JPH11283228A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH11283228A
JPH11283228A JP7984698A JP7984698A JPH11283228A JP H11283228 A JPH11283228 A JP H11283228A JP 7984698 A JP7984698 A JP 7984698A JP 7984698 A JP7984698 A JP 7984698A JP H11283228 A JPH11283228 A JP H11283228A
Authority
JP
Japan
Prior art keywords
film
magnetic
recording medium
magnetic film
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7984698A
Other languages
Japanese (ja)
Inventor
Toshihiko Yoshikawa
利彦 吉川
Akira Sakawaki
彰 坂脇
Hiroshi Sakai
浩志 酒井
Tetsuya Aisaka
哲彌 逢坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Waseda University filed Critical Showa Denko KK
Priority to JP7984698A priority Critical patent/JPH11283228A/en
Priority to SG9901229A priority patent/SG93828A1/en
Priority to US09/276,466 priority patent/US6274233B1/en
Publication of JPH11283228A publication Critical patent/JPH11283228A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic recording medium having excellent noise characteristics in which the signal processing method generally used when an inside magnetic recording medium is used can be used as it is. SOLUTION: This magnetic recording medium has an inside magnetic film 3 with the axis of easy magnetization oriented in the plane direction of the substrate, and a perpendicular magnetic film 6 with the axis of easy magnetization perpendicular to the substrate 1 on the substrate 1. The inside magnetic film 3 is formed nearer to the substrate 1 than the perpendicular magnetic film 6, and a separation film 4 is formed between the inside magnetic film 3 and the perpendicular magnetic film 6. The separation film 4 essentially consists of one or more elements selected from Ta, Re, CuTi, SiC, W, NiP, Zr, Ti and C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁気記録媒体に関
するものであり、特に、ノイズ特性に優れた磁気記録媒
体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium, and more particularly to a magnetic recording medium having excellent noise characteristics.

【0002】[0002]

【従来の技術】現在市販されている磁気記録媒体は、磁
性膜内の磁化容易軸が主に基板に対し水平に配向した面
内磁気記録媒体がほとんどである。このような面内磁気
記録媒体では、高記録密度化するとビット体積が小さく
なりすぎ、熱揺らぎ効果等により再生特性が悪化する可
能性がある。また、高記録密度化した際に、磁化反転遷
移領域の増大等により媒体ノイズが増加することがある
ことも知られている。これに対し、磁性膜内の磁化容易
軸が基板に対し垂直に配向した、いわゆる垂直磁気記録
媒体は、高記録密度化した場合でも、急峻な磁化転移が
形成され、記録密度が増大していくにつれ減磁界が小さ
くなり安定化するため低ノイズ化が可能であり、しかも
比較的ビット体積が大きくても高記録密度化が可能であ
ることから、近年大きな注目を集めている。しかしなが
ら垂直磁気記録媒体は、再生波形が面内磁気記録媒体と
異なる、すなわち孤立波形が単峰型とならずダイパルス
波形を含むものとなるため、面内磁気記録媒体を使用す
る際に一般的に用いられている信号処理方法をそのまま
適用するのは難しい。このため、面内磁性膜と垂直磁性
膜の2つの膜を備え、面内磁気記録媒体に用いられるも
のと同じ信号処理法の使用を可能とした垂直面内複合型
磁気記録媒体が提案されている。
2. Description of the Related Art Most magnetic recording media currently on the market are in-plane magnetic recording media in which the axis of easy magnetization in a magnetic film is mainly oriented horizontally to a substrate. In such an in-plane magnetic recording medium, when the recording density is increased, the bit volume becomes too small, and the reproduction characteristics may be deteriorated due to a thermal fluctuation effect or the like. It is also known that when the recording density is increased, medium noise may increase due to an increase in the magnetization reversal transition region and the like. On the other hand, in a so-called perpendicular magnetic recording medium in which the easy axis of magnetization in the magnetic film is oriented perpendicular to the substrate, a steep magnetization transition is formed and the recording density increases even when the recording density is increased. As the demagnetizing field becomes smaller and more stable, noise can be reduced, and high recording density can be achieved even with a relatively large bit volume. However, a perpendicular magnetic recording medium is different from an in-plane magnetic recording medium in that the reproduced waveform is different from the in-plane magnetic recording medium, that is, the isolated waveform is not a single-peak type but includes a dipulse waveform. It is difficult to apply the used signal processing method as it is. For this reason, a perpendicular in-plane composite magnetic recording medium has been proposed which has two films, an in-plane magnetic film and a perpendicular magnetic film, and enables the use of the same signal processing method as that used for the in-plane magnetic recording medium. I have.

【0003】[0003]

【発明が解決しようとする課題】近年では、磁気記録媒
体の更なる高記録密度化が要望されており、これに伴い
ノイズ特性の向上が要求されてきている。しかしながら
従来の磁気記録媒体では、そのノイズ特性が決して満足
できるものでなく、よりノイズ特性に優れた磁気記録媒
体が要望されていた。本発明は、上記事情に鑑みてなさ
れたもので、面内磁気記録媒体を使用する際に一般的に
用いられている信号処理方法をそのまま適用可能であ
り、しかもノイズ特性に優れた磁気記録媒体を提供する
ことを目的とする。
In recent years, there has been a demand for a higher recording density of a magnetic recording medium, and accordingly, an improvement in noise characteristics has been demanded. However, the noise characteristics of conventional magnetic recording media have never been satisfactory, and there has been a demand for magnetic recording media having better noise characteristics. The present invention has been made in view of the above circumstances, and a signal processing method generally used when using a longitudinal magnetic recording medium can be applied as it is, and a magnetic recording medium having excellent noise characteristics. The purpose is to provide.

【0004】[0004]

【課題を解決するための手段】上記課題は、基板上に、
磁化容易軸が基板に対し面内方向に配向した面内磁性膜
と、磁化容易軸が基板に対し垂直に配向した垂直磁性膜
を備え、面内磁性膜が垂直磁性膜よりも基板側に設けら
れ、面内磁性膜と垂直磁性膜の間に、分離膜が設けら
れ、この分離膜が、Ta、Re、CuTi、SiC、
W、NiP、Zr、Ti、およびCのうち1種または2
種以上を主成分とするものである磁気記録媒体によって
解決される。分離膜の膜厚は5〜200Åとするのが好
ましい。また、分離膜と垂直磁性膜の間には、hcp構
造を有する非磁性中間層を設けるのが好ましい。また、
面内磁性膜の基板側には、面内磁性膜下地膜を設け、こ
の面内磁性膜下地膜を、Cr、またはCrにTi、M
o、W、Vのうち1種以上を添加した合金を主成分とす
るものとするのが好ましい。面内磁性膜は、Crの含有
率が12〜25at%、Ptの含有率が0〜15at
%、Taの含有率が1〜10at%、Zr、Re、C
u、およびVのうち1種以上の含有率が0〜10at
%、残部がCoからなるCo合金を主成分とするものと
するのが好ましい。
Means for Solving the Problems The above object is achieved on a substrate by:
Equipped with an in-plane magnetic film in which the easy axis is oriented in the in-plane direction to the substrate and a perpendicular magnetic film in which the easy axis is oriented perpendicular to the substrate, and the in-plane magnetic film is provided closer to the substrate than the perpendicular magnetic film. A separation film is provided between the in-plane magnetic film and the perpendicular magnetic film, and this separation film is made of Ta, Re, CuTi, SiC,
One or two of W, NiP, Zr, Ti, and C
The problem is solved by a magnetic recording medium having at least one species as a main component. The thickness of the separation membrane is preferably 5 to 200 °. Preferably, a non-magnetic intermediate layer having an hcp structure is provided between the separation film and the perpendicular magnetic film. Also,
An in-plane magnetic film base film is provided on the substrate side of the in-plane magnetic film, and the in-plane magnetic film base film is formed of Cr or Cr on Ti, M
It is preferable to use an alloy containing at least one of o, W, and V as a main component. The in-plane magnetic film has a Cr content of 12 to 25 at% and a Pt content of 0 to 15 at%.
%, Ta content is 1 to 10 at%, Zr, Re, C
The content of at least one of u and V is 0 to 10 at.
%, The balance being preferably a Co alloy composed of Co as the main component.

【0005】[0005]

【発明の実施の形態】図1は、本発明の磁気記録媒体の
一実施形態を示すもので、ここに示す磁気記録媒体は、
基板1上に、面内磁性膜下地膜2、面内磁性膜3、分離
膜4、非磁性中間層5、垂直磁性膜6、および保護膜7
を順次形成してなるものである。基板1としては、Ni
Pめっき膜を有するアルミニウム合金に加え、ガラス、
セラミックなどからなるものを用いることができる。ま
た、基板1は、その表面にメカニカルテクスチャ処理な
どのテクスチャ処理を施したものとしてもよい。
FIG. 1 shows an embodiment of a magnetic recording medium according to the present invention. The magnetic recording medium shown in FIG.
On a substrate 1, an in-plane magnetic film base film 2, an in-plane magnetic film 3, a separation film 4, a non-magnetic intermediate layer 5, a perpendicular magnetic film 6, and a protective film 7
Are sequentially formed. As the substrate 1, Ni
In addition to an aluminum alloy having a P plating film, glass,
A material made of ceramic or the like can be used. Further, the substrate 1 may have a surface that has been subjected to texture processing such as mechanical texture processing.

【0006】面内磁性膜下地膜2は、面内磁性膜3内の
結晶のc軸を面内方向に向けるためのもので、Cr、ま
たはCrにTi、Mo、W、Vのうち1種以上を添加し
た合金を主成分とするものとするのが、面内磁性膜3の
結晶配向性向上の観点から好ましい。特に、Cr、Cr
/Ti系合金、Cr/Mo系合金、Cr/W系合金、ま
たはCr/V系合金を用いるのが好適である。具体例と
しては、Ti、Mo、W、またはVの含有率が1〜40
at%であり、残部がCrからなるCr合金を挙げるこ
とができる。面内磁性膜下地膜2の厚さは、10〜10
00Åとするのが好ましい。なお本明細書において、主
成分とは当該成分を50at%を越えて含むことを指
す。
The in-plane magnetic film base film 2 is for orienting the c-axis of the crystal in the in-plane magnetic film 3 in the in-plane direction. Cr or Cr is one of Ti, Mo, W and V. It is preferable to use an alloy to which the above is added as a main component from the viewpoint of improving the crystal orientation of the in-plane magnetic film 3. In particular, Cr, Cr
It is preferable to use a / Ti alloy, a Cr / Mo alloy, a Cr / W alloy, or a Cr / V alloy. As a specific example, the content of Ti, Mo, W, or V is 1 to 40.
at%, with the balance being Cr. The thickness of the in-plane magnetic film base film 2 is 10 to 10
It is preferably set to 00 °. In this specification, the term “main component” indicates that the content of the component exceeds 50 at%.

【0007】面内磁性膜3は、その磁化容易軸が主に面
内方向を向いたものである。面内磁性膜3の材料の好適
な具体例としては、Co/Cr系、Co/Cr/Ta
系、Co/Cr/Pt/Ta系、Co/Cr/Ni/P
t/Ta系、Co/Cr/Pt/Ta/Zr系合金を挙
げることができる。中でも特に、Crの含有率が12〜
25at%、Ptの含有率が0〜15at%、Taの含
有率が1〜10at%、Zr、Re、Cu、およびVの
うち1種以上の含有率が0〜10at%、残部がCoか
らなるCo合金を主成分とするものを用いるのが、この
膜内の結晶配向性向上の観点から好ましい。面内磁性膜
3の保磁力Hcは、1500〜4000Oeの範囲に設
定するのが好ましい。また面内磁性膜3の残留磁化膜厚
積BrTは10〜100Gμmとするのが好ましい。
The in-plane magnetic film 3 has its easy axis of magnetization mainly oriented in the in-plane direction. Preferred specific examples of the material of the in-plane magnetic film 3 include Co / Cr-based and Co / Cr / Ta.
System, Co / Cr / Pt / Ta system, Co / Cr / Ni / P
t / Ta-based and Co / Cr / Pt / Ta / Zr-based alloys. In particular, the content of Cr is 12 to
25 at%, the Pt content is 0 to 15 at%, the Ta content is 1 to 10 at%, the content of at least one of Zr, Re, Cu, and V is 0 to 10 at%, and the balance is Co. It is preferable to use an alloy mainly containing a Co alloy from the viewpoint of improving the crystal orientation in the film. The coercive force Hc of the in-plane magnetic film 3 is preferably set in the range of 1500 to 4000 Oe. Further, the product BrT of the residual magnetization thickness of the in-plane magnetic film 3 is preferably set to 10 to 100 Gm.

【0008】分離膜4は、垂直磁性膜6の結晶のc軸を
基板に対し垂直方向に向け配向性を良好なものとするた
めのもので、分離膜4の材料としては、Ta、Re、C
uTi、SiC、W、NiP、Zr、Ti、およびCの
うち1種または2種以上を主成分とするものが用いられ
る。なお、ここでいうCuTiとはCuおよびTiから
なる合金を指す。またSiCとはSiおよびCからなる
材料を指す。またNiPとはNiおよびPからなる合金
を指す。
[0008] The separation film 4 is for orienting the c-axis of the crystal of the perpendicular magnetic film 6 in a direction perpendicular to the substrate to improve the orientation, and the material of the separation film 4 is Ta, Re, C
A material mainly containing one or more of uTi, SiC, W, NiP, Zr, Ti and C is used. Here, CuTi refers to an alloy composed of Cu and Ti. SiC refers to a material composed of Si and C. NiP refers to an alloy composed of Ni and P.

【0009】分離膜4の厚さは、5〜200Åとするの
が好ましい。この厚さが5Å未満であると、分離膜4上
に形成される非磁性中間層5が、その成膜時において、
面内方向の結晶配向性をもつ面内磁性膜3の影響を受け
やすくなり、その結晶配向性が乱れ、非磁性中間層5上
に形成される垂直磁性膜6の結晶配向性が乱れ、得られ
る磁気記録媒体の媒体ノイズが増加するおそれがある。
また、分離膜4の厚さが200Åを越えると、面内磁性
膜3と垂直磁性膜6の離間距離が大きくなり、短記録波
長時における面内磁性膜3の記録特性が低下する。
The thickness of the separation membrane 4 is preferably 5 to 200 °. If the thickness is less than 5 °, the non-magnetic intermediate layer 5 formed on the separation film 4
It is easily affected by the in-plane magnetic film 3 having the in-plane crystal orientation, the crystal orientation is disturbed, and the crystal orientation of the perpendicular magnetic film 6 formed on the non-magnetic intermediate layer 5 is disturbed. There is a possibility that the medium noise of the magnetic recording medium is increased.
On the other hand, if the thickness of the separation film 4 exceeds 200 °, the distance between the in-plane magnetic film 3 and the perpendicular magnetic film 6 increases, and the recording characteristics of the in-plane magnetic film 3 at short recording wavelengths deteriorate.

【0010】非磁性中間層5は、垂直磁性膜6の結晶配
向性をさらに良好なものとするためのもので、hcp構
造を有する非磁性材料が用いられ、Co/Cr系、Co
/Cr/Ta系、Co/Cr/Pt/X系(X:Ta、
Zr、Cu、Reのうち1種または2種以上)の合金を
用いるのが好適である。特に、Crの含有率が25〜5
0at%、Ptの含有率が0〜15at%、Xの含有率
が0〜10at%、残部がCoからなるCo合金を主成
分とするものを用いるのが好ましい。非磁性中間層5
は、単層構造としてもよいし、上記材料からなる複数の
層が積層した多層構造としてもよい。
The non-magnetic intermediate layer 5 is used to further improve the crystal orientation of the perpendicular magnetic film 6, and is made of a non-magnetic material having an hcp structure.
/ Cr / Ta system, Co / Cr / Pt / X system (X: Ta,
It is preferable to use an alloy of one or more of Zr, Cu, and Re). In particular, the content of Cr is 25 to 5
It is preferable to use a material whose main component is a Co alloy having 0 at%, a Pt content of 0 to 15 at%, an X content of 0 to 10 at%, and a balance of Co. Non-magnetic intermediate layer 5
May have a single-layer structure or a multilayer structure in which a plurality of layers made of the above materials are stacked.

【0011】非磁性中間層5の厚さは、20〜400Å
とするのが好ましい。この厚さが20Å未満であると、
非磁性中間層5上に垂直磁性膜6を形成する際、垂直磁
性膜6の初期成長時においてその結晶配向性が乱れやす
くなり、得られる磁気記録媒体の媒体ノイズが増加する
おそれがある。また、この厚さが400Åを越えると、
面内磁性膜3と垂直磁性膜6の離間距離が大きくなり、
短記録波長時における面内磁性膜3の記録特性が低下す
る。
The thickness of the nonmagnetic intermediate layer 5 is 20 to 400 °
It is preferred that If this thickness is less than 20 mm,
When the perpendicular magnetic film 6 is formed on the nonmagnetic intermediate layer 5, the crystal orientation of the perpendicular magnetic film 6 tends to be disturbed during the initial growth of the perpendicular magnetic film 6, and the medium noise of the obtained magnetic recording medium may increase. Also, if this thickness exceeds 400 mm,
The distance between the in-plane magnetic film 3 and the perpendicular magnetic film 6 increases,
The recording characteristics of the in-plane magnetic film 3 at the short recording wavelength deteriorate.

【0012】分離膜4と非磁性中間層5の合計膜厚、す
なわち面内磁性膜3と垂直磁性膜6の離間距離は、10
〜500Åとするのが好ましい。この厚さが10Å未満
であると、垂直磁性膜6の結晶配向性が乱れやすくな
り、十分な保磁力が得られなくなるおそれがある。また
この厚さが500Åを越えると、面内磁性膜3と垂直磁
性膜6の離間距離が大きくなり、短記録波長時における
面内磁性膜3の記録特性が低下する。
The total thickness of the separation film 4 and the non-magnetic intermediate layer 5, that is, the distance between the in-plane magnetic film 3 and the perpendicular magnetic film 6, is 10
It is preferable to set it to 500 °. When the thickness is less than 10 °, the crystal orientation of the perpendicular magnetic film 6 tends to be disordered, and a sufficient coercive force may not be obtained. If the thickness exceeds 500 °, the distance between the in-plane magnetic film 3 and the perpendicular magnetic film 6 increases, and the recording characteristics of the in-plane magnetic film 3 at the short recording wavelength deteriorate.

【0013】垂直磁性膜6は、その磁化容易軸が基板に
対し主に垂直方向に向いたものである。垂直磁性膜6の
材料としては、Co/Cr系、Co/Cr/Ta系、C
o/Cr/Pt/Ta系、Co/Cr/Ni/Pt/T
a系、Co/Cr/Pt/Ta/Zr系合金を用いるこ
とができる。中でも特に、Crの含有率が16〜30a
t%、Ptの含有率が0〜15at%、Taの含有率が
2〜10at%、Zrの含有率が0〜5at%、残部が
CoからなるCo合金を主成分とするものを用いるのが
好ましい。垂直磁性膜6の保磁力Hcは、1500〜4
000Oeの範囲に設定するのが好ましい。また垂直磁
性膜6の厚さは、100〜1000Åとするのが好まし
い。
The perpendicular magnetic film 6 has an axis of easy magnetization oriented mainly in a direction perpendicular to the substrate. As the material of the perpendicular magnetic film 6, Co / Cr-based, Co / Cr / Ta-based, C
o / Cr / Pt / Ta system, Co / Cr / Ni / Pt / T
An a-based or Co / Cr / Pt / Ta / Zr-based alloy can be used. In particular, the content of Cr is 16 to 30a.
t%, Pt content is 0 to 15 at%, Ta content is 2 to 10 at%, Zr content is 0 to 5 at%, and the balance is mainly composed of Co alloy. preferable. The coercive force Hc of the perpendicular magnetic film 6 is 1500 to 4
It is preferably set in the range of 000 Oe. Further, the thickness of the perpendicular magnetic film 6 is preferably set to 100 to 1000 °.

【0014】保護膜7は、カーボンからなるものとする
のが好ましい。保護膜7の厚さは、20〜100Åとす
るのが好ましい。また、保護膜7上には、パーフルオロ
ポリエーテル(PFPE)などからなる潤滑膜を形成す
ることも可能である。
The protective film 7 is preferably made of carbon. The thickness of the protective film 7 is preferably set to 20 to 100 °. Further, a lubricating film made of perfluoropolyether (PFPE) or the like can be formed on the protective film 7.

【0015】上記構成の磁気記録媒体を製造するには、
まず、基板1上に、上記非磁性下地膜2ないし垂直磁性
膜6をスパッタリング、真空蒸着、イオンプレーティン
グ、めっきなどの手法により形成する。続いて保護膜7
を、スパッタリング、プラズマCVD法、イオンビーム
法等により形成する。また、保護膜7上に潤滑膜を形成
するには、ディッピング法などを採用することができ
る。
To manufacture the magnetic recording medium having the above structure,
First, the nonmagnetic base film 2 or the perpendicular magnetic film 6 is formed on the substrate 1 by a technique such as sputtering, vacuum deposition, ion plating, and plating. Subsequently, the protective film 7
Is formed by sputtering, a plasma CVD method, an ion beam method, or the like. To form a lubricating film on the protective film 7, a dipping method or the like can be adopted.

【0016】上記構成の磁気記録媒体にあっては、面内
磁性膜3と垂直磁性膜6の間に分離膜4を設け、この分
離膜4を、Ta、Re、CuTi、SiC、W、Ni
P、Zr、Ti、およびCのうち1種または2種以上を
主成分とするものとしたので、分離膜4上に形成される
非磁性中間層5および垂直磁性膜6の垂直方向の配向性
を向上させ、垂直磁性膜6の磁気異方性を高め、媒体ノ
イズを低下させることができる。
In the magnetic recording medium having the above structure, a separation film 4 is provided between the in-plane magnetic film 3 and the perpendicular magnetic film 6, and this separation film 4 is made of Ta, Re, CuTi, SiC, W, Ni.
Since one or more of P, Zr, Ti, and C are used as main components, the vertical orientation of the nonmagnetic intermediate layer 5 and the perpendicular magnetic film 6 formed on the separation film 4 , The magnetic anisotropy of the perpendicular magnetic film 6 can be increased, and the medium noise can be reduced.

【0017】分離膜4を、上記材料からなるものとする
ことによって垂直磁性膜6の磁気異方性を向上させるこ
とができる理由は明らかでないが、これには次のような
メカニズムが関与していると考えることができる。すな
わち、分離膜4の材料としてSiC、NiP、Cを用い
た場合には、ダングリングボンド、すなわち分離膜4の
表面または内部の格子欠陥の周囲の原子群が担う不飽和
結合が、分離膜4と、その上に形成される非磁性中間層
5の間の結合力を高め、これによって非磁性中間層5の
初期成長時における結晶配向性が向上し、非磁性中間層
5が垂直方向の結晶配向性に優れたものとなり、その結
果、非磁性中間層5上に形成される垂直磁性膜6の磁気
異方性が向上する。また、これらの材料は面内磁性膜3
に対し非エピタキシャル的に成長することが可能な材料
であるため、面内異方性を有する面内磁性膜3の影響に
よる非磁性中間層5および垂直磁性膜6の配向性の乱れ
が起こりにくい。
The reason why the magnetic anisotropy of the perpendicular magnetic film 6 can be improved by forming the separation film 4 from the above-mentioned material is not clear, but this involves the following mechanism. Can be considered. That is, when SiC, NiP, and C are used as the material of the separation film 4, dangling bonds, that is, the unsaturated bonds carried by the atoms around the lattice defects on the surface or inside of the separation film 4 become the separation films 4. And the bonding force between the non-magnetic intermediate layer 5 formed thereon is enhanced, whereby the crystal orientation during the initial growth of the non-magnetic intermediate layer 5 is improved. The orientation is excellent, and as a result, the magnetic anisotropy of the perpendicular magnetic film 6 formed on the nonmagnetic intermediate layer 5 is improved. These materials are used for the in-plane magnetic film 3.
Is a material that can be grown non-epitaxially, so that the orientation of the nonmagnetic intermediate layer 5 and the perpendicular magnetic film 6 due to the influence of the in-plane magnetic film 3 having in-plane anisotropy does not easily occur. .

【0018】また、分離膜4の材料としてTa、Re、
W、CuTi、Ti、Zrを用いた場合には、これら材
料の表面自由エネルギーが非磁性中間層5の構成材料
(例えばCo合金)の表面自由エネルギーより高いた
め、非磁性中間層5がその成膜時において(002)配
向しやすくなる。これは、分離膜4に接する非磁性中間
層5が(002)配向した場合に、分離膜4と非磁性中
間層5の界面におけるトータルの表面エネルギーが最小
となるためである。非磁性中間層5の配向性が向上する
ことにより、これに対しエピタキシャル成長する垂直磁
性膜6の配向性も向上する。また、これらの材料は面内
磁性膜3に対し非エピタキシャル的に成長することが可
能な材料であるため、面内異方性を有する面内磁性膜3
の影響による非磁性中間層5および垂直磁性膜6の配向
性の乱れが起こりにくい。以上のようなメカニズムによ
って垂直磁性膜6の磁気異方性が高められていると考え
ることができる。
As the material of the separation membrane 4, Ta, Re,
When W, CuTi, Ti, or Zr is used, the surface free energy of these materials is higher than the surface free energy of the constituent material of the nonmagnetic intermediate layer 5 (for example, a Co alloy). The (002) orientation is easy during film formation. This is because the total surface energy at the interface between the separation film 4 and the non-magnetic intermediate layer 5 is minimized when the non-magnetic intermediate layer 5 in contact with the separation film 4 is oriented (002). As the orientation of the non-magnetic intermediate layer 5 is improved, the orientation of the perpendicular magnetic film 6 epitaxially grown is also improved. Since these materials can be grown non-epitaxially on the in-plane magnetic film 3, the in-plane magnetic film 3 having in-plane anisotropy can be used.
Of the non-magnetic intermediate layer 5 and the perpendicular magnetic film 6 is less likely to be disturbed. It can be considered that the magnetic anisotropy of the perpendicular magnetic film 6 is enhanced by the above mechanism.

【0019】また、面内磁性膜下地膜2を、Cr、また
はCrにTi、Mo、W、Vのうち1種以上を添加した
合金からなるものとし、面内磁性膜3を、Crの含有率
が12〜25at%、Ptの含有率が0〜15at%、
Taの含有率が1〜10at%、Zr、Re、Cu、お
よびVのうち1種以上の含有率が0〜10at%、残部
がCoからなるCo合金を主成分とするものとすること
によって、面内磁性膜3の結晶配向性を良好なものと
し、得られる磁気記録媒体の媒体ノイズを低下させるこ
とができる。
The in-plane magnetic film base film 2 is made of Cr or an alloy obtained by adding at least one of Ti, Mo, W, and V to Cr, and the in-plane magnetic film 3 is made of a material containing Cr. Rate is 12 to 25 at%, Pt content is 0 to 15 at%,
The content of Ta is 1 to 10 at%, the content of at least one of Zr, Re, Cu, and V is 0 to 10 at%, and the balance is mainly made of a Co alloy composed of Co. The crystal orientation of the in-plane magnetic film 3 can be improved, and the medium noise of the obtained magnetic recording medium can be reduced.

【0020】また、この分離膜4と垂直磁性膜6の間
に、hcp構造を有する非磁性中間層5を設けることに
よって、同じくhcp構造を有するCo合金等からなる
垂直磁性膜6の初期成長時の配向性の乱れを防ぎ、その
磁気異方性を高め、媒体ノイズを低下させることができ
る。
By providing the nonmagnetic intermediate layer 5 having the hcp structure between the separation film 4 and the perpendicular magnetic film 6, the initial growth of the perpendicular magnetic film 6 also made of a Co alloy or the like having the hcp structure can be performed. Can be prevented, the magnetic anisotropy can be increased, and the medium noise can be reduced.

【0021】[0021]

【実施例】(試験例1〜17)表面にNiPめっき膜
(厚さ15μm)を形成したアルミニウム合金基板(直
径84mm、厚さ0.8mm)の表面に、表面平均粗さ
Raが15Åとなるようにメカニカルテクスチャ加工を
施した後、この基板1をDCマグネトロンスパッタ装置
(アネルバ社製3010)のチャンバ内にセットした。
チャンバ内を真空到達度2×10-7Paとなるまで排気
し、基板1を200℃まで加熱した後、この基板1上
に、面内磁性膜下地膜2(厚さ200Å)、面内磁性膜
3、分離膜4、Co−40at%Cr(Co40Cr)
からなる非磁性中間層5、Co−18at%Cr−6a
t%Pt−3at%Ta(Co18Cr6Pt3Ta)
からなる垂直磁性膜6を順次スパッタリングにより形成
した。垂直磁性膜6上には、引続き、厚さ100Åのカ
ーボン保護膜を形成し、次いで、このカーボン保護膜上
に潤滑剤を塗布し、PFPEからなる潤滑膜(厚さ20
Å)を形成し、磁気記録媒体を得た。
EXAMPLES (Test Examples 1 to 17) The average surface roughness Ra is 15 ° on the surface of an aluminum alloy substrate (diameter 84 mm, thickness 0.8 mm) having a NiP plating film (thickness 15 μm) formed on the surface. After mechanical texture processing as described above, the substrate 1 was set in a chamber of a DC magnetron sputtering apparatus (3010 manufactured by Anelva).
The chamber was evacuated to a vacuum attainment of 2 × 10 −7 Pa, and the substrate 1 was heated to 200 ° C., and then an in-plane magnetic film base film 2 (thickness: 200 °) was formed on the substrate 1. Membrane 3, Separation Membrane 4, Co-40 at% Cr (Co40Cr)
Non-magnetic intermediate layer 5, made of Co-18 at% Cr-6a
t% Pt-3at% Ta (Co18Cr6Pt3Ta)
Of perpendicular magnetic films 6 formed by sputtering. A carbon protective film having a thickness of 100 ° is subsequently formed on the perpendicular magnetic film 6, and then a lubricant is applied on the carbon protective film to form a lubricating film made of PFPE (having a thickness of 20 μm).
Å) was formed to obtain a magnetic recording medium.

【0022】(試験例18、19)分離膜4、または非
磁性中間層5を設けないこと以外は試験例1〜17と同
様にして磁気記録媒体を作製した。
Test Examples 18 and 19 Magnetic recording media were manufactured in the same manner as in Test Examples 1 to 17, except that the separation film 4 or the nonmagnetic intermediate layer 5 was not provided.

【0023】上記各試験例の磁気記録媒体の静磁気特性
を振動式磁気特性測定装置(VSM)を用いて測定し
た。また、これら磁気記録媒体の記録再生特性を、再生
部に磁気抵抗(MR)素子を有する複合型薄膜磁気ヘッ
ドを用い、線記録密度240kFCIにて測定した。測
定結果を表1に示す。SNR(Signal Nois
e Ratio)を測定する際には、孤立波を測定対象
として信号量(Signal)を測定した。
The magnetostatic properties of the magnetic recording media of each of the above test examples were measured using a vibration type magnetic property measuring device (VSM). The recording and reproducing characteristics of these magnetic recording media were measured at a linear recording density of 240 kFCI using a composite type thin film magnetic head having a magnetoresistive (MR) element in the reproducing section. Table 1 shows the measurement results. SNR (Signal Nois
e Ratio), the signal amount (Signal) was measured with a solitary wave as a measurement target.

【0024】[0024]

【表1】 [Table 1]

【0025】表1より、分離膜4を設け、これをTa、
Re、CuTi、SiC、W、NiP、Zr、Ti、ま
たはCからなるものとした磁気記録媒体は、ノイズ特性
に優れたものとなったことがわかる。また、分離膜4の
厚さを300Åとした試験例12の磁気記録媒体は、再
生時の孤立波形がわずかにダイパルス波形を含むものと
なったが、他の試験例のものについては単峰型の孤立波
形が得られた。
According to Table 1, a separation membrane 4 was provided,
It can be seen that the magnetic recording medium made of Re, CuTi, SiC, W, NiP, Zr, Ti, or C has excellent noise characteristics. In the magnetic recording medium of Test Example 12 in which the thickness of the separation film 4 was set to 300 °, the isolated waveform at the time of reproduction slightly contained a dipulse waveform. The isolated waveform of was obtained.

【0026】[0026]

【発明の効果】以上説明したように、本発明の磁気記録
媒体にあっては、汎用の面内磁気記録媒体を再生する際
に用いられる信号処理法の適用が可能となり、しかもノ
イズ特性に優れたものとなる。
As described above, in the magnetic recording medium of the present invention, the signal processing method used when reproducing a general-purpose in-plane magnetic recording medium can be applied, and the magnetic recording medium has excellent noise characteristics. It will be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の磁気記録媒体の一実施形態を示す一
部断面図である。
FIG. 1 is a partial cross-sectional view showing one embodiment of a magnetic recording medium of the present invention.

【符号の説明】[Explanation of symbols]

1・・・基板、2・・・面内磁性膜下地膜、3・・・面内磁性
膜、4・・・分離膜 5・・・非磁性中間層、6・・・垂直磁性膜
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... In-plane magnetic film base film, 3 ... In-plane magnetic film, 4 ... Separation film 5 ... Non-magnetic intermediate layer, 6 ... Perpendicular magnetic film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 酒井 浩志 千葉県市原市八幡海岸通5−1 昭和電工 株式会社HD研究開発センター内 (72)発明者 逢坂 哲彌 東京都新宿区大久保三丁目4番1号 学校 法人早稲田大学理工学部内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Sakai 5-1 Yawata Kaigandori, Ichihara-shi, Chiba Prefecture Showa Denko HD Research & Development Center (72) Inventor Tetsuya Osaka 3-4-1 Okubo Shinjuku-ku, Tokyo No. School of Science and Engineering, Waseda University

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、磁化容易軸が基板に対し面内
方向に配向した面内磁性膜と、磁化容易軸が基板に対し
垂直に配向した垂直磁性膜を備え、面内磁性膜が垂直磁
性膜よりも基板側に設けられ、面内磁性膜と垂直磁性膜
の間に、分離膜が設けられ、この分離膜が、Ta、R
e、CuTi、SiC、W、NiP、Zr、Ti、およ
びCのうち1種または2種以上を主成分とするものであ
ることを特徴とする磁気記録媒体。
1. A substrate comprising: an in-plane magnetic film having an easy axis of magnetization oriented in the in-plane direction with respect to the substrate; and a perpendicular magnetic film having an easy axis of magnetization oriented perpendicular to the substrate. A separation film is provided on the substrate side with respect to the perpendicular magnetic film, and a separation film is provided between the in-plane magnetic film and the perpendicular magnetic film.
A magnetic recording medium comprising one or more of e, CuTi, SiC, W, NiP, Zr, Ti, and C as main components.
【請求項2】 請求項1記載の磁気記録媒体において、
分離膜の膜厚は5〜200Åであることを特徴とする磁
気記録媒体。
2. The magnetic recording medium according to claim 1, wherein
A magnetic recording medium, wherein the thickness of the separation film is 5 to 200 °.
【請求項3】 請求項1または2項記載の磁気記録媒体
において、分離膜と垂直磁性膜の間に、hcp構造を有
する非磁性中間層を設けたことを特徴とする磁気記録媒
体。
3. The magnetic recording medium according to claim 1, wherein a non-magnetic intermediate layer having an hcp structure is provided between the separation film and the perpendicular magnetic film.
【請求項4】 請求項1〜3のうちいずれか1項記載の
磁気記録媒体において、面内磁性膜と垂直磁性膜の離間
距離が10〜500Åであることを特徴とする磁気記録
媒体。
4. The magnetic recording medium according to claim 1, wherein a distance between the in-plane magnetic film and the perpendicular magnetic film is 10 to 500 °.
【請求項5】 請求項1〜4のうちいずれか1項記載の
磁気記録媒体において、面内磁性膜の基板側に面内磁性
膜下地膜が設けられ、この面内磁性膜下地膜が、Cr、
またはCrにTi、Mo、W、Vのうち1種以上を添加
した合金を主成分とするものであることを特徴とする磁
気記録媒体。
5. The magnetic recording medium according to claim 1, wherein an in-plane magnetic film base film is provided on the substrate side of the in-plane magnetic film, and the in-plane magnetic film base film is Cr,
Alternatively, the magnetic recording medium is mainly composed of an alloy obtained by adding at least one of Ti, Mo, W, and V to Cr.
【請求項6】 請求項5記載の磁気記録媒体において、
面内磁性膜が、Crの含有率が12〜25at%、Pt
の含有率が0〜15at%、Taの含有率が1〜10a
t%、Zr、Re、Cu、およびVのうち1種以上の含
有率が0〜10at%、残部がCoからなるCo合金を
主成分とするものであることを特徴とする磁気記録媒
体。
6. The magnetic recording medium according to claim 5, wherein
The in-plane magnetic film has a Cr content of 12 to 25 at%, Pt
Content of 0 to 15 at%, content of Ta of 1 to 10 a
A magnetic recording medium characterized in that the content of at least one of t%, Zr, Re, Cu, and V is from 0 to 10 at%, and the balance is mainly a Co alloy consisting of Co.
JP7984698A 1998-03-26 1998-03-26 Magnetic recording medium Withdrawn JPH11283228A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7984698A JPH11283228A (en) 1998-03-26 1998-03-26 Magnetic recording medium
SG9901229A SG93828A1 (en) 1998-03-26 1999-03-24 Magnetic recording medium
US09/276,466 US6274233B1 (en) 1998-03-26 1999-03-25 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7984698A JPH11283228A (en) 1998-03-26 1998-03-26 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH11283228A true JPH11283228A (en) 1999-10-15

Family

ID=13701577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7984698A Withdrawn JPH11283228A (en) 1998-03-26 1998-03-26 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH11283228A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414660B1 (en) 1999-10-04 2002-07-02 Matsushita Electric Industrial Co., Ltd. Display device and method of controlling its brightness
JP2004046990A (en) * 2002-07-12 2004-02-12 Showa Denko Kk Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
WO2004075178A1 (en) * 2003-02-20 2004-09-02 Fujitsu Limited Vertical magnetic recording medium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414660B1 (en) 1999-10-04 2002-07-02 Matsushita Electric Industrial Co., Ltd. Display device and method of controlling its brightness
US6441803B1 (en) 1999-10-04 2002-08-27 Matsushita Electric Industrial Co., Ltd. Display device and luminance control method therefor
US6492965B2 (en) 1999-10-04 2002-12-10 Matsushita Electric Industrial Co., Ltd. Display device and luminance control method therefor
US6509884B2 (en) 1999-10-04 2003-01-21 Matsushita Electric Industrial Co., Ltd. Display device and luminance control method therefor
USRE39711E1 (en) 1999-10-04 2007-07-03 Matsushita Electric Industrial Co., Ltd. Display device and luminance control method therefor
USRE39741E1 (en) 1999-10-04 2007-07-24 Matsushita Electric Industrial Co., Ltd. Display device and luminance control method therefor
USRE39740E1 (en) 1999-10-04 2007-07-24 Matsushita Electric Industrial Co., Ltd. Display device and method of controlling its brightness
USRE39742E1 (en) 1999-10-04 2007-07-24 Matsushita Electric Industrial Co., Ltd. Display device and luminance control method therefor
JP2004046990A (en) * 2002-07-12 2004-02-12 Showa Denko Kk Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
WO2004075178A1 (en) * 2003-02-20 2004-09-02 Fujitsu Limited Vertical magnetic recording medium

Similar Documents

Publication Publication Date Title
JP4169663B2 (en) Perpendicular magnetic recording medium
JP4126276B2 (en) Antiferromagnetically coupled perpendicular magnetic recording media
JP4380577B2 (en) Perpendicular magnetic recording medium
JP3884932B2 (en) Magnetic recording medium and magnetic storage device
JP5337451B2 (en) Perpendicular magnetic recording medium
KR20070067600A (en) Perpendicular magnetic recording disk with ultrathin nucleation film for improved corrosion resistance and method for making the disk
US7833640B2 (en) Intermediate tri-layer structure for perpendicular recording media
JP4707265B2 (en) Perpendicular magnetic recording medium
US6274233B1 (en) Magnetic recording medium
US6372367B1 (en) Magnetic recording medium, method for producing the same and magnetic recording apparatus using the same
JP2005190512A (en) Magnetic recording medium
US6689497B1 (en) Stabilized AFC magnetic recording media with reduced lattice mismatch between spacer layer(s) and magnetic layers
JP2004110941A (en) Magnetic recording medium and magnetic storage device
US6972157B2 (en) Magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP2004227618A (en) Disk substrate for perpendicular magnetic recording medium, perpendicular magnetic recording disk and their manufacturing method
JP3588039B2 (en) Magnetic recording medium and magnetic recording / reproducing device
JPH11283228A (en) Magnetic recording medium
JP3576372B2 (en) Magnetic recording media
JPH11283227A (en) Magnetic recording medium
JP2009252308A (en) Perpendicular magnetic recording medium
US6090496A (en) Magnetic recording medium and non-magnetic alloy film
JP2001189006A (en) Magnetic recording medium, method of producing the same and magnetic recording reproducing device
JP2001101643A (en) Magnetic recording medium
JP4037139B2 (en) Magnetic recording medium, method for manufacturing magnetic recording medium, and magnetic recording / reproducing apparatus
JPH11283229A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607