JPH11286748A - Steel wire excellent in fatigue property, and its production - Google Patents

Steel wire excellent in fatigue property, and its production

Info

Publication number
JPH11286748A
JPH11286748A JP10583698A JP10583698A JPH11286748A JP H11286748 A JPH11286748 A JP H11286748A JP 10583698 A JP10583698 A JP 10583698A JP 10583698 A JP10583698 A JP 10583698A JP H11286748 A JPH11286748 A JP H11286748A
Authority
JP
Japan
Prior art keywords
steel wire
lattice
lattice constant
fatigue
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10583698A
Other languages
Japanese (ja)
Other versions
JP3539865B2 (en
Inventor
Nozomi Kawabe
望 河部
Teruyuki Murai
照幸 村井
Yukihiro Oishi
幸広 大石
Koji Yamaguchi
浩司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10583698A priority Critical patent/JP3539865B2/en
Priority to PCT/JP1998/003622 priority patent/WO1999011836A1/en
Priority to DE69839353T priority patent/DE69839353T2/en
Priority to US09/486,370 priority patent/US6527883B1/en
Priority to EP98937821A priority patent/EP1063313B1/en
Publication of JPH11286748A publication Critical patent/JPH11286748A/en
Priority to US10/361,619 priority patent/US7255758B2/en
Application granted granted Critical
Publication of JP3539865B2 publication Critical patent/JP3539865B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To optimally reduce the fatigue failure starting point as well as improve the material strength to obtain a steel wire having high fatigue characteristics by regulating the lattice strains of steel wire having a pearlite structure the specified in ratio of the contents of C and Si, to be in a specified range. SOLUTION: This steel wire is the one having a pearlite structure and having chemical components contg., by weight, 0.7 to 1.0% C and 0.5 to 1.5% Si, in which, in the case where the lattice constant is defined as (a), the lattice strains ΔaLS is allowed to satisfy 0.01×a<=ΔaLS<=0.002×a. At this time, the chemical components of the steel wire are preferably incorporated with Mn and Cr respectively by about<=1%, and the range of the lattice constant (a) is suitably regulated to be in the range of 2.8670 to 2.8705 Å. It is optimal that this steel wire is formed into a spring for automotive parts requiring fatigue strength or is utilized for reinforcing such as PC steel stranded wire by executing spring working and stranding working. Moreover, in the case of spring working, it is preferably that the surface residual stress is regulated to about <=100 MPa or is the compressive stress.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ばねやPC鋼線な
どに最適な疲労特性に優れた鋼線とその製造方法とに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel wire having excellent fatigue characteristics, which is optimal for a spring or a PC steel wire, and a method for producing the same.

【0002】[0002]

【従来の技術】鋼線における重要特性は、高い引張強
さ、高い靱性、高い疲労強度などがあるが、伸線加
工される鋼線では、高い引張強さと疲労強度は必ずしも
両立しなかった、
2. Description of the Related Art Important properties of a steel wire include high tensile strength, high toughness, and high fatigue strength. However, in a steel wire to be drawn, high tensile strength and fatigue strength are not always compatible.

【0003】一般に伸線加工度が大きい程引張強度が高
くなる。また、引張強度がある程度高くないと疲労強度
が上がらない。しかし、加工度を大きくすることは塑性
加工による材料のミクロ欠陥を増やすことになり、ミク
ロ欠陥が集まるとそれが起点で疲労破壊が早期に発生す
る。
In general, the higher the degree of wire drawing, the higher the tensile strength. Further, the fatigue strength does not increase unless the tensile strength is high to some extent. However, increasing the degree of working increases the number of micro defects in the material due to plastic working, and when micro defects are gathered, the starting point causes fatigue fracture at an early stage.

【0004】[0004]

【発明が解決しようとする課題】このため疲労特性向上
には適度な欠陥の導入による強度UPと適度な欠陥の集
中回避が重要である。従来、伸線加工される鋼線は引張
強度重視で、かつ靱性を高めるために熱処理を伸線後に
施していた。最終製品としてはその時の強度を結果的に
製品強度としていたが、疲労については特に向上させる
試みはなされていなかった。
Therefore, in order to improve the fatigue characteristics, it is important to improve the strength by introducing a suitable defect and to avoid a suitable concentration of the defect. Conventionally, a steel wire to be drawn has been subjected to a heat treatment after drawing in order to enhance the toughness and to emphasize the tensile strength. Although the strength at that time was finally determined as the product strength as the final product, no particular attempt was made to improve fatigue.

【0005】本発明の主目的は、材料強度の向上と共に
疲労破壊起点を最適に減少させることで高疲労特性を得
られる鋼線とその製造方法とを提供することにある。
An object of the present invention is to provide a steel wire capable of obtaining high fatigue characteristics by improving the material strength and optimally reducing the starting point of fatigue fracture, and a method of manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明鋼線は上記の目的
を達成するもので、その特徴は、パーライト組織を有
し、化学成分が重量%でC:0.7〜1.0%、Si:
0.5〜1.5%を含む鋼線であって、格子定数をaと
したとき、格子歪ΔaLSが下記の条件を満たすことにあ
る。 0.001×a≦ΔaLS≦0.002×a
The steel wire of the present invention achieves the above-mentioned object, and has a characteristic feature of having a pearlite structure, a chemical composition of C: 0.7-1.0% by weight%, Si:
It is a steel wire containing 0.5 to 1.5% and the lattice strain Δa LS satisfies the following condition when the lattice constant is a. 0.001 × a ≦ Δa LS ≦ 0.002 × a

【0007】ここで、鋼線の化学成分にはMnとCrの
各々を1%以下含むことが望ましい。このような鋼線
は、ばね加工やより加工を施して、疲労強度の求められ
る自動車部品用ばねとしたり、PC鋼より線,コントロ
ールケーブル,スチールコード,パラレルワイヤなど補
強用に用いられる鋼線として利用することが最適であ
る。ばね加工した場合、その表面残留応力が引張応力で
100MPa以下または圧縮応力であることが望まし
い。上記格子定数aは2.8670〜2.8705Åの
範囲が適切である。
Here, it is desirable that the chemical composition of the steel wire contains 1% or less of each of Mn and Cr. Such a steel wire is subjected to spring processing or twisting to be used as a spring for automobile parts requiring fatigue strength, or as a steel wire used for reinforcement, such as a PC steel stranded wire, a control cable, a steel cord, or a parallel wire. It is optimal to use. When spring processing is performed, the surface residual stress is desirably 100 MPa or less as a tensile stress or a compressive stress. The lattice constant a is appropriately in the range of 2.8670 to 2.8705 °.

【0008】また、本発明鋼線は、パーライト組織を有
し、化学成分が重量%でC:0.7〜1.0%、Si:
0.5〜1.5%を含む鋼線であって、格子定数をaと
したとき、格子歪ΔaLSが下記の条件を満たすことも特
徴とする。 0.0025×a≦ΔaLS≦0.0045×a この場合、格子定数aは2.8670〜2.8710Å
であることが好ましい。
Further, the steel wire of the present invention has a pearlite structure, and has a chemical component of C: 0.7 to 1.0% by weight, Si:
A steel wire containing 0.5 to 1.5%, wherein the lattice constant Δa LS satisfies the following condition when the lattice constant is a. 0.0025 × a ≦ Δa LS ≦ 0.0045 × a In this case, the lattice constant a is 2.8670 to 2.8710 °.
It is preferred that

【0009】さらに、上記の鋼線を製造するのに最適な
本発明方法は、化学成分が重量%でC:0.7〜1.0
%、Si:0.5〜1.5%を含むパーライト組織の鋼
材を冷間加工し、冷間加工後の格子定数をa1 としたと
き、同格子歪ΔaLS1 を下記のの範囲内にする工程
と、 0.0025×a1 ≦ΔaLS1 ≦0.0045×a1 得られた鋼線に熱処理を施し、格子定数をa2 としたと
き、格子歪ΔaLS2 を下記のの範囲内にする工程とを
具えること特徴とする。 0.001×a2 ≦ΔaLS2 ≦0.002×a2
Further, the method of the present invention, which is most suitable for producing the above-mentioned steel wire, comprises the following:
%, Si: steel of pearlite structure containing 0.5% to 1.5% cold working, the lattice constant after cold working when the a 1, a same lattice strain .DELTA.a LS1 within the following a step of, subjected to heat treatment 0.0025 × a 1 ≦ Δa LS1 ≦ 0.0045 × a 1 obtained steel wire, the lattice constant when the a 2, a lattice strain .DELTA.a LS2 within the following And a step of performing 0.001 × a 2 ≦ Δa LS2 ≦ 0.002 × a 2

【0010】ここで、鋼線の化学成分には、MnとCr
の各々を1%以下含むことが望ましい。冷間加工には伸
線、ローラダイス,スエージ、圧延、鍛造などが挙げら
れる。また、a1 の範囲としては2.8670〜2.8
710Å、a2 の範囲としては2.8670〜2.87
05Å程度が適切である。冷間加工により適度な歪導入
を行って強度を適正化し、その後の熱処理によって適度
に歪を除去し、ミクロ的な欠陥が集中することを回避し
て疲労破壊の起点をなくすことで疲労特性を向上させ
る。なお、従来の鋼線は、冷間加工後の格子定数a3
2.8665〜2.8710Å、格子歪ΔaLS3 は0.
001×a3 ×0.0045×a3 であった。また、熱
処理後の格子定数a4 は2.8665〜2.8695
Å、格子歪ΔaLS4 は0.0015×a4 以上であり、
疲労強度は低かった。
Here, the chemical components of the steel wire include Mn and Cr.
Is desirably contained at 1% or less. Examples of the cold working include wire drawing, roller dies, swaging, rolling, and forging. As the range of a 1 from 2.8670 to 2.8
The range of 710 ° and a 2 is 2.8670 to 2.87.
About 05 ° is appropriate. Improving the strength by introducing appropriate strain by cold working and removing the strain appropriately by subsequent heat treatment, avoiding the concentration of micro defects and eliminating the starting point of fatigue fracture Improve. Incidentally, the conventional steel wire, the lattice constants a 3 after cold working 2.8665~2.8710A, lattice strain .DELTA.a LS3 is 0.
001 was × a 3 × 0.0045 × a 3 . The lattice constants a 4 after heat treatment from 2.8665 to 2.8695
Å, lattice strain Δa LS4 is 0.0015 × a 4 or more;
Fatigue strength was low.

【0011】なお、パテンティング後の伸線(冷間加
工)条件として、ダイスアプローチ角が小さいほど、
加工度が小さいほど、鋼線の引抜角度が小さいほど
格子歪のばらつきが小さい。また、伸線加工後の熱処理
条件として、熱処理温度が高いほど格子歪のばらつきを
小さくできる。さらに、Si量が多いほど格子定数は
大きく、冷間加工度が小さいほど格子定数のばらつき
が大きくなり、熱処理温度が高いほど格子定数のばら
つきが大きくなる。
The drawing (cold working) conditions after patenting are such that the smaller the die approach angle is,
The smaller the degree of work and the smaller the angle at which the steel wire is drawn, the smaller the variation in lattice strain. As the heat treatment conditions after the wire drawing, the higher the heat treatment temperature, the smaller the variation in lattice strain. Furthermore, the larger the amount of Si, the larger the lattice constant, the smaller the degree of cold working, the greater the variation in the lattice constant, and the higher the heat treatment temperature, the greater the variation in the lattice constant.

【0012】後述する実験から明らかなように、上記の
ように格子定数と格子歪を規定することで疲労特性が飛
躍的に向上することがわかった。つまり、今回初めて格
子歪と疲労との相関を明らかにでき、格子歪を適正範囲
に制御すれば疲労の起点になるような欠陥が除去できる
こと、そして疲労特性を向上できることがわかった。
As will be apparent from experiments described later, it has been found that the fatigue properties are dramatically improved by defining the lattice constant and the lattice strain as described above. In other words, for the first time, the correlation between lattice strain and fatigue can be clarified, and it can be seen that controlling the lattice strain to an appropriate range can remove a defect that can be a starting point of fatigue and improve fatigue characteristics.

【0013】格子定数そのものは従来材でも得られてい
た値である(ただし制御していたわけではない)。しか
し、この格子定数に適した格子歪の範囲を規定すること
は今まで行われていなかった。すなわち、従来は単に引
張強さが高ければ疲労強度も向上するだろうとの発想の
もと、パーライトの強度UP(パテンティング温度低
下)、伸線加工度UP、素材の強度UP=高C化な
どが行なわれていたが疲労強度は向上しなかった。
The lattice constant itself is a value obtained by a conventional material (however, it is not controlled). However, a range of lattice strain suitable for this lattice constant has not been specified so far. That is, conventionally, based on the idea that if the tensile strength is simply high, the fatigue strength will be improved, the pearlite strength UP (patenting temperature reduction), the wire drawing degree UP, the material strength UP = high C, etc. However, the fatigue strength did not improve.

【0014】これに対して疲労強度が向上するための平
均的な歪の量とその分布を制御すれば良いことを見い出
した。平均的な歪の量は格子定数aが2.8670〜
2.8705Åであれば望ましく、歪の分布は格子歪Δ
LSが0.001×a≦ΔaLS≦0.002×aであれ
ば好ましいことがわかった。これらは従来のように、パ
テンティング条件,加工度,成分などだけでは疲労は上
昇せず、最終製品の引張強度だけでは疲労強度は決まら
ないことを意味する。
On the other hand, it has been found that the average amount of strain for improving the fatigue strength and its distribution can be controlled. The average strain amount is a lattice constant a of 2.8670-
2.8705 ° is desirable, and the strain distribution is lattice strain Δ
It has been found that it is preferable if a LS is 0.001 × a ≦ Δa LS ≦ 0.002 × a. These indicate that the fatigue does not increase only by the patenting conditions, the working degree, the components, etc. as in the conventional case, and that the fatigue strength is not determined only by the tensile strength of the final product.

【0015】格子定数はX線回折法で求めることができ
る。また、格子歪もX線回折法で求められるが、一般的
な回折ピークの半価幅などによる解析は定性的であり、
半価幅を数値化しても、その持つ意味は材料的にはあい
まいである。そこで、これらを精度良く評価できる手法
を鋭意研究した結果、疲労特性を向上させられる材料範
囲を明らかにすることができた。その方法は、従来の一
般的なX線回析に対して、Wilson法と呼ばれる計算によ
り格子歪を結晶子サイズと分離して求めるものである。
The lattice constant can be determined by the X-ray diffraction method. The lattice strain is also obtained by the X-ray diffraction method, but the analysis based on the half width of a general diffraction peak is qualitative,
Even if the half width is quantified, its meaning is ambiguous in material terms. Therefore, as a result of earnestly studying a method capable of evaluating these with high accuracy, it was possible to clarify a material range in which the fatigue characteristics can be improved. In this method, the lattice strain is separated from the crystallite size by a calculation called the Wilson method for the conventional general X-ray diffraction.

【0016】まず、格子歪について説明する。これは結
晶内部の単位格子の不均一な変形,回転,変位,加工な
どで生じ、ミクロ的には点欠陥や転位などが原因になっ
ているものである。単位格子の大きさが歪のない理想的
なサイズと比べて大きかったり、小さかったりして、応
力的には引張力や圧縮力が残留する。このような材料に
ついてX線回析で格子の大きさを測定すると、その回析
ピークはシャープにならず幅が広がる。この幅の半価幅
を評価する(ピーク高さの半分の高さ位置での幅を測定
すること)ことで、歪の大小は大雑把に判断できる。
First, the lattice distortion will be described. This is caused by non-uniform deformation, rotation, displacement, processing, etc. of the unit cell inside the crystal, and is microscopically caused by point defects or dislocations. The size of the unit cell is larger or smaller than an ideal size without distortion, and a tensile force or a compressive force remains in terms of stress. When the size of the lattice is measured by X-ray diffraction for such a material, the diffraction peak is not sharp but wide. By evaluating the half width of this width (measuring the width at a height position that is half the peak height), the magnitude of the distortion can be roughly determined.

【0017】しかし、この幅を広げるのは、単位格子の
大小の他に、装置固有の広がり、結晶子サイズ(X線結
晶粒径)がある。このため、正確に単位格子の大きさの
ばらつきを評価するためには、これらを分離する必要が
ある。これを正確に測定したのが格子歪である。
However, this width is increased not only by the size of the unit cell but also by the expansion and crystallite size (X-ray crystal grain size) inherent to the apparatus. Therefore, in order to accurately evaluate the variation in the size of the unit cells, they need to be separated. This is precisely measured by lattice distortion.

【0018】格子歪の測定方法について説明する。この
方法はセラミックスなどの評価にはよく用いられている
方法である。数本の回析ピークの半価幅を求め、Wilson
法と呼ばれる計算により格子歪と結晶子サイズとを分離
して計算する。数本の回析ピークを測定し、半価幅(積
分幅)を求める。今回は、110,200,211,2
20,311の5本を測定する。標準試料(今回は純鉄
粉末)の同一回析ピークの半価幅を用いて装置定数を較
正し、格子歪と結晶子サイズの影響のみによる半価幅を
求める。横軸を[(Δ2θ) /(tanθ0sinθ0)]、縦軸を
[(Δ2θ)2/tan2θ0]でプロットして切片を求める
(結晶子サイズによる広がりをCauchy関数、格子歪によ
る広がりをGauss 関数として近似)。求めた切片の平方
根を4で割った値がここで求めた格子歪の値である。
A method for measuring lattice distortion will be described. This method is commonly used for evaluating ceramics and the like. The half width of several diffraction peaks was determined, and Wilson
The lattice strain and the crystallite size are calculated separately by a calculation called a method. Several diffraction peaks are measured to determine a half width (integral width). This time, 110, 200, 211,
Five of 20, 311 are measured. The instrument constant is calibrated using the half width of the same diffraction peak of the standard sample (in this case, pure iron powder), and the half width is determined only by the influence of lattice strain and crystallite size. The horizontal axis is plotted as [(Δ2θ) / (tanθ 0 sinθ 0 )], and the vertical axis is plotted as [(Δ2θ) 2 / tan 2 θ 0 ] to obtain an intercept (expansion due to crystallite size is determined by Cauchy function, lattice distortion Spread is approximated as Gaussian function). The value obtained by dividing the obtained square root of the intercept by 4 is the value of the lattice distortion obtained here.

【0019】回析ピークは5本である必要はない。ま
た、今回と同じ回析ピークを用いる必要もないが、回析
ピークの本数は多いほど精度は高くなる。評価は歪の分
布状態を示す値を用い、無名数(または%)で示す。な
お、Δ2θ は半価幅(積分幅)で単位は「ラジアン」、
θ0は回析角で単位は「度」である。このような評価に
より、所定のC量,Si量に対して格子歪を制御するこ
とで、従来の一般的なX線半価幅による評価では不可能
であった高疲労特性化を達成できる。
The number of diffraction peaks need not be five. Further, although it is not necessary to use the same diffraction peak as this time, the accuracy increases as the number of diffraction peaks increases. In the evaluation, a value indicating the distribution state of the strain is used, and the evaluation is shown in anonymous (or%). Note that Δ2θ is a half-value width (integral width) in the unit of “radian”,
θ 0 is the diffraction angle and the unit is “degree”. By controlling the lattice strain for a predetermined amount of C and a predetermined amount of Si by such an evaluation, it is possible to achieve a high fatigue characteristic which cannot be obtained by the conventional evaluation based on the X-ray half-value width.

【0020】なお、本発明鋼線とその製造方法におい
て、鋼線の化学成分,組織を限定したのは次の理由によ
る。C(0.7%以上、1.0%以下)は鋼線の強度を
高めるには最も効果的な元素である。0.7%未満では
十分な強度が得られず1.0%を越えると偏析の問題が
発生して実用的でない。Si(0.5%超、1.5%以
下)は基本的には脱酸剤の効果を有し、非金属介在物の
低減のために必要である。0.5%を越えると0.5%
以下に比べて固溶強加の効果が大きく、より疲労特性が
向上する。MnはSiと同様脱酸剤の効果を有する。1
%を越えると焼き入れ性が高くなりパーライト変態での
時間が長くなり生産性が低くなる。Crは強度UPには
効果あるが、Mn同様焼き入れ性が高くなるので1%以
下が適切である。パーライト鋼としたのは、伸線加工す
る場合、強度と靱性のバランスが良好だからである。
In the steel wire and the method of manufacturing the same according to the present invention, the chemical composition and structure of the steel wire are limited for the following reasons. C (0.7% or more, 1.0% or less) is the most effective element for increasing the strength of a steel wire. If it is less than 0.7%, sufficient strength cannot be obtained, and if it exceeds 1.0%, segregation problem occurs and it is not practical. Si (more than 0.5%, 1.5% or less) basically has the effect of a deoxidizing agent and is necessary for reducing nonmetallic inclusions. 0.5% over 0.5%
The effect of solid solution strengthening is greater than the following, and the fatigue properties are further improved. Mn has a deoxidizing effect similarly to Si. 1
%, The hardenability increases, the time for pearlite transformation increases, and the productivity decreases. Cr has an effect on the strength UP, but since the hardenability increases like Mn, 1% or less is appropriate. The reason for using pearlite steel is that when wire drawing is performed, the balance between strength and toughness is good.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。なお、各実施例において、格子歪の求め方は前述
した手法により行った。 (実施例1)下記成分(単位は全て重量%)の供試材を
溶解・鋳造後、熱間鋳造,熱間圧延し、その後下引伸線
加工を施してパテンティング処理した。さらに冷間細径
加工熱処理を行なって鋼線を製造した。得られた鋼線を
疲労試験に供し、さらにX線回折で格子歪の測定を行な
った。
Embodiments of the present invention will be described below. In each example, the method of obtaining the lattice distortion was performed by the method described above. (Example 1) A test material having the following components (all units are% by weight) was melted and cast, hot cast and hot rolled, and then subjected to a drawing process and a patenting treatment. Further, a steel wire was manufactured by performing a cold small diameter working heat treatment. The obtained steel wire was subjected to a fatigue test, and the lattice strain was measured by X-ray diffraction.

【0022】 成分 C Si Mn Cr 従来材 0.82 0.21 0.51 0.05 開発材1 0.80 0.89 0.28 0.11 開発材2 0.80 1.21 0.22 0.13 比較材1 0.81 1.87 0.25 0.12 比較材2 0.80 0.05 0.32 0.12Component C Si Mn Cr Conventional material 0.82 0.21 0.51 0.05 Developed material 1 0.80 0.89 0.28 0.11 Developed material 2 0.80 1.21 0.22 0 .13 Comparative material 1 0.81 1.87 0.25 0.12 Comparative material 2 0.80 0.05 0.32 0.12

【0023】各工程でのサイズは、熱間圧延後が5.5
mm、下引伸線後が3.6mmφである。また、パテンティ
ングは570+(Si%×30)℃とした。さらに、冷
間加工は穴ダイスによる引抜加工で行なった。開発材,
比較材の伸線加工条件は、ダイスアプローチ角度は8
°、1加工あたりの減面率は18〜15%とした。ま
た、伸線速度は10m/分以下で単釜で伸線し、さらに
ダイス出口から釜へ接触するまでの引抜方向はダイス穴
の中心軸から0.5°以内に制御した。この伸線加工に
より3.6mmφから1.6mmφまで加工した後、伸直加
工して熱処理を行なった。この熱処理は350〜450
℃×20分の範囲で実施した。開発材と比較材とは、化
学成分を除き製造条件は同一である。
The size in each step is 5.5 after hot rolling.
mm and 3.6 mmφ after drawing. The patenting was 570+ (Si% × 30) ° C. Further, the cold working was performed by drawing with a hole die. Development materials,
The wire drawing condition of the comparative material is 8
° The surface reduction rate per processing was set to 18 to 15%. The wire drawing speed was 10 m / min or less, and the drawing direction from the die exit to the contact with the pot was controlled within 0.5 ° from the center axis of the die hole. After the wire was processed from 3.6 mmφ to 1.6 mmφ by the wire drawing, the wire was straightened and heat-treated. This heat treatment is 350-450
The test was performed at a temperature of 20 ° C for 20 minutes. The production conditions of the developed material and the comparative material are the same except for the chemical components.

【0024】一方、従来材における伸線加工は、アプロ
ーチ角11°、1加工当りの減面率20〜17%、伸線
速度30〜500m/分の中から選択し、引抜方向は同
角度を約1°とした(線くせをつけるため)。また、伸
線後の熱処理条件は300〜350℃×20分である。
On the other hand, in the wire drawing of the conventional material, an approach angle of 11 °, a reduction in area per work of 20 to 17%, and a wire drawing speed of 30 to 500 m / min are selected. The angle was set to about 1 ° (in order to add a line pattern). The heat treatment condition after drawing is 300 to 350 ° C. × 20 minutes.

【0025】上記方法によって得られた供試材でハンタ
ー式回転曲げ疲労試験を行い、疲労強度を求めると共に
X線回折による格子定数,格子歪を求めた。伸線後と熱
処理後の各々における格子定数と格子歪は表1の通りで
ある。
A Hunter-type rotary bending fatigue test was performed on the test material obtained by the above method to determine the fatigue strength, and the lattice constant and lattice strain by X-ray diffraction. Table 1 shows the lattice constant and lattice strain after drawing and after heat treatment, respectively.

【0026】[0026]

【表1】 [Table 1]

【0027】この結果を疲労特性の結果と併せて図1の
グラフに示す。このグラフから明らかなように、本発明
鋼線である開発材1,2は格子定数をaとしたとき、
0.001×a≦ΔaLS≦0.002×aの範囲におい
て疲労限が高く、疲労特性に優れていることがわかる。
これに対して、従来材,比較材1,2は疲労特性が劣
る。これらのことから、熱処理前、すなわち冷間加工
後において、格子歪が0.0025a〜0.0045a
の範囲に入ればよいこと、熱処理後において、格子歪
が0.001a〜0.002aの範囲に入ればよいこと
は明らかである。
The results are shown in the graph of FIG. 1 together with the results of the fatigue characteristics. As is clear from this graph, when the developed materials 1 and 2 which are the steel wires of the present invention have a lattice constant of a,
It can be seen that the fatigue limit is high and the fatigue characteristics are excellent in the range of 0.001 × a ≦ Δa LS ≦ 0.002 × a.
On the other hand, the conventional material and the comparative materials 1 and 2 have poor fatigue characteristics. From these facts, before heat treatment, that is, after cold working, the lattice strain is 0.0025a to 0.0045a.
It is clear that the lattice strain should be within the range of 0.001a to 0.002a after the heat treatment.

【0028】(実施例2)開発材1を1.6mmφに伸線
加工するところまで実施例1と同様に行った後、コイル
ばねに加工し、疲労試験を行なった。コイリング加工後
の熱処理条件を300℃〜450℃まで変えたところ、
残留応力は引張で280MPa〜圧縮で30MPaまで
それぞれ変化した。各熱処理条件で得られたばねを星型
疲労試験機で疲労試験をした結果を図2のグラフに示
す。その結果、格子定数をaとしたとき、0.001×
a≦ΔaLS≦0.002×aの範囲において、引張で1
00MPa以下もしくは圧縮の残留応力のとき特に高い
疲労限を示した。
(Example 2) The developed material 1 was processed in the same manner as in Example 1 until wire drawing to 1.6 mmφ was performed, then processed into a coil spring, and subjected to a fatigue test. When the heat treatment conditions after coiling were changed from 300 ° C to 450 ° C,
The residual stress varied from 280 MPa in tension to 30 MPa in compression. FIG. 2 is a graph showing the results of a fatigue test performed on the springs obtained under the respective heat treatment conditions using a star-type fatigue tester. As a result, when the lattice constant is a, 0.001 ×
In the range of a ≦ Δa LS ≦ 0.002 × a, 1
A particularly high fatigue limit was exhibited when the residual stress was less than or equal to 00 MPa.

【0029】(実施例3)開発材1の成分の鋼種を1
1.5mmφに圧延し、その直後沸騰水中で冷却してパー
ライト変態を行なった。この線材を4.22mmφと4.
35mmφに伸線加工し、4.35mmφの鋼線を中心線、
4.22mmφの鋼線を側線(6束)としてより線加工し
た。より線後、350〜450℃の範囲で熱処理し、降
伏点を上昇させてPC鋼より線とした。なお、沸騰水冷
却でなくても、鉛,ソルト,ミスト,強風などで冷却し
ても同様の効果が得られる可能性があることは容易に推
測できる。
(Example 3) The steel type of the component of the developed material 1 was 1
It was rolled to 1.5 mmφ and immediately thereafter cooled in boiling water to perform pearlite transformation. This wire rod was 4.22 mmφ and 4.
Wire drawing to 35mmφ, centering 4.35mmφ steel wire,
Stranding was performed using 4.22 mmφ steel wires as side wires (six bundles). After the stranding, heat treatment was performed at a temperature in the range of 350 to 450 ° C. to increase the yield point, thereby forming a PC steel strand. It can be easily presumed that the same effect may be obtained by cooling with lead, salt, mist, strong wind or the like, instead of cooling with boiling water.

【0030】伸線加工条件はサイズ以外は基本的には実
施例1の条件と同じとした。この様にして得たPC鋼よ
り線の引張疲労試験を行なった。疲労試験は86.4kg
/mm2をmax荷重として破断までの全振幅荷重の大きさ
(σA )を調べた。破断寿命は200万回とした。ま
た、実施例1と同様に格子定数と格子歪も求めた。
The drawing conditions were basically the same as those in Example 1 except for the size. A tensile fatigue test of the thus obtained PC strand was performed. 86.4kg fatigue test
The magnitude (σA) of the total amplitude load up to breakage was determined with a maximum load of / mm 2 . The breaking life was 2 million times. In addition, the lattice constant and the lattice strain were also obtained in the same manner as in Example 1.

【0031】その結果、ここでも格子定数をaとしたと
き、0.001×a≦ΔaLS≦0.002×aの範囲に
おいて全振幅荷重(σA )が大きく、疲労特性に優れて
いることがわかる。
As a result, assuming that the lattice constant is a, the total amplitude load (σA) is large in the range of 0.001 × a ≦ Δa LS ≦ 0.002 × a and the fatigue characteristics are excellent. Recognize.

【0032】(実施例4)開発材1の成分において3.
65mmφでパテンティング後、伸線加工度および伸線後
の熱処理条件を変化させてそれぞれの疲労強度を調べ
た。線径(加工度)以外は疲労試験条件,伸線加工条件
および熱処理条件共に実施例1と同じである。伸線加工
後と熱処理後の各格子定数をa1 ,a2 、格子歪をそれ
ぞれΔaLS1、ΔaLS2 として疲労特性との関係を図4
に示す。
(Example 4) In the components of the developed material 1,
After patenting at 65 mmφ, the degree of wire drawing and the heat treatment conditions after wire drawing were changed to examine the respective fatigue strengths. Except for the wire diameter (working degree), the fatigue test conditions, wire drawing conditions, and heat treatment conditions are the same as those in Example 1. FIG. 4 shows the relationship between fatigue properties and the lattice constants after wire drawing and heat treatment, where a 1 and a 2 are the lattice constants and Δa LS1 and Δa LS2 are the lattice strains, respectively.
Shown in

【0033】このグラフから明らかなように、伸線加工
後の格子定数をa1 としたとき、格子歪ΔaLS1 が0.
0025×a1 ≦ΔaLS1 ≦0.0045×a1 の範囲
で、熱処理後の鋼線の格子定数をa2 としたとき、格子
歪ΔaLS2 が0.001×a2 ≦ΔaLS2 ≦0.002
×a2 の範囲内のとき、高い疲労特性を具えていること
がわかる。
[0033] As is apparent from this graph, when the lattice constant after wire drawing was set to a 1, the lattice strain .DELTA.a LS1 is 0.
In the range of 0025 × a 1 ≦ Δa LS1 ≦ 0.0045 × a 1 , when the lattice constant of the steel wire after the heat treatment is a 2 , the lattice strain Δa LS2 is 0.001 × a 2 ≦ Δa LS2 ≦ 0. 002
When it is within the range of × a 2 , it can be seen that high fatigue characteristics are provided.

【0034】[0034]

【発明の効果】以上説明したように、本発明鋼線によれ
ば、格子定数と格子歪を特定することで、鋼線の疲労特
性を飛躍的に向上することができる。従って、本発明鋼
線をばねやPC鋼より線として有効に利用することがで
きる。また、本発明製造方法は、本発明鋼線を製造する
のに最適な方法であり、格子定数と格子歪を所定範囲に
特定した鋼線を得ることができる。
As described above, according to the steel wire of the present invention, the fatigue characteristics of the steel wire can be remarkably improved by specifying the lattice constant and the lattice strain. Therefore, the steel wire of the present invention can be effectively used as a spring or a PC steel stranded wire. Further, the production method of the present invention is an optimal method for producing the steel wire of the present invention, and can obtain a steel wire in which the lattice constant and the lattice strain are specified in a predetermined range.

【図面の簡単な説明】[Brief description of the drawings]

【図1】化学成分,伸線条件および熱処理条件の異なる
鋼線における格子歪/格子定数と疲労限との関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between lattice strain / lattice constant and fatigue limit in steel wires having different chemical components, drawing conditions and heat treatment conditions.

【図2】コイルばねに加工した鋼線における格子歪/格
子定数と疲労限との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between lattice strain / lattice constant and fatigue limit in a steel wire processed into a coil spring.

【図3】PC鋼より線に加工した鋼線における格子歪/
格子定数と疲労限までの全振幅応力との関係を示すグラ
フである。
FIG. 3 shows the lattice strain in a steel wire processed into a PC stranded wire /
5 is a graph showing a relationship between a lattice constant and a total amplitude stress up to a fatigue limit.

【図4】伸線後の鋼線における格子歪/格子定数と疲労
限との関係および熱処理後の鋼線における格子歪/格子
定数と疲労限との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between lattice strain / lattice constant and fatigue limit in a drawn steel wire and the relationship between lattice strain / lattice constant and fatigue limit in a steel wire after heat treatment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 浩司 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Koji Yamaguchi 1-1-1, Kunyokita, Itami-shi, Hyogo Pref. Within Itami Works, Sumitomo Electric Industries, Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 パーライト組織を有し、化学成分が重量
%でC:0.7〜1.0%、Si:0.5〜1.5%を
含む鋼線であって、格子定数をaとしたとき、格子歪Δ
LSが下記の条件を満たすことを特徴とする疲労性に優
れた鋼線。 0.001×a≦ΔaLS≦0.002×a
1. A steel wire having a pearlite structure and containing, by weight%, C: 0.7 to 1.0% and Si: 0.5 to 1.5%, wherein a lattice constant is a And the lattice strain Δ
a A steel wire having excellent fatigue properties, wherein the LS satisfies the following conditions. 0.001 × a ≦ Δa LS ≦ 0.002 × a
【請求項2】 請求項1記載の鋼線をばね加工し、その
表面残留応力が引張応力で100MPa以下または圧縮
応力であることを特徴とするばね。
2. The spring according to claim 1, wherein the steel wire according to claim 1 is subjected to spring processing, and the surface residual stress thereof is not more than 100 MPa in tensile stress or compressive stress.
【請求項3】 請求項1の鋼線をより加工したことを特
徴とするより鋼線。
3. A twisted steel wire obtained by further processing the steel wire according to claim 1.
【請求項4】 格子定数aが2.8670〜2.870
5Åであることを特徴とする請求項1記載の疲労性に優
れた鋼線。
4. The lattice constant a is 2.8670 to 2.870.
The steel wire having excellent fatigue resistance according to claim 1, wherein the steel wire has an angle of 5 °.
【請求項5】 パーライト組織を有し、化学成分が重量
%でC:0.7〜1.0%、Si:0.5〜1.5%を
含む鋼線であって、格子定数をaとしたとき、格子歪Δ
LSが下記の条件を満たすことを特徴とする疲労性に優
れた鋼線。0.0025×a≦ΔaLS≦0.0045×
5. A steel wire having a pearlite structure and containing 0.7 to 1.0% of C and 0.5 to 1.5% of Si by weight of a chemical component, wherein the lattice constant is a And the lattice strain Δ
a A steel wire having excellent fatigue properties, wherein the LS satisfies the following conditions. 0.0025 × a ≦ Δa LS ≦ 0.0045 ×
a
【請求項6】 格子定数aが2.8670〜2.871
0Åであることを特徴とする請求項5記載の疲労性に優
れた鋼線。
6. The lattice constant a is 2.8670 to 2.871.
The steel wire excellent in fatigue resistance according to claim 5, wherein the angle is 0 °.
【請求項7】 化学成分が重量%でC:0.7〜1.0
%、Si:0.5〜1.5%を含むパーライト組織の鋼
材を冷間加工し、冷間加工後の格子定数をa1 としたと
き、同格子歪ΔaLS1 を下記のの範囲内にする工程
と、 0.0025×a1 ≦ΔaLS1 ≦0.0045×a1 得られた鋼線に熱処理を施し、格子定数をa2 としたと
き、格子歪ΔaLS2 を下記のの範囲内にする工程とを
具えること特徴とする疲労性に優れた鋼線の製造方法。 0.001×a2 ≦ΔaLS2 ≦0.002×a2
7. C: 0.7 to 1.0 by weight of a chemical component.
%, Si: steel of pearlite structure containing 0.5% to 1.5% cold working, the lattice constant after cold working when the a 1, a same lattice strain .DELTA.a LS1 within the following a step of, subjected to heat treatment 0.0025 × a 1 ≦ Δa LS1 ≦ 0.0045 × a 1 obtained steel wire, the lattice constant when the a 2, a lattice strain .DELTA.a LS2 within the following And producing a steel wire having excellent fatigue properties. 0.001 × a 2 ≦ Δa LS2 ≦ 0.002 × a 2
JP10583698A 1997-08-28 1998-03-31 Steel wire excellent in fatigue property and manufacturing method thereof Expired - Lifetime JP3539865B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP10583698A JP3539865B2 (en) 1998-03-31 1998-03-31 Steel wire excellent in fatigue property and manufacturing method thereof
PCT/JP1998/003622 WO1999011836A1 (en) 1997-08-28 1998-08-13 Steel wire and method of manufacturing the same
DE69839353T DE69839353T2 (en) 1997-08-28 1998-08-13 STEEL WIRE AND METHOD FOR THE PRODUCTION THEREOF
US09/486,370 US6527883B1 (en) 1997-08-28 1998-08-13 Steel wire and method of manufacturing the same
EP98937821A EP1063313B1 (en) 1997-08-28 1998-08-13 Steel wire and method of manufacturing the same
US10/361,619 US7255758B2 (en) 1997-08-28 2003-02-11 Steel wire and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10583698A JP3539865B2 (en) 1998-03-31 1998-03-31 Steel wire excellent in fatigue property and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11286748A true JPH11286748A (en) 1999-10-19
JP3539865B2 JP3539865B2 (en) 2004-07-07

Family

ID=14418128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10583698A Expired - Lifetime JP3539865B2 (en) 1997-08-28 1998-03-31 Steel wire excellent in fatigue property and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3539865B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183357A (en) * 2015-03-25 2016-10-20 新日鐵住金株式会社 Steel wire and manufacturing method of steel wire
CN115943225A (en) * 2021-06-08 2023-04-07 住友电气工业株式会社 Steel wire and spring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183357A (en) * 2015-03-25 2016-10-20 新日鐵住金株式会社 Steel wire and manufacturing method of steel wire
CN115943225A (en) * 2021-06-08 2023-04-07 住友电气工业株式会社 Steel wire and spring

Also Published As

Publication number Publication date
JP3539865B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
CN101331243B (en) High strength steel wire for good wire drawability property and the manufacture method thereof
KR890003893B1 (en) The manufacture methods of metal cables
JP4638602B2 (en) High fatigue strength wire for steel wire, steel wire and manufacturing method thereof
EP0218167B1 (en) High tensile strength drawn steel wire with improved ductility
US6527883B1 (en) Steel wire and method of manufacturing the same
US6106639A (en) Stainless steel wire and process of manufacture
JP3539866B2 (en) Steel wire excellent in fatigue property and manufacturing method thereof
JP3777166B2 (en) Manufacturing method of high strength extra fine steel wire
JP3539865B2 (en) Steel wire excellent in fatigue property and manufacturing method thereof
WO1999024630A1 (en) High fatigue-strength steel wire and spring, and processes for producing these
KR100216420B1 (en) High strength steel strand for prestressed concrete and method for manufacturing the same
JP3267833B2 (en) High-strength extra-fine steel wire with excellent fatigue properties and method for producing the same
JP2756003B2 (en) High strength steel cord excellent in corrosion fatigue resistance and method of manufacturing the same
JPH11241280A (en) Steel wire and its production
JP2001247934A (en) Steel wire for spring, its producing method and spring
JP3037844B2 (en) Steel cord for reinforcing rubber articles and method for producing the same
JP3539875B2 (en) High heat resistant steel wire and method of manufacturing the same
JP3273686B2 (en) Manufacturing method of steel cord for rubber reinforcement
JP3299857B2 (en) High-strength extra-fine steel wire with excellent fatigue properties and method for producing the same
JP3303575B2 (en) Steel wire excellent in precision workability and its manufacturing method
JP3641056B2 (en) High strength extra fine steel wire
JP3169454B2 (en) High strength steel wire and its manufacturing method
US5213632A (en) Process for obtaining a high-strength strain-hardened steel wire usable for making reinforcing cables for elastomeric articles, such as pneumatic tires, and reinforcing elements (cables) produced from such wires
JP3242019B2 (en) High-strength bead wire, wire material for bead wire, and production method thereof
JP3303574B2 (en) Steel wire excellent in precision workability and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term