JPH11283229A - Magnetic recording medium - Google Patents
Magnetic recording mediumInfo
- Publication number
- JPH11283229A JPH11283229A JP7984798A JP7984798A JPH11283229A JP H11283229 A JPH11283229 A JP H11283229A JP 7984798 A JP7984798 A JP 7984798A JP 7984798 A JP7984798 A JP 7984798A JP H11283229 A JPH11283229 A JP H11283229A
- Authority
- JP
- Japan
- Prior art keywords
- film
- recording medium
- magnetic film
- magnetic
- magnetic recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Magnetic Record Carriers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、磁気記録媒体に関
するものであり、特に、ノイズ特性に優れた磁気記録媒
体に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium, and more particularly to a magnetic recording medium having excellent noise characteristics.
【0002】[0002]
【従来の技術】現在市販されている磁気記録媒体は、磁
性膜内の磁化容易軸が主に基板に対し水平に配向した面
内磁気記録媒体がほとんどである。このような面内磁気
記録媒体では、高記録密度化するとビット体積が小さく
なりすぎ、熱揺らぎ効果等により再生特性が悪化する可
能性がある。また、高記録密度化した際に、磁化反転遷
移領域の増大等により媒体ノイズが増加することがある
ことも知られている。これに対し、磁性膜内の磁化容易
軸が基板に対し垂直に配向した、いわゆる垂直磁気記録
媒体は、高記録密度化した場合でも、急峻な磁化転移が
形成され、記録密度が増大していくにつれ減磁界が小さ
くなり安定化するため低ノイズ化が可能であり、しかも
比較的ビット体積が大きくても高記録密度化が可能であ
ることから、近年大きな注目を集めている。しかしなが
ら垂直磁気記録媒体は、再生波形が面内磁気記録媒体と
異なる、すなわち孤立波形が単峰型とならずダイパルス
波形を含むものとなるため、面内磁気記録媒体を使用す
る際に一般的に用いられている信号処理方法をそのまま
適用するのは難しい。このため、面内磁性膜と垂直磁性
膜の2つの膜を備え、面内磁気記録媒体に用いられるも
のと同じ信号処理法の使用を可能とした垂直面内複合型
磁気記録媒体が提案されている。2. Description of the Related Art Most magnetic recording media currently on the market are in-plane magnetic recording media in which the axis of easy magnetization in a magnetic film is mainly oriented horizontally to a substrate. In such an in-plane magnetic recording medium, when the recording density is increased, the bit volume becomes too small, and the reproduction characteristics may be deteriorated due to a thermal fluctuation effect or the like. It is also known that when the recording density is increased, medium noise may increase due to an increase in the magnetization reversal transition region and the like. On the other hand, in a so-called perpendicular magnetic recording medium in which the easy axis of magnetization in the magnetic film is oriented perpendicular to the substrate, a steep magnetization transition is formed and the recording density increases even when the recording density is increased. As the demagnetizing field becomes smaller and more stable, noise can be reduced, and high recording density can be achieved even with a relatively large bit volume. However, a perpendicular magnetic recording medium is different from an in-plane magnetic recording medium in that the reproduced waveform is different from the in-plane magnetic recording medium, that is, the isolated waveform is not a single-peak type but includes a dipulse waveform. It is difficult to apply the used signal processing method as it is. For this reason, a perpendicular in-plane composite magnetic recording medium has been proposed which has two films, an in-plane magnetic film and a perpendicular magnetic film, and enables the use of the same signal processing method as that used for the in-plane magnetic recording medium. I have.
【0003】[0003]
【発明が解決しようとする課題】近年では、磁気記録媒
体の更なる高記録密度化が要望されており、これに伴い
ノイズ特性の向上が要求されてきている。しかしながら
従来の磁気記録媒体では、そのノイズ特性が決して満足
できるものでなく、よりノイズ特性に優れた磁気記録媒
体が要望されていた。本発明は、上記事情に鑑みてなさ
れたもので、面内磁気記録媒体を使用する際に一般的に
用いられている信号処理方法をそのまま適用可能であ
り、しかもノイズ特性に優れた磁気記録媒体を提供する
ことを目的とする。In recent years, there has been a demand for a higher recording density of a magnetic recording medium, and accordingly, an improvement in noise characteristics has been demanded. However, the noise characteristics of conventional magnetic recording media have never been satisfactory, and there has been a demand for magnetic recording media having better noise characteristics. The present invention has been made in view of the above circumstances, and a signal processing method generally used when using a longitudinal magnetic recording medium can be applied as it is, and a magnetic recording medium having excellent noise characteristics. The purpose is to provide.
【0004】[0004]
【課題を解決するための手段】上記課題は、基板上に、
磁化容易軸が基板に対し面内方向に配向した面内磁性膜
と、磁化容易軸が基板に対し垂直に配向した垂直磁性膜
を備え、面内磁性膜が垂直磁性膜よりも基板側に設けら
れ、その保磁力Hcが1500〜4000Oe、残留磁
化膜厚積BrTが20〜100Gμmであり、垂直磁性
膜の保磁力Hcが1500〜4000Oe、膜厚が10
0〜1000Åである磁気記録媒体によって解決するこ
とができる。上記垂直磁性膜の膜厚は100〜600Å
とするのが好ましく、面内磁性膜の残留磁化膜厚積Br
Tは20〜50Gμmとするのが好ましい。また、面内
磁性膜と垂直磁性膜の間には、面内磁性膜に対し非エピ
タキシャル的に成長することが可能な材料からなる分離
膜を設けるのが好ましく、この分離膜の厚さは5〜20
0Åとするのが好ましい。この分離膜と垂直磁性膜の間
には、hcp構造を有する非磁性中間層を設けるのが好
ましい。また、面内磁性膜と垂直磁性膜の離間距離は1
0〜500Åに設定するのが好ましい。Means for Solving the Problems The above object is achieved on a substrate by:
Equipped with an in-plane magnetic film in which the easy axis is oriented in the in-plane direction to the substrate and a perpendicular magnetic film in which the easy axis is oriented perpendicular to the substrate, and the in-plane magnetic film is provided closer to the substrate than the perpendicular magnetic film. The coercive force Hc is 1500 to 4000 Oe, the residual magnetization film thickness product BrT is 20 to 100 Gm, the coercive force Hc of the perpendicular magnetic film is 1500 to 4000 Oe, and the film thickness is 10
The problem can be solved by a magnetic recording medium of 0 to 1000 °. The thickness of the perpendicular magnetic film is 100 to 600 °
And the product Br of the residual magnetization thickness of the in-plane magnetic film.
T is preferably set to 20 to 50 Gm. It is preferable that a separation film made of a material that can grow non-epitaxially on the in-plane magnetic film is provided between the in-plane magnetic film and the perpendicular magnetic film. ~ 20
Preferably, it is 0 °. It is preferable to provide a non-magnetic intermediate layer having an hcp structure between the separation film and the perpendicular magnetic film. The distance between the in-plane magnetic film and the perpendicular magnetic film is 1
Preferably, it is set at 0 to 500 °.
【0005】[0005]
【発明の実施の形態】図1は、本発明の磁気記録媒体の
一実施形態を示すもので、ここに示す磁気記録媒体は、
基板1上に、面内磁性膜下地膜2、面内磁性膜3、分離
膜4、非磁性中間層5、垂直磁性膜6、および保護膜7
を順次形成してなるものである。基板1としては、Ni
Pめっき膜を有するアルミニウム合金に加え、ガラス、
セラミックなどからなるものを用いることができる。ま
た、基板1は、その表面にメカニカルテクスチャ処理な
どのテクスチャ処理を施したものとしてもよい。FIG. 1 shows an embodiment of a magnetic recording medium according to the present invention. The magnetic recording medium shown in FIG.
On a substrate 1, an in-plane magnetic film base film 2, an in-plane magnetic film 3, a separation film 4, a non-magnetic intermediate layer 5, a perpendicular magnetic film 6, and a protective film 7
Are sequentially formed. As the substrate 1, Ni
In addition to an aluminum alloy having a P plating film, glass,
A material made of ceramic or the like can be used. Further, the substrate 1 may have a surface that has been subjected to texture processing such as mechanical texture processing.
【0006】面内磁性膜下地膜2は、面内磁性膜3内の
結晶のc軸を面内方向に向けるためのもので、Cr、ま
たはCrを主成分としたCr合金からなるものとするの
が好ましい。特に、Cr、Cr/Ti系合金、Cr/M
o系合金、Cr/W系合金、またはCr/V系合金を用
いるのが好適である。面内磁性膜下地膜2の厚さは、1
0〜1000Åとするのが好ましい。なお本明細書にお
いて、主成分とは当該成分を50at%を越えて含むこ
とを指す。The in-plane magnetic film base film 2 is for orienting the c-axis of the crystal in the in-plane magnetic film 3 in the in-plane direction, and is made of Cr or a Cr alloy containing Cr as a main component. Is preferred. Particularly, Cr, Cr / Ti alloy, Cr / M
It is preferable to use an o-based alloy, a Cr / W-based alloy, or a Cr / V-based alloy. The thickness of the in-plane magnetic film base film 2 is 1
Preferably it is 0-1000 °. In this specification, the term “main component” indicates that the content of the component exceeds 50 at%.
【0007】面内磁性膜3は、その磁化容易軸が主に面
内方向を向いたものである。面内磁性膜3の材料の好適
な具体例としては、Co/Cr系、Co/Cr/Ta
系、Co/Cr/Pt/Ta系、Co/Cr/Ni/P
t/Ta系、Co/Cr/Pt/Ta/Zr系合金を挙
げることができる。中でも特に、Crの含有率が12〜
25at%、Ptの含有率が0〜15at%、Taの含
有率が1〜10at%、Zr、Re、Cu、およびVの
うち1種以上の含有率が0〜10at%、残部がCoか
らなるCo合金を主成分とするものを用いるのが好まし
い。The in-plane magnetic film 3 has its easy axis of magnetization mainly oriented in the in-plane direction. Preferred specific examples of the material of the in-plane magnetic film 3 include Co / Cr-based and Co / Cr / Ta.
System, Co / Cr / Pt / Ta system, Co / Cr / Ni / P
t / Ta-based and Co / Cr / Pt / Ta / Zr-based alloys. In particular, the content of Cr is 12 to
25 at%, the Pt content is 0 to 15 at%, the Ta content is 1 to 10 at%, the content of at least one of Zr, Re, Cu, and V is 0 to 10 at%, and the balance is Co. It is preferable to use one containing a Co alloy as a main component.
【0008】面内磁性膜3の保磁力Hcは、1500〜
4000Oe(さらに好ましくは2000〜3500O
e)の範囲に設定される。このHcが1500Oe未満
であると、垂直磁性膜のみを有する垂直磁気記録媒体と
同様、再生時に得られる孤立波形が単峰型とならず、汎
用の面内磁気記録媒体を再生する際に用いられる信号処
理法の適用が難しくなる。またHcが4000Oeを越
えると、面内磁性膜3の記録特性が低下し再生信号出力
の低下が起きやすくなる。また再生波形の単峰化が不十
分となったり、ノイズが増大するなどの不都合が生じや
すくなる。The coercive force Hc of the in-plane magnetic film 3 is 1500 to
4000 Oe (more preferably 2000 to 3500 O
e) is set in the range. When this Hc is less than 1500 Oe, the isolated waveform obtained at the time of reproduction does not become a single peak type as in the case of the perpendicular magnetic recording medium having only the perpendicular magnetic film, and is used when reproducing a general-purpose in-plane magnetic recording medium. It becomes difficult to apply the signal processing method. If Hc exceeds 4000 Oe, the recording characteristics of the in-plane magnetic film 3 deteriorate, and the output of the reproduced signal tends to decrease. Further, inconveniences such as insufficient reproduction of a single peak and an increase in noise are likely to occur.
【0009】面内磁性膜3の残留磁化膜厚積BrTは2
0〜100Gμmとされる。このBrTが20Gμm未
満であると、十分な磁束が得られず、垂直磁性膜のみを
有する垂直磁気記録媒体と同様、再生時に得られる孤立
波形が単峰型とならず、汎用の面内磁気記録媒体を再生
する際に用いられる信号処理法の適用が難しくなる。ま
たBrTが100Gμmを越えると、面内磁性膜のみを
有する面内磁気記録媒体と同様、媒体ノイズが増加す
る。また再生パルス出力半値幅Pw50が悪化し、十分な
出力特性を得るのが難しくなる。面内磁性膜3のBrT
は、20〜50Gμmとするのがさらに好ましい。これ
は、BrTをこの範囲とすると、媒体ノイズをさらに低
く抑えることができるためである。The product BrT of the residual magnetization thickness of the in-plane magnetic film 3 is 2
0 to 100 Gm. If the BrT is less than 20 Gm, sufficient magnetic flux cannot be obtained, and the isolated waveform obtained at the time of reproduction does not become a single-peak type as in a perpendicular magnetic recording medium having only a perpendicular magnetic film. It becomes difficult to apply a signal processing method used when reproducing a medium. On the other hand, when BrT exceeds 100 Gm, medium noise increases as in the case of the longitudinal magnetic recording medium having only the longitudinal magnetic film. The worse the reproduction pulse output half width Pw 50, to obtain a sufficient output characteristics becomes difficult. BrT of in-plane magnetic film 3
Is more preferably 20 to 50 Gm. This is because when BrT is within this range, the medium noise can be further reduced.
【0010】分離膜4は、垂直磁性膜6の結晶のc軸を
基板に対し垂直方向に向け配向性を良好なものとするた
めのもので、面内磁性膜3に対し非エピタキシャル的に
成長することが可能な材料が用いられる。この材料とし
ては特に、表面自由エネルギーが非磁性中間層5の構成
材料の表面自由エネルギーより高い材料、またはアモル
ファス材料を用いると、分離膜4上に形成される非磁性
中間層5および垂直磁性膜6の結晶配向性を向上させ、
垂直磁性膜6の磁気異方性の乱れによる媒体ノイズを最
小限に抑えることができるため好ましい。The separation film 4 is provided for orienting the c-axis of the crystal of the perpendicular magnetic film 6 in a direction perpendicular to the substrate to improve the orientation, and is non-epitaxially grown on the in-plane magnetic film 3. Materials that can be used are used. In particular, when a material whose surface free energy is higher than the surface free energy of the constituent material of the nonmagnetic intermediate layer 5 or an amorphous material is used as this material, the nonmagnetic intermediate layer 5 and the perpendicular magnetic film formed on the separation film 4 are used. 6 to improve the crystal orientation,
This is preferable because medium noise due to disturbance of the magnetic anisotropy of the perpendicular magnetic film 6 can be minimized.
【0011】この材料としては、Ta、Re、CuT
i、SiC、W、NiP、Zr、Ti、およびCのうち
1種または2種以上を主成分とするもの用いるのが好適
である。なお、ここでいうCuTiとはCuおよびTi
からなる合金を指す。またSiCとはSiおよびCから
なる材料を指す。またNiPとはNiおよびPからなる
合金を指す。As this material, Ta, Re, CuT
It is preferable to use one or more of i, SiC, W, NiP, Zr, Ti, and C as main components. Here, CuTi means Cu and Ti
An alloy consisting of SiC refers to a material composed of Si and C. NiP refers to an alloy composed of Ni and P.
【0012】分離膜4の厚さは、5〜200Åとするの
が好ましい。この厚さが5Å未満であると、分離膜4上
に形成される非磁性中間層5が、その成膜時において、
面内方向の結晶配向性をもつ面内磁性膜3の影響を受け
やすくなり、その結晶配向性が乱れ、非磁性中間層5上
に形成される垂直磁性膜6の結晶配向性が乱れ、得られ
る磁気記録媒体の媒体ノイズが増加するおそれがある。
また、この厚さが200Åを越えると、面内磁性膜3と
垂直磁性膜6の離間距離が大きくなり、短記録波長時に
おける面内磁性膜3の記録特性が低下する。The thickness of the separation membrane 4 is preferably 5 to 200 °. If the thickness is less than 5 °, the non-magnetic intermediate layer 5 formed on the separation film 4
It is easily affected by the in-plane magnetic film 3 having the in-plane crystal orientation, the crystal orientation is disturbed, and the crystal orientation of the perpendicular magnetic film 6 formed on the non-magnetic intermediate layer 5 is disturbed. There is a possibility that the medium noise of the magnetic recording medium is increased.
On the other hand, if the thickness exceeds 200 °, the distance between the in-plane magnetic film 3 and the perpendicular magnetic film 6 increases, and the recording characteristics of the in-plane magnetic film 3 at the short recording wavelength deteriorate.
【0013】非磁性中間層5は、垂直磁性膜6の結晶配
向性をさらに良好なものとするためのもので、hcp構
造を有する非磁性材料が用いられ、Co/Cr系、Co
/Cr/Ta系、Co/Cr/Pt/X系(X:Ta、
Zr、Cu、Reのうち1種または2種以上)の合金を
用いるのが好適である。特に、Crの含有率が25〜5
0at%、Ptの含有率が0〜15at%、Xの含有率
が0〜10at%、残部がCoからなるCo合金を主成
分とするものを用いるのが好ましい。非磁性中間層5
は、単層構造としてもよいし、上記材料からなる複数の
層が積層した多層構造としてもよい。The non-magnetic intermediate layer 5 is used for further improving the crystal orientation of the perpendicular magnetic film 6, and is made of a non-magnetic material having an hcp structure.
/ Cr / Ta system, Co / Cr / Pt / X system (X: Ta,
It is preferable to use an alloy of one or more of Zr, Cu, and Re). In particular, the content of Cr is 25 to 5
It is preferable to use a material whose main component is a Co alloy having 0 at%, a Pt content of 0 to 15 at%, an X content of 0 to 10 at%, and a balance of Co. Non-magnetic intermediate layer 5
May have a single-layer structure or a multilayer structure in which a plurality of layers made of the above materials are stacked.
【0014】非磁性中間層5の厚さは、20〜400Å
とするのが好ましい。この厚さが20Å未満である場合
には、非磁性中間層5上に垂直磁性膜6を形成する際、
初期成長時において垂直磁性膜6の結晶配向性が乱れや
すくなり、得られる磁気記録媒体の媒体ノイズが増加す
るおそれがある。また、この厚さが400Åを越える
と、面内磁性膜3と垂直磁性膜6の離間距離が大きくな
り、短記録波長時における面内磁性膜3の記録特性が低
下する。The thickness of the nonmagnetic intermediate layer 5 is 20 to 400 °
It is preferred that When the thickness is less than 20 °, when forming the perpendicular magnetic film 6 on the non-magnetic intermediate layer 5,
At the time of initial growth, the crystal orientation of the perpendicular magnetic film 6 is likely to be disturbed, and the medium noise of the obtained magnetic recording medium may increase. On the other hand, if the thickness exceeds 400 °, the distance between the in-plane magnetic film 3 and the perpendicular magnetic film 6 increases, and the recording characteristics of the in-plane magnetic film 3 at the short recording wavelength deteriorate.
【0015】分離膜4と非磁性中間層5の合計膜厚、す
なわち面内磁性膜3と垂直磁性膜6の離間距離は、10
〜500Åとするのが好ましい。この厚さが10Å未満
であると、垂直磁性膜6の結晶配向性が乱れやすくな
り、十分な保磁力が得られなくなるおそれがある。また
この厚さが500Åを越えると、面内磁性膜3と垂直磁
性膜6の離間距離が大きくなり、短記録波長時における
面内磁性膜3の記録特性が低下する。The total thickness of the separation film 4 and the non-magnetic intermediate layer 5, that is, the distance between the in-plane magnetic film 3 and the perpendicular magnetic film 6, is 10
It is preferable to set it to 500 °. When the thickness is less than 10 °, the crystal orientation of the perpendicular magnetic film 6 tends to be disordered, and a sufficient coercive force may not be obtained. If the thickness exceeds 500 °, the distance between the in-plane magnetic film 3 and the perpendicular magnetic film 6 increases, and the recording characteristics of the in-plane magnetic film 3 at the short recording wavelength deteriorate.
【0016】垂直磁性膜6は、その磁化容易軸が基板に
対し主に垂直方向に向いたものである。垂直磁性膜6の
材料としては、Co/Cr系、Co/Cr/Ta系、C
o/Cr/Pt/Ta系、Co/Cr/Ni/Pt/T
a系、Co/Cr/Pt/Ta/Zr系合金を用いるこ
とができる。中でも特に、Crの含有率が16〜30a
t%、Ptの含有率が0〜15at%、Taの含有率が
2〜10at%、Zrの含有率が0〜5at%、残部が
CoからなるCo合金を主成分とするものを用いるのが
好ましい。The perpendicular magnetic film 6 has an axis of easy magnetization oriented mainly in a direction perpendicular to the substrate. As the material of the perpendicular magnetic film 6, Co / Cr-based, Co / Cr / Ta-based, C
o / Cr / Pt / Ta system, Co / Cr / Ni / Pt / T
An a-based or Co / Cr / Pt / Ta / Zr-based alloy can be used. In particular, the content of Cr is 16 to 30a.
t%, Pt content is 0 to 15 at%, Ta content is 2 to 10 at%, Zr content is 0 to 5 at%, and the balance is mainly composed of Co alloy. preferable.
【0017】垂直磁性膜6の保磁力Hcは、1500〜
4000Oe(さらに好ましくは2000〜3500O
e)の範囲に設定される。このHcが1500Oe未満
であると、角形比S(=残留磁束密度Br/飽和磁束密
度Bs)が低くなり、出力も低下し、SNRが悪化す
る。またHcが4000Oeを越えると、垂直磁性膜6
の記録特性が低下するため好ましくない。The coercive force Hc of the perpendicular magnetic film 6 is 1500 to
4000 Oe (more preferably 2000 to 3500 O
e) is set in the range. If this Hc is less than 1500 Oe, the squareness ratio S (= residual magnetic flux density Br / saturated magnetic flux density Bs) decreases, the output also decreases, and the SNR deteriorates. If Hc exceeds 4000 Oe, the perpendicular magnetic film 6
Is not preferable because the recording characteristics of the recording medium deteriorate.
【0018】垂直磁性膜6の厚さは、100〜1000
Åとされる。この厚さが100Å未満であると、十分な
磁束が得られず、面内磁性膜のみを有する面内磁気記録
媒体と同様、媒体ノイズが増加する。また再生パルス出
力半値幅Pw50が悪化し、十分な出力特性を得るのが難
しくなる。またこの厚さが1000Åを越えると、再生
時に得られる孤立波形が単峰型とならず、汎用の面内磁
気記録媒体を再生する際に用いられる信号処理法の適用
が難しくなる。垂直磁性膜6の厚さは、100〜600
Åとするのがさらに好ましい。これは、この厚さをこの
範囲とすると、垂直磁性膜6内の磁性粒子の粗大化を防
ぎ、ノイズ特性をより高めることができるためである。The thickness of the perpendicular magnetic film 6 is 100 to 1000
さ れ る. If the thickness is less than 100 °, a sufficient magnetic flux cannot be obtained, and the medium noise increases as in the case of the longitudinal magnetic recording medium having only the longitudinal magnetic film. The worse the reproduction pulse output half width Pw 50, to obtain a sufficient output characteristics becomes difficult. On the other hand, if the thickness exceeds 1000 °, the isolated waveform obtained at the time of reproduction does not become a single peak type, and it becomes difficult to apply a signal processing method used when reproducing a general-purpose in-plane magnetic recording medium. The thickness of the perpendicular magnetic film 6 is 100 to 600.
Å is more preferable. This is because, when the thickness is in this range, the magnetic particles in the perpendicular magnetic film 6 can be prevented from becoming coarse and the noise characteristics can be further improved.
【0019】保護膜7は、カーボンからなるものとする
のが好ましい。保護膜7の厚さは、20〜100Åとす
るのが好ましい。また、保護膜7上には、パーフルオロ
ポリエーテル(PFPE)などからなる潤滑膜を形成す
ることも可能である。The protective film 7 is preferably made of carbon. The thickness of the protective film 7 is preferably set to 20 to 100 °. Further, a lubricating film made of perfluoropolyether (PFPE) or the like can be formed on the protective film 7.
【0020】上記構成の磁気記録媒体を製造するには、
まず、基板1上に、上記非磁性下地膜2ないし垂直磁性
膜6をスパッタリング、真空蒸着、イオンプレーティン
グ、めっきなどの手法により形成する。続いて保護膜7
を、スパッタリング、プラズマCVD法、イオンビーム
法等により形成する。また、保護膜7上に潤滑膜を形成
するには、ディッピング法などを採用することができ
る。To manufacture the magnetic recording medium having the above structure,
First, the nonmagnetic base film 2 or the perpendicular magnetic film 6 is formed on the substrate 1 by a technique such as sputtering, vacuum deposition, ion plating, and plating. Subsequently, the protective film 7
Is formed by sputtering, a plasma CVD method, an ion beam method, or the like. To form a lubricating film on the protective film 7, a dipping method or the like can be adopted.
【0021】上記構成の磁気記録媒体にあっては、面内
磁性膜3および垂直磁性膜6を備え、面内磁性膜3の保
磁力Hcが1500〜4000Oe、残留磁化膜厚積B
rTが20〜100Gμmであり、垂直磁性膜6の保磁
力Hcが1500〜4000Oe、膜厚が100〜10
00Åであるものとしたので、再生時に得られる孤立波
形がダイパルスとならず、汎用の面内磁気記録媒体を再
生する際に用いられる信号処理法の適用が可能となり、
しかも反転磁化遷移領域の増大等による媒体ノイズや、
磁性粒子粗大化による粒子性ノイズが低く抑えられ、ノ
イズ特性に優れたものとなる。The magnetic recording medium having the above-described structure includes the in-plane magnetic film 3 and the perpendicular magnetic film 6, wherein the in-plane magnetic film 3 has a coercive force Hc of 1500 to 4000 Oe, and a residual magnetization film thickness product B
rT is 20 to 100 Gm, the coercive force Hc of the perpendicular magnetic film 6 is 1500 to 4000 Oe, and the film thickness is 100 to 10
Since it is assumed to be 00 °, an isolated waveform obtained at the time of reproduction does not become a dipulse, and a signal processing method used when reproducing a general-purpose in-plane magnetic recording medium can be applied.
Moreover, medium noise due to an increase in the reversal magnetization transition region and the like,
Particulate noise due to coarsening of magnetic particles is suppressed to be low, and the noise characteristics are excellent.
【0022】また、面内磁性膜3と垂直磁性膜6の間
に、面内磁性膜3に対し非エピタキシャル的に成長する
ことが可能な材料からなる分離膜4を設けることによっ
て、分離膜4上に形成される非磁性中間層5および垂直
磁性膜6の垂直方向の配向性を向上させ、垂直磁性膜6
の磁気異方性を高め、媒体ノイズを低下させることがで
きる。これに対し、分離膜4の材料として面内磁性膜3
に対しエピタキシャル成長するものを用いた場合には、
面内異方性を有する面内磁性膜3の影響によって、垂直
磁性膜6の配向性が乱れるおそれがある。The separation film 4 made of a material capable of growing non-epitaxially on the in-plane magnetic film 3 is provided between the in-plane magnetic film 3 and the perpendicular magnetic film 6. The vertical orientation of the non-magnetic intermediate layer 5 and the perpendicular magnetic film 6 formed thereon is improved,
Can be increased and the medium noise can be reduced. On the other hand, the in-plane magnetic film 3 is used as the material of the separation film 4.
In the case where an epitaxial growth is used for
The orientation of the perpendicular magnetic film 6 may be disturbed by the influence of the in-plane magnetic film 3 having in-plane anisotropy.
【0023】また、この分離膜と垂直磁性膜の間に、h
cp構造を有する非磁性中間層を設けることによって、
垂直磁性膜6の初期成長時の配向性の乱れを防ぎ、その
磁気異方性を高め、媒体ノイズを低下させることができ
る。Further, between the separation film and the perpendicular magnetic film, h
By providing a non-magnetic intermediate layer having a cp structure,
Disturbance of the orientation during the initial growth of the perpendicular magnetic film 6 can be prevented, its magnetic anisotropy can be increased, and medium noise can be reduced.
【0024】[0024]
【実施例】(試験例1)表面にNiPめっき膜(厚さ1
5μm)を形成したアルミニウム合金基板(直径84m
m、厚さ0.8mm)の表面に、表面平均粗さRaが1
5Åとなるようにメカニカルテクスチャ加工を施した
後、この基板1をDCマグネトロンスパッタ装置(アネ
ルバ社製3010)のチャンバ内にセットした。チャン
バ内を真空到達度2×10-7Paとなるまで排気し、基
板1を200℃まで加熱した後、この基板1上に、Cr
−15at%Ti−3at%Mo(以下、Cr15Ti
3Moという)からなる面内磁性膜下地膜2(厚さ50
0Å)、Co−13at%Cr−6at%Pt−3at
%Ta(Co13Cr6Pt3Ta)からなる面内磁性
膜3、カーボンからなる分離膜4、Co−40at%C
r(Co40Cr)からなる非磁性中間層5、Co−1
8at%Cr−6at%Pt−3at%Ta(Co18
Cr6Pt3Ta)からなる垂直磁性膜6を順次スパッ
タリングにより形成した。垂直磁性膜6上には、引続
き、厚さ100Åのカーボン保護膜を形成し、次いで、
カーボン保護膜上に潤滑剤を塗布し、PFPEからなる
潤滑膜(厚さ20Å)を形成し、磁気記録媒体を得た。EXAMPLES (Test Example 1) NiP plating film (thickness 1) on the surface
5 μm) formed aluminum alloy substrate (diameter 84 m)
m, thickness 0.8 mm), the surface average roughness Ra is 1
After subjecting the substrate to mechanical texture processing so as to be 5 °, the substrate 1 was set in a chamber of a DC magnetron sputtering apparatus (3010 manufactured by Anelva). The inside of the chamber was evacuated until the vacuum reached 2 × 10 −7 Pa, and the substrate 1 was heated to 200 ° C.
-15 at% Ti-3 at% Mo (hereinafter referred to as Cr15Ti
3Mo).
0%), Co-13at% Cr-6at% Pt-3at
% Ta (Co13Cr6Pt3Ta) in-plane magnetic film 3, carbon separation film 4, Co-40 at% C
nonmagnetic intermediate layer 5 made of r (Co40Cr), Co-1
8 at% Cr-6 at% Pt-3 at% Ta (Co18
A perpendicular magnetic film 6 made of Cr6Pt3Ta) was sequentially formed by sputtering. Subsequently, a carbon protective film having a thickness of 100 ° is formed on the perpendicular magnetic film 6.
A lubricant was applied on the carbon protective film to form a lubricating film (thickness: 20 °) made of PFPE to obtain a magnetic recording medium.
【0025】(試験例2〜4)成膜時の基板加熱温度を
変化させることによって面内磁性膜3の保磁力Hcを変
えて磁気記録媒体を作製した。(Test Examples 2 to 4) Magnetic recording media were manufactured by changing the coercive force Hc of the in-plane magnetic film 3 by changing the substrate heating temperature during film formation.
【0026】(試験例5〜10)面内磁性膜3のBrT
を変えて磁気記録媒体を作製した。(Test Examples 5 to 10) BrT of in-plane magnetic film 3
Was changed to produce a magnetic recording medium.
【0027】(試験例11〜19)垂直磁性膜6の保磁
力Hcまたは厚さを変えて磁気記録媒体を作製した。(Test Examples 11 to 19) Magnetic recording media were manufactured by changing the coercive force Hc or the thickness of the perpendicular magnetic film 6.
【0028】(試験例20)分離膜4を形成しないこと
以外は試験例16と同様にして磁気記録媒体を作製し
た。Test Example 20 A magnetic recording medium was manufactured in the same manner as in Test Example 16 except that the separation film 4 was not formed.
【0029】(試験例21)非磁性中間層5を形成しな
いこと以外は試験例16と同様にして磁気記録媒体を作
製した。Test Example 21 A magnetic recording medium was manufactured in the same manner as in Test Example 16, except that the nonmagnetic intermediate layer 5 was not formed.
【0030】(試験例22)分離膜4および非磁性中間
層5を形成しないこと以外は試験例16と同様にして磁
気記録媒体を作製した。Test Example 22 A magnetic recording medium was manufactured in the same manner as in Test Example 16 except that the separation film 4 and the nonmagnetic intermediate layer 5 were not formed.
【0031】上記各試験例の磁気記録媒体の静磁気特性
を振動式磁気特性測定装置(VSM)を用いて測定し
た。また、これら磁気記録媒体の記録再生特性を、再生
部に磁気抵抗(MR)素子を有する複合型薄膜磁気ヘッ
ドを用い、線記録密度240kFCIにて測定した。測
定結果を表1に示す。SNR(Signal Nois
e Ratio)を測定する際には、孤立波を測定対象
として信号量(Signal)を測定した。The magnetostatic properties of the magnetic recording media of each of the above test examples were measured using a vibration type magnetic property measuring device (VSM). The recording and reproducing characteristics of these magnetic recording media were measured at a linear recording density of 240 kFCI using a composite type thin film magnetic head having a magnetoresistive (MR) element in the reproducing section. Table 1 shows the measurement results. SNR (Signal Nois
e Ratio), the signal amount (Signal) was measured with a solitary wave as a measurement target.
【0032】[0032]
【表1】 [Table 1]
【0033】表1より、面内磁性膜3の保磁力Hcを1
500〜4000Oeの範囲とした試験例2、3の磁気
記録媒体は、保磁力Hcを上記範囲を越える値に設定し
た試験例4の磁気記録媒体に比べ、ノイズ特性に優れた
ものとなったことがわかる。また、試験例2、3の磁気
記録媒体の再生時に得られた孤立波形は単峰型となった
のに対し、保磁力Hcを上記範囲を下回る値に設定した
試験例1の磁気記録媒体の再生時に得られた孤立波形は
ダイパルス波形を含むものとなり、単峰型とならなかっ
た。As shown in Table 1, the coercive force Hc of the in-plane magnetic film 3 is 1
The magnetic recording media of Test Examples 2 and 3 in the range of 500 to 4000 Oe had better noise characteristics than the magnetic recording media of Test Example 4 in which the coercive force Hc was set to a value exceeding the above range. I understand. In addition, while the isolated waveforms obtained during reproduction of the magnetic recording media of Test Examples 2 and 3 were unimodal, the coercive force Hc of the magnetic recording medium of Test Example 1 was set to a value below the above range. The isolated waveform obtained at the time of reproduction contained a dipulse waveform, and did not become a single peak type.
【0034】また、面内磁性膜3の残留磁化膜厚積Br
Tを20〜100Gμmとした試験例6〜8の磁気記録
媒体は、BrTを上記範囲を越える値に設定した試験例
9、10の磁気記録媒体に比べ、ノイズ特性に優れたも
のとなったことがわかる。中でも特に、BrTを20〜
50Gμmの範囲に設定した試験例6、7の磁気記録媒
体は、より優れたノイズ特性を有するものとなったこと
がわかる。また、試験例6〜8の磁気記録媒体では、再
生時に得られた孤立波形が単峰型となったのに対し、B
rTを上記範囲を下回る値に設定した試験例5の磁気記
録媒体の再生時に得られた波形はダイパルス波形を含む
ものとなり、単峰型とならなかった。Further, the product Br of the residual magnetization thickness of the in-plane magnetic film 3
The magnetic recording media of Test Examples 6 to 8 in which T was 20 to 100 Gm had better noise characteristics than the magnetic recording media of Test Examples 9 and 10 in which BrT was set to a value exceeding the above range. I understand. In particular, BrT is 20 to
It can be seen that the magnetic recording media of Test Examples 6 and 7 set in the range of 50 Gm had better noise characteristics. In the magnetic recording media of Test Examples 6 to 8, the isolated waveform obtained at the time of reproduction was a single-peak type, whereas
The waveform obtained during reproduction of the magnetic recording medium of Test Example 5 in which rT was set to a value lower than the above range included a dipulse waveform and did not become a single-peak type.
【0035】また、垂直磁性膜6の保磁力Hcを150
0Oe以上とした試験例12、13の磁気記録媒体は、
保磁力Hcを1500Oe未満の値に設定した試験例1
1の磁気記録媒体に比べ、優れたノイズ特性を有するも
のとなったことがわかる。The coercive force Hc of the perpendicular magnetic film 6 is set to 150
The magnetic recording media of Test Examples 12 and 13 with 0 Oe or more were:
Test Example 1 in which coercive force Hc was set to a value less than 1500 Oe
It can be seen that the magnetic recording medium has excellent noise characteristics as compared with the magnetic recording medium of No. 1.
【0036】また、垂直磁性膜6の厚さを100〜10
00Åとした試験例15〜18の磁気記録媒体は、垂直
磁性膜6の厚さを上記範囲外に設定した試験例14、1
9の磁気記録媒体に比べ、優れたノイズ特性を有するも
のとなったことがわかる。中でも特に、厚さを100〜
600Åの範囲に設定した試験例15、16の磁気記録
媒体は、より優れたノイズ特性を有するものとなった。Further, the thickness of the perpendicular magnetic film 6 is set to 100 to 10
The magnetic recording media of Test Examples 15 to 18 in which the thickness of the perpendicular magnetic film 6 was set outside the above range were set to 00 °.
It can be seen that the magnetic recording medium has superior noise characteristics as compared with the magnetic recording medium No. 9. Especially, the thickness is 100 ~
The magnetic recording media of Test Examples 15 and 16 set in the range of 600 ° had better noise characteristics.
【0037】また、分離膜4を設けない試験例20、2
2の磁気記録媒体に比べ、分離膜4を有する磁気記録媒
体は、ノイズ特性に優れたものとなったことがわかる。
また、非磁性中間層5を設けない試験例21、22の磁
気記録媒体に比べ、非磁性中間層5を有する磁気記録媒
体は、ノイズ特性に優れたものとなったことがわかる。In Test Examples 20 and 2 where the separation membrane 4 was not provided,
It can be seen that the magnetic recording medium having the separation film 4 was superior to the magnetic recording medium No. 2 in the noise characteristics.
Further, it can be seen that the magnetic recording medium having the nonmagnetic intermediate layer 5 was superior in the noise characteristics to the magnetic recording media of Test Examples 21 and 22 in which the nonmagnetic intermediate layer 5 was not provided.
【0038】[0038]
【発明の効果】以上説明したように、本発明の磁気記録
媒体にあっては、汎用の面内磁気記録媒体を再生する際
に用いられる信号処理法の適用が可能となり、しかもノ
イズ特性に優れたものとなる。As described above, in the magnetic recording medium of the present invention, the signal processing method used when reproducing a general-purpose in-plane magnetic recording medium can be applied, and the magnetic recording medium has excellent noise characteristics. It will be.
【図1】 本発明の磁気記録媒体の一実施形態を示す一
部断面図である。FIG. 1 is a partial cross-sectional view showing one embodiment of a magnetic recording medium of the present invention.
1・・・基板、3・・・面内磁性膜、4・・・分離膜、5・・・非磁
性中間層、6・・・垂直磁性膜DESCRIPTION OF SYMBOLS 1 ... Substrate, 3 ... In-plane magnetic film, 4 ... Separation film, 5 ... Non-magnetic intermediate layer, 6 ... Perpendicular magnetic film
───────────────────────────────────────────────────── フロントページの続き (72)発明者 酒井 浩志 千葉県市原市八幡海岸通5−1 昭和電工 株式会社HD研究開発センター内 (72)発明者 逢坂 哲彌 東京都新宿区大久保三丁目4番1号 学校 法人早稲田大学理工学部内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Sakai 5-1 Yawata Kaigandori, Ichihara-shi, Chiba Prefecture Showa Denko HD Research & Development Center (72) Inventor Tetsuya Osaka 3-4-1 Okubo Shinjuku-ku, Tokyo No. School of Science and Engineering, Waseda University
Claims (7)
方向に配向した面内磁性膜と、磁化容易軸が基板に対し
垂直に配向した垂直磁性膜を備え、 面内磁性膜が垂直磁性膜よりも基板側に設けられ、その
保磁力Hcが1500〜4000Oe、残留磁化膜厚積
BrTが20〜100Gμmであり、 垂直磁性膜の保磁力Hcが1500〜4000Oe、膜
厚が100〜1000Åであることを特徴とする磁気記
録媒体。1. An in-plane magnetic film having an easy axis of magnetization oriented in the in-plane direction with respect to the substrate, and a perpendicular magnetic film having an easy axis of magnetization oriented perpendicular to the substrate, wherein the in-plane magnetic film is formed on the substrate. The coercive force Hc of the perpendicular magnetic film is 1500 to 4000 Oe, the coercive force Hc of the perpendicular magnetic film is 1500 to 4000 Oe, and the film thickness is 100 to 4000 Oe. A magnetic recording medium having a thickness of 1000 °.
垂直磁性膜の膜厚が100〜600Åであることを特徴
とする磁気記録媒体。2. The magnetic recording medium according to claim 1, wherein
A magnetic recording medium, wherein the perpendicular magnetic film has a thickness of 100 to 600 °.
おいて、面内磁性膜の残留磁化膜厚積BrTが20〜5
0Gμmであることを特徴とする磁気記録媒体。3. The magnetic recording medium according to claim 1, wherein a product BrT of a residual magnetization thickness of the in-plane magnetic film is 20 to 5.
A magnetic recording medium having a thickness of 0 Gm.
磁気記録媒体において、面内磁性膜と垂直磁性膜の間
に、面内磁性膜に対し非エピタキシャル的に成長するこ
とが可能な材料からなる分離膜を設けたことを特徴とす
る磁気記録媒体。4. The magnetic recording medium according to claim 1, wherein the non-epitaxial growth can be performed between the in-plane magnetic film and the perpendicular magnetic film with respect to the in-plane magnetic film. A magnetic recording medium provided with a separation film made of various materials.
分離膜の厚さが5〜200Åであることを特徴とする磁
気記録媒体。5. The magnetic recording medium according to claim 4, wherein
A magnetic recording medium, wherein the thickness of the separation film is 5 to 200 °.
において、分離膜と垂直磁性膜の間に、hcp構造を有
する非磁性中間層を設けたことを特徴とする磁気記録媒
体。6. The magnetic recording medium according to claim 4, wherein a nonmagnetic intermediate layer having an hcp structure is provided between the separation film and the perpendicular magnetic film.
磁気記録媒体において、面内磁性膜と垂直磁性膜の離間
距離が10〜500Åであることを特徴とする磁気記録
媒体。7. The magnetic recording medium according to claim 1, wherein a distance between the in-plane magnetic film and the perpendicular magnetic film is 10 to 500 °.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7984798A JPH11283229A (en) | 1998-03-26 | 1998-03-26 | Magnetic recording medium |
SG9901229A SG93828A1 (en) | 1998-03-26 | 1999-03-24 | Magnetic recording medium |
US09/276,466 US6274233B1 (en) | 1998-03-26 | 1999-03-25 | Magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7984798A JPH11283229A (en) | 1998-03-26 | 1998-03-26 | Magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11283229A true JPH11283229A (en) | 1999-10-15 |
Family
ID=13701602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7984798A Withdrawn JPH11283229A (en) | 1998-03-26 | 1998-03-26 | Magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11283229A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1249832A1 (en) * | 2001-04-13 | 2002-10-16 | Fujitsu Limited | Magnetic recording medium using a perpendicular magnetic film and an in-plane magnetic film |
-
1998
- 1998-03-26 JP JP7984798A patent/JPH11283229A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1249832A1 (en) * | 2001-04-13 | 2002-10-16 | Fujitsu Limited | Magnetic recording medium using a perpendicular magnetic film and an in-plane magnetic film |
US6835444B2 (en) | 2001-04-13 | 2004-12-28 | Fujitsu Limited | Magnetic recording medium using a perpendicular magnetic film having a tBr not exceeding one-fifth of a tBr of an in-plane magnetic film |
KR100766511B1 (en) * | 2001-04-13 | 2007-10-15 | 후지쯔 가부시끼가이샤 | Magnetic recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3652976B2 (en) | Perpendicular magnetic recording medium and magnetic storage device using the same | |
JP4380577B2 (en) | Perpendicular magnetic recording medium | |
JP2000187836A (en) | Ultrathin nucleus forming layer for magnetic thin film medium and its production | |
JP2008176858A (en) | Perpendicular magnetic recording medium and hard disk drive using the same | |
JP3701593B2 (en) | Perpendicular magnetic recording medium and magnetic storage device | |
JP5337451B2 (en) | Perpendicular magnetic recording medium | |
KR20070067600A (en) | Perpendicular magnetic recording disk with ultrathin nucleation film for improved corrosion resistance and method for making the disk | |
US7833640B2 (en) | Intermediate tri-layer structure for perpendicular recording media | |
JP4707265B2 (en) | Perpendicular magnetic recording medium | |
US6274233B1 (en) | Magnetic recording medium | |
JP2008065879A (en) | Perpendicular magnetic recording medium | |
JP2011014191A (en) | Perpendicular magnetic recording medium and magnetic storage device | |
US8071228B2 (en) | Perpendicular magnetic recording medium | |
JP2006185489A (en) | Magnetic recording medium and magnetic storage device | |
US6689497B1 (en) | Stabilized AFC magnetic recording media with reduced lattice mismatch between spacer layer(s) and magnetic layers | |
JP3588039B2 (en) | Magnetic recording medium and magnetic recording / reproducing device | |
JP3576372B2 (en) | Magnetic recording media | |
JPH11283227A (en) | Magnetic recording medium | |
JP4233710B2 (en) | Magnetic recording medium | |
JPH11283229A (en) | Magnetic recording medium | |
JP2009252308A (en) | Perpendicular magnetic recording medium | |
JPH11283228A (en) | Magnetic recording medium | |
US6090496A (en) | Magnetic recording medium and non-magnetic alloy film | |
JP2006004527A (en) | Perpendicular magnetic recording medium and manufacturing method therefor | |
JP5342935B2 (en) | Perpendicular magnetic recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050607 |