導くように連通し
て設けられている。又、冷却通路12,13も空洞2,
8と同様にプラットフォーム1の前縁側周端部に減肉さ
れて形成され、底面には底板14で覆われて構成されて
いる。
FIG. 2 is a sectional view taken along the line BB in FIG.
The inflow port 11 is open at the bottom of the central part, and the cooling air 70
And are provided to communicate with the left and right cooling passages 12 and 13. The cooling passages 12 and 13 are also hollow 2
Similarly to 8, the front edge of the platform 1 is formed with a reduced thickness at the peripheral end, and the bottom surface is covered with a bottom plate 14.

【0021】この底板14は冷却通路11,12を覆う
部分、空洞2を覆う部分、空洞8を覆う部分、とそれぞ
れ分割して設けても良く、あるいは冷却通路11,1
2、空洞2、空洞8を覆う一体成形の底板としても良
く、いずれの形状でも良いものである。
The bottom plate 14 may be provided separately from a portion covering the cooling passages 11 and 12, a portion covering the cavity 2, and a portion covering the cavity 8. Alternatively, the bottom plate 14 may be provided separately.
2, an integrally formed bottom plate that covers the cavity 2 and the cavity 8, and may have any shape.

【0022】上記構成のプラットフォームにおいて、冷
却空気70はプラットフォーム1の内側から流入口11
を通って左右の冷却通路12,13に流入し、プラット
フォームの前縁部を冷却して空洞2と8に流入する。
In the platform having the above configuration, the cooling air 70 flows from the inside of the platform 1 to the inlet 11.
Through the cooling passages 12 and 13 to cool the leading edge of the platform and into the cavities 2 and 8.

【0023】空洞2では突起部3,4,5,6,7で形
成される各空洞2a,2b,2cを蛇行して流れて対流
による伝熱効果を増し、これらの領域を冷却し、2dを
通って後方端面より流出する。
The cavities 2 meander through the cavities 2a, 2b, and 2c formed by the projections 3, 4, 5, 6, and 7 to increase the heat transfer effect by convection. Through the rear end face.

【0024】同様に空洞8に流入した冷却空気は前縁部
の突起部9で形成された空洞8aを迂回して流れ、前縁
部をその対流により効果的に冷却し、プラットフォーム
1基部10の狭い部分は直線状の空洞8bを通りこの部
分を冷却して後縁側の空洞8cを迂回して流れ、8dよ
り後方端へ流出する。
Similarly, the cooling air flowing into the cavity 8 flows around the cavity 8a formed by the projection 9 at the front edge, and effectively cools the front edge by its convection. The narrow portion passes through the linear cavity 8b, cools the portion, flows around the trailing edge cavity 8c, and flows out of the rear end from 8d.

【0025】上記に説明の実施の第1形態のプラットフ
ォームによれば、プラットフォーム1の両側に波形もし
くはS字状の迂回流路を形成する空洞2,8を設け、空
洞2,3の内側底面を底板14で覆い、これら空洞2,
8内には流入口11から冷却通路11,12を通り、そ
れぞれ冷却空気を導く構成としたので、プラットフォー
ム1の前縁側に冷却空気を導き、この部分を冷却すると
共に、両側を迂回して流れることにより伝熱効果を増し
て両側を冷却し、プラットフォーム全体を均一に冷却す
ることができる。
According to the platform of the first embodiment described above, the cavities 2 and 8 forming the corrugated or S-shaped bypass flow path are provided on both sides of the platform 1, and the inner bottom surfaces of the cavities 2 and 3 are formed. Cover with a bottom plate 14
The cooling air is guided into the inside of the platform 8 from the inflow port 11 through the cooling passages 11 and 12, so that the cooling air is guided to the front edge side of the platform 1 to cool this portion and to flow around both sides. This increases the heat transfer effect and cools both sides, so that the entire platform can be cooled uniformly.

【0026】更に、上記のように冷却効果を増すと共
に、プラットフォーム1の冷却系路はすべて基部10を
減肉した凹部を形成する空胴2,8及び冷却通路11,
12ならびに底板14で構成しているので一体成形がよ
り容易となり、その加工が容易となるものである。
Further, as described above, the cooling effect is increased, and the cooling passages of the platform 1 are all hollow cavities 2 and 8 and the cooling passages 11 and 8 forming recesses in which the base 10 is thinned.
Since it is composed of the base plate 12 and the bottom plate 14, the integral molding becomes easier and the processing becomes easier.

【0027】図3は本発明の実施の第2形態に係るガス
タービン動翼のプラットフォームを示し、(a)が平面
図、(b)は(a)におけるC−C断面図である。図に
おいて21はプラットフォームであり、51は動翼、5
2は動翼51の冷却空気が通る通路である。22,23
はそれぞれプラットフォーム21の裏側(内側)に設け
られた凹状で同一幅の冷却溝であり、図示のように波
形、あるいはS字状に迂回流路を構成し、それぞれ動翼
51の腹側、背側に設けられ、後端面において開口する
ように連続して設けられている。
FIGS. 3A and 3B show a gas turbine rotor blade platform according to a second embodiment of the present invention, wherein FIG. 3A is a plan view and FIG. 3B is a cross-sectional view taken along line CC in FIG. In the figure, 21 is a platform, 51 is a rotor blade, 5
Reference numeral 2 denotes a passage through which the cooling air of the moving blade 51 passes. 22,23
Are recessed cooling grooves of the same width provided on the back side (inside) of the platform 21. The cooling grooves have a corrugated or S-shaped bypass flow path as shown in FIG. And is provided continuously so as to open at the rear end face.

【0028】冷却溝22,23は一端が動翼51内部の
通路52にそれぞれ連通するように設けられ、他端が後
方端に開口するように設けられている。又、(b)図に
示すように各冷却溝22,23の開口部は蓋24,25
が挿入され開口部を覆い、冷却空気流路が形成される。
The cooling grooves 22 and 23 are provided such that one end thereof communicates with a passage 52 inside the rotor blade 51 and the other end is opened to the rear end. Also, as shown in FIG. 2B, the openings of the cooling grooves 22 and 23 are
Is inserted to cover the opening, and a cooling air flow path is formed.

【0029】この蓋24,25は、冷却溝24,25の
幅よりはやや広幅の一定幅とし、冷却溝24,25に沿
って二段状の溝22a,23aを加工し、これら溝22
a,23aに挿入されて冷却溝24,25を閉じて冷却
空気流路を形成している。
The lids 24, 25 have a constant width slightly wider than the width of the cooling grooves 24, 25, and are formed with two-step grooves 22a, 23a along the cooling grooves 24, 25.
a, 23a to close the cooling grooves 24, 25 to form a cooling air flow path.

【0030】上記に説明の実施の第2形態のプラットフ
ォームにおいて、冷却空気70は動翼51の通路52よ
りそれぞれ冷却溝22,23内を溝に沿って蛇行して流
れ、プラットフォーム21の前縁部から後縁部にかけて
全面を冷却しながら後方端より流出する。
In the platform according to the second embodiment described above, the cooling air 70 flows in the cooling grooves 22, 23 meandering along the grooves from the passage 52 of the moving blade 51, respectively. From the rear end while cooling the entire surface from the rear edge to the rear edge.

【0031】従って、本実施の第2形態のプラットフォ
ームによれば、実施の第1形態と同様に冷却空気が迂回
して流れる冷却溝22,23及びそれらの蓋24,25
を設けた構成によりプラットフォーム全体が均一に冷却
され、しかも冷却系統も冷却溝を加工し、蓋をするだけ
の構成で加工が容易となるものである。又、その冷却溝
22,23はすべて同一の幅で実施の第1形態の空洞と
比べると、単純な形状となり、かつ溝幅も小さいので第
1形態のものよりも加工が容易となる。
Therefore, according to the platform of the second embodiment, similarly to the first embodiment, the cooling grooves 22, 23 and the lids 24, 25 through which the cooling air flows by bypassing.
Is provided, the entire platform is uniformly cooled, and the cooling system is also formed by processing the cooling grooves and closing the lid, thereby facilitating the processing. Further, the cooling grooves 22 and 23 have the same width and have a simple shape compared to the cavity of the first embodiment, and the groove width is small, so that the processing is easier than that of the first embodiment.

【0032】[0032]

【発明の効果】本発明の(1)のガスタービン動翼のプ
ラットフォームは、プラットフォームの動翼基部の両側
に前縁側から後縁側にわたって設けられ同プラットフォ
ーム内側を凹状に形成した冷却空気の流路であって、そ
の流路を波状に迂回し、後縁側端面で開口するように形
成された両側空洞と、前記プラットフォームの前縁側に
設けられ同プラットフォーム内側を凹状に形成し前記両
側空洞と連通する流入側空洞と、同流入側空洞にプラッ
トフォーム内側より冷却空気を導く流入口と、前記流入
側空胴及び両側空胴の凹状開口部を覆う底板とを備えた
ことを特徴としている。このような構成により、空洞と
空洞の開口部を覆う簡単な構造からなるのでプラットフ
ォームを一体形成しやすくなり、加工性が良好となると
共に、冷却空気が迂回して流れて伝熱効果を増し、冷却
効果も向上するものである。
The gas turbine moving blade platform of (1) of the present invention is a cooling air flow path provided on both sides of the moving blade base from the leading edge side to the trailing edge side, and the inside of the platform is formed in a concave shape. A two-sided cavity formed so as to bypass the flow path in a wave-like manner and open at a trailing edge side end surface, and an inflow formed on the leading edge side of the platform to form a concave inside of the platform and communicate with the two-sided cavity. It is characterized by comprising a side cavity, an inflow port for guiding cooling air from the inside of the platform to the inflow side cavity, and a bottom plate covering the concave openings of the inflow side cavity and the both side cavities. With such a configuration, the platform has a simple structure that covers the cavity and the opening of the cavity, so it is easy to integrally form the platform, workability is improved, and the cooling air bypasses and flows to increase the heat transfer effect, The cooling effect is also improved.

【0033】本発明の(2)は、上記(1)の発明にお
いて、前記両側空洞及び流入側空洞は同一幅の溝であ
り、前記流入口は動翼内前縁の冷却通路であることを特
徴としているので、空洞はすべて同一幅の溝で良く、
又、この溝により迂回流路も形成しやすくなり、加工性
が一層良好となり、冷却効果も高めることができる。
According to a second aspect of the present invention, in the first aspect of the present invention, the both side cavities and the inflow side cavities are grooves having the same width, and the inflow port is a cooling passage at the leading edge in the rotor blade. Because it is a feature, all cavities may be grooves of the same width,
In addition, this groove facilitates formation of a bypass flow path, further improves workability, and enhances a cooling effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の第1形態に係るガスタービン動
翼のプラットフォームを示し、(a)は平面図、(b)
は(a)におけるA−A断面図である。
FIG. 1 shows a platform of a gas turbine blade according to a first embodiment of the present invention, wherein (a) is a plan view and (b)
FIG. 2 is a sectional view taken along line AA in FIG.

【図2】図1におけるB−B断面図である。FIG. 2 is a sectional view taken along line BB in FIG.

【図3】本発明の実施の第2形態に係るガスタービン動
翼のプラットフォームを示し、(a)は平面図、(b)
は(a)におけるC−C断面図である。
FIGS. 3A and 3B show a gas turbine blade platform according to a second embodiment of the present invention, wherein FIG. 3A is a plan view and FIG.
FIG. 3 is a cross-sectional view taken along line CC in FIG.

【図4】従来のガスタービン動翼の代表的な断面図であ
る。
FIG. 4 is a typical sectional view of a conventional gas turbine blade.

【図5】図4におけるD−D断面図である。FIG. 5 is a sectional view taken along line DD in FIG. 4;

【図6】図4におけるE−E断面図である。FIG. 6 is a sectional view taken along the line EE in FIG. 4;

【符号の説明】[Explanation of symbols]

1,21 プラットフォーム 2,8 空洞 3,4,5,6,7,9 突起部 10 基部 11 流入口 12,13 冷却通路 14 底板 22,23 冷却溝 22a,23a 溝 24,25 蓋 51 動翼 52 通路 70 冷却空気 1, 21 Platform 2, 8 Cavity 3, 4, 5, 6, 7, 9 Projection 10 Base 11 Inlet 12, 13, Cooling passage 14 Bottom plate 22, 23 Cooling groove 22a, 23a Groove 24, 25 Lid 51 Moving blade 52 Passage 70 Cooling air

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 プラットフォームの動翼基部の両側に前
縁側から後縁側にわたって設けられ同プラットフォーム
内側を凹状に形成した冷却空気の流路であって、その流
路を波状に迂回し、後縁側端面で開口するように形成さ
れた両側空洞と、前記プラットフォームの前縁側に設け
られ同プラットフォーム内側を凹状に形成し前記両側空
洞と連通する流入側空洞と、同流入側空洞にプラットフ
ォーム内側より冷却空気を導く流入口と、前記流入側空
洞及び両側空洞の凹状開口部を覆う底板とを具備してな
ることを特徴とするガスタービン動翼のプラットフォー
ム。
1. A cooling air flow path provided from both a leading edge side to a trailing edge side on both sides of a rotor blade base of a platform and having a concave inside inside the platform, the flow path being undulated in a wavy manner, and a trailing edge side end face. Both cavities formed so as to be opened at, an inflow-side cavity provided on the leading edge side of the platform and having the inside of the platform formed in a concave shape and communicating with the both-side cavities, and cooling air from the inside of the platform into the inflow-side cavity. A gas turbine rotor blade platform, comprising: an inflow inlet; and a bottom plate covering concave openings of the inflow-side cavity and both-side cavities.
【請求項2】 前記両側空洞及び流入側空洞は同一幅の
溝であり、前記流入口は動翼内前縁の冷却通路であるこ
とを特徴とする請求項1記載のガスタービン動翼。
2. The gas turbine moving blade according to claim 1, wherein the both-side cavity and the inflow-side cavity are grooves having the same width, and the inflow port is a cooling passage at a leading edge inside the moving blade.
JP09001698A 1998-03-03 1998-04-02 Gas turbine blade platform Expired - Lifetime JP3510477B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP09001698A JP3510477B2 (en) 1998-04-02 1998-04-02 Gas turbine blade platform
US09/255,793 US6190130B1 (en) 1998-03-03 1999-02-23 Gas turbine moving blade platform
CA002263012A CA2263012C (en) 1998-03-03 1999-02-25 Gas turbine moving blade platform
DE69913221T DE69913221T2 (en) 1998-03-03 1999-03-02 Impeller blade plate of a gas turbine
EP99104183A EP0940561B1 (en) 1998-03-03 1999-03-02 Gas turbine moving blade platform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09001698A JP3510477B2 (en) 1998-04-02 1998-04-02 Gas turbine blade platform

Publications (2)

Publication Number Publication Date
JPH11287104A true JPH11287104A (en) 1999-10-19
JP3510477B2 JP3510477B2 (en) 2004-03-29

Family

ID=13986920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09001698A Expired - Lifetime JP3510477B2 (en) 1998-03-03 1998-04-02 Gas turbine blade platform

Country Status (1)

Country Link
JP (1) JP3510477B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083859A (en) * 2004-09-15 2006-03-30 General Electric Co <Ge> Device and method for cooling turbine bucket platform
US7186089B2 (en) 2004-11-04 2007-03-06 Siemens Power Generation, Inc. Cooling system for a platform of a turbine blade
JP2007224919A (en) * 2006-02-24 2007-09-06 General Electric Co <Ge> Method of cooling turbine moving blade and platform for turbine moving blade
JP2009047177A (en) * 2005-05-27 2009-03-05 Mitsubishi Heavy Ind Ltd Gas turbine moving blade having platform and method for forming same
JP2011185271A (en) * 2010-03-10 2011-09-22 General Electric Co <Ge> Device for cooling platform of turbine component
JP2013139791A (en) * 2011-12-30 2013-07-18 General Electric Co <Ge> Turbine rotor blade platform cooling

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006083859A (en) * 2004-09-15 2006-03-30 General Electric Co <Ge> Device and method for cooling turbine bucket platform
US7186089B2 (en) 2004-11-04 2007-03-06 Siemens Power Generation, Inc. Cooling system for a platform of a turbine blade
JP2009047177A (en) * 2005-05-27 2009-03-05 Mitsubishi Heavy Ind Ltd Gas turbine moving blade having platform and method for forming same
JP2007224919A (en) * 2006-02-24 2007-09-06 General Electric Co <Ge> Method of cooling turbine moving blade and platform for turbine moving blade
JP2011185271A (en) * 2010-03-10 2011-09-22 General Electric Co <Ge> Device for cooling platform of turbine component
JP2013139791A (en) * 2011-12-30 2013-07-18 General Electric Co <Ge> Turbine rotor blade platform cooling

Also Published As

Publication number Publication date
JP3510477B2 (en) 2004-03-29

Similar Documents

Publication Publication Date Title
US6190130B1 (en) Gas turbine moving blade platform
RU2296862C2 (en) Gas-turbine blade provided with cooling circuits
WO1998034013A1 (en) Gas turbine cooling stationary vane
CA2251198A1 (en) Gas turbine stationary blade
CA2260230C (en) Cooled stationary blade of a gas turbine
JP3546135B2 (en) Gas turbine blade platform
JP3495554B2 (en) Gas turbine vane cooling shroud
FR2689176A1 (en) Refrigerated turbo-machine blade.
JP2000314301A (en) Internal intercooling circuit for gas turbine moving blade
JP3155993B2 (en) Cylinder head cooling structure for multi-valve engine
JP6382879B2 (en) Cylinder head water jacket structure
KR20010105148A (en) Nozzle cavity insert having impingement and convection cooling regions
JPH11287104A (en) Platform for gas turbine moving blade
US5954126A (en) Disk cooler
JP4520023B2 (en) Gas turbine nozzle segment side wall cooling
JPH11247609A (en) Platform of gas turbine moving blade
JPH10306706A (en) Cooling stationary blade for gas turbine
JP2004132218A (en) Gas turbine blade body and gas turbine
JPH06137102A (en) Hollow moving blade of gas turbine
JPS62153504A (en) Shrouding segment
JP3371861B2 (en) Centrifugal blower and air conditioner provided with the centrifugal blower
JP3453293B2 (en) Gas turbine blade platform
JP3933310B2 (en) Electric blower
JP2002310000A (en) Cylinder head for internal combustion engine
JPH11257005A (en) Film cooling hole structure of gas turbine moving blade

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 10

EXPY Cancellation because of completion of term