JPH11281982A - Manufacture of liquid crystal element - Google Patents

Manufacture of liquid crystal element

Info

Publication number
JPH11281982A
JPH11281982A JP8183098A JP8183098A JPH11281982A JP H11281982 A JPH11281982 A JP H11281982A JP 8183098 A JP8183098 A JP 8183098A JP 8183098 A JP8183098 A JP 8183098A JP H11281982 A JPH11281982 A JP H11281982A
Authority
JP
Japan
Prior art keywords
liquid crystal
alignment
cooling
substrate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8183098A
Other languages
Japanese (ja)
Inventor
Kei Oibe
圭 及部
Tsuguyoshi Hirata
貢祥 平田
Shigemitsu Mizushima
繁光 水嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP8183098A priority Critical patent/JPH11281982A/en
Publication of JPH11281982A publication Critical patent/JPH11281982A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To align or re-align liquid crystal in a desired alignment state by operating a cooling control of a substrate surface correspondingly to an alignment limiting force of the liquid crystal which each substrate surface in contact with the liquid crystal has. SOLUTION: A liquid crystal element 4 is placed on a holding member 2 in an atmosphere control tank 1. Next, the liquid crystal of the liquid crystal element 4 is heated to the transition temperature or above by a furnace and a temperature controller 3 prepared in the atmosphere control tank 1. Following this, the liquid crystal element 4 is cooled down at a specified cooling rate from the substrate side via the holding member 2 by the temperature control device 3. When the liquid crystal element is cooled down, the domain of the liquid crystal can be controlled in the size and the number by performing the cooling by adjusting the conditions like a temperature gradient, a cooling rate, etc., considering a difference in the alignment limiting force between both substrates of the liquid crystal element. Moreover, it becomes unnecessary to drastically change the cooling rate at the time of re-aligning the liquid crystal, and the conditions for the cooling rate are improved and the cooling control also becomes easier.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は液晶素子における液
晶の配向、再配向を行う液晶素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a liquid crystal device for aligning and realigning liquid crystal in the liquid crystal device.

【0002】[0002]

【従来の技術】従来の液晶素子は、基板表面にラビング
などの配向処理を行いその表面状態を変化させている。
ラビング処理に関しては、例えば、特開平5−3333
37号公報には、加熱処理を併用したラビング処理が示
されている。
2. Description of the Related Art In a conventional liquid crystal element, an alignment treatment such as rubbing is performed on a substrate surface to change its surface state.
The rubbing process is described in, for example, JP-A-5-3333.
No. 37 discloses a rubbing treatment using a heat treatment in combination.

【0003】また、ラビング処理とは別の処理を基板表
面に施している場合があり、例えば、加熱処理、光照射
処理、磁界処理、酸処理、アルカリ処理、レジスト処
理、エッチング処理、デポジット処理又はガスなどによ
る処理等がある。更には、液晶素子の製造工程中で基板
の表面状態が変化する場合、基板表面の形状の影響を受
けて基板の表面状態が変化する場合、又は基板上に形成
した膜等の影響により基板の表面状態が変化する場合等
がある。こうした基板の表面状態の変化に起因して、液
晶と接する各基板表面での液晶の配向規制力に差が生じ
たり、配向方向が乱れたりする。
In some cases, the substrate surface is subjected to a treatment different from the rubbing treatment, such as a heating treatment, a light irradiation treatment, a magnetic field treatment, an acid treatment, an alkali treatment, a resist treatment, an etching treatment, a deposit treatment, or the like. There is a treatment with gas or the like. Furthermore, when the surface state of the substrate changes during the manufacturing process of the liquid crystal element, when the surface state of the substrate changes due to the shape of the substrate surface, or when the surface of the substrate changes due to a film formed on the substrate. The surface state may change. Due to such a change in the surface state of the substrate, a difference occurs in the alignment regulating force of the liquid crystal on each substrate surface in contact with the liquid crystal, or the alignment direction is disturbed.

【0004】このため、液晶素子に液晶の注入を行うだ
けでは、液晶が所望の配向状態にはならず、液晶の配向
状態を変えるために再配向処理を行う必要がある。この
再配向処理は、一般的には液晶をその転移点温度より高
い温度状態にした後に、冷却することにより行ってい
る。
For this reason, simply injecting the liquid crystal into the liquid crystal element does not bring the liquid crystal into a desired alignment state, and it is necessary to perform a realignment process to change the alignment state of the liquid crystal. This reorientation process is generally performed by cooling the liquid crystal after setting the temperature to a temperature higher than its transition point temperature.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
ラビング処理による場合には、基板の形状、材質等の影
響を受けて基板の表面状態が変化する。しかも、ラビン
グ処理の際に基板表面を布などで擦るため、基板表面の
配向膜に微少な傷による損傷が発生する。このため、再
配向処理を行ったとしても、基板表面の凹凸や配向膜の
損傷のために、配向膜の液晶の配向規制力に差が生じ、
液晶の配向状態が不均一になるという問題が生じる。ま
た、ラビング処理とは別の処理を基板表面に施す場合に
も、基板の表面状態の乱れに起因して同様の問題が生じ
る。
However, in the case of the conventional rubbing treatment, the surface state of the substrate changes due to the influence of the shape, material and the like of the substrate. Moreover, since the substrate surface is rubbed with a cloth or the like during the rubbing treatment, the alignment film on the substrate surface is damaged by minute scratches. For this reason, even if the realignment treatment is performed, a difference occurs in the alignment regulating force of the liquid crystal of the alignment film due to unevenness of the substrate surface and damage to the alignment film,
There is a problem that the alignment state of the liquid crystal becomes non-uniform. Also, when a process different from the rubbing process is performed on the substrate surface, a similar problem occurs due to the disorder of the surface state of the substrate.

【0006】従って、従来の再配向処理では、液晶分子
の配向状態の制御が十分にできない。このため、均一な
配向状態が求められる場合には、液晶の配向状態が不均
一になり表示品位が低下するという問題が生じる。ま
た、複数のドメインを持たせ液晶素子の視野角を改良す
る場合には、ドメインの大きさ、数等により表示品位が
変化するという問題が生じる。
Therefore, in the conventional realignment treatment, it is not possible to sufficiently control the alignment state of the liquid crystal molecules. Therefore, when a uniform alignment state is required, there arises a problem that the alignment state of the liquid crystal becomes non-uniform and the display quality deteriorates. Further, when the viewing angle of the liquid crystal element is improved by providing a plurality of domains, there is a problem that the display quality changes depending on the size, the number, and the like of the domains.

【0007】更には、従来の再配向処理では、ドメイン
をなくすには極めて大きい冷却速度若しくは極めて小さ
い冷却速度が要求されるが、その冷却制御がとても困難
であるため、不良品率をあまり低減することができない
という問題が生じる。
Further, in the conventional reorientation treatment, an extremely high cooling rate or an extremely low cooling rate is required to eliminate the domains. However, since the cooling control is very difficult, the defective product rate is reduced significantly. A problem arises that it is not possible.

【0008】本発明は、こうした従来技術の課題を解決
するものであり、基板の表面状態により、液晶に接する
各基板表面の液晶の配向規制力に差がある場合にも、液
晶を所望の配向状態に配向、再配向することができる液
晶素子の製造方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems of the prior art. Even when there is a difference in the alignment regulating force of the liquid crystal on each substrate surface in contact with the liquid crystal depending on the surface condition of the substrate, the liquid crystal can be oriented to a desired orientation. It is an object of the present invention to provide a method for manufacturing a liquid crystal element which can be aligned and realigned in a state.

【0009】[0009]

【課題を解決するための手段】本発明は、液晶を挟んで
対向する2つの基板を有する液晶素子の製造方法であっ
て、液晶に接する各基板表面がもつ液晶の配向規制力に
対応させて、該基板表面の冷却制御を行い、液晶の配
向、再配向を行う工程を包含してなり、そのことにより
上記目的が達成される。
SUMMARY OF THE INVENTION The present invention relates to a method of manufacturing a liquid crystal device having two substrates opposed to each other with a liquid crystal interposed therebetween, the method being adapted to the alignment control force of the liquid crystal on each substrate surface in contact with the liquid crystal. And controlling the cooling of the substrate surface to align and re-align the liquid crystal, thereby achieving the above object.

【0010】好ましくは、前記冷却制御を、対向する2
つの基板の法線方向で各基板表面に所定の温度差をもた
せて行う。
[0010] Preferably, the cooling control is performed by two opposed cooling units.
This is performed by giving a predetermined temperature difference to the surface of each substrate in the normal direction of one substrate.

【0011】この温度差は、対向する2つの基板の各基
板表面がもつ液晶の配向規制力の差に基づいて規定して
もよい。
The temperature difference may be defined based on the difference in the alignment control force of the liquid crystal between the surfaces of the two substrates facing each other.

【0012】また、好ましくは、前記冷却制御を、液晶
の配向規制を弱く行う側又は液晶の配向規制力の弱い側
の前記基板表面の温度を高くして行う。
Preferably, the cooling control is performed by increasing the temperature of the substrate surface on the side where the regulation of the liquid crystal alignment is weak or on the side where the alignment regulating force of the liquid crystal is weak.

【0013】また、好ましくは、前記冷却制御を、液晶
の配向規制を強く行う側又は液晶の配向規制力の強い側
の前記基板表面の冷却速度を大きくして行う。
Preferably, the cooling control is performed by increasing the cooling rate of the substrate surface on the side where liquid crystal alignment is strongly regulated or on the side where liquid crystal alignment regulating force is strong.

【0014】また、好ましくは、前記冷却制御を、液晶
の配向規制を強く行う側又は液晶の配向規制力の強い側
の前記基板表面に対し、液晶の配向規制を弱く行う側又
は液晶の配向規制力の弱い側の前記基板表面の冷却の開
始時期を遅らせて行う。
Preferably, the cooling control is performed on the side on which the liquid crystal alignment is weakly regulated or the liquid crystal alignment on the side on which the liquid crystal alignment regulating force is strong. This is performed by delaying the start time of the cooling of the substrate surface on the weak side.

【0015】以下に、本発明の作用について説明する。The operation of the present invention will be described below.

【0016】上記の製造方法によれば、液晶に接する各
基板が、その表面状態により配向規制力が異なる場合に
も、配向規制力に対応させて各基板表面の冷却制御を行
い、液晶の配向、再配向を行うので、液晶が所望の配向
状態となる。
According to the above-described manufacturing method, even when each substrate in contact with the liquid crystal has a different alignment regulating force depending on the surface state, the cooling of each substrate surface is controlled in accordance with the alignment regulating force, and the alignment of the liquid crystal is controlled. Since the liquid crystal molecules are re-aligned, the liquid crystal is brought into a desired alignment state.

【0017】冷却制御を、対向する2つの基板の法線方
向で各基板表面に所定の温度差をもたせて行うと、両基
板間の温度勾配に従って、両基板に挟まれた液晶層が同
じ温度勾配となる。転移点温度以上とされた液晶層を、
この温度勾配を維持しながら冷却すると、一方の基板か
ら、液晶層、他方の基板の順に転移点温度が移動してい
くこととなり、液晶層の配向が厚さ方向に連続して順次
変化していく。このため、液晶層の配向が均一な状態と
なる。
When the cooling control is performed by giving a predetermined temperature difference to the surface of each substrate in the normal direction of the two substrates facing each other, the liquid crystal layer sandwiched between both substrates has the same temperature according to the temperature gradient between the two substrates. It becomes a gradient. The liquid crystal layer with the transition temperature
When cooling while maintaining this temperature gradient, the transition point temperature moves from one substrate to the liquid crystal layer and then to the other substrate, and the orientation of the liquid crystal layer changes continuously in the thickness direction. Go. For this reason, the orientation of the liquid crystal layer becomes uniform.

【0018】冷却制御を、液晶の配向規制を弱く行う側
又は液晶の配向規制力の弱い側の前記基板表面の温度を
高くして行う場合、並びに液晶の配向規制を強く行う側
又は液晶の配向規制力の強い側の基板表面の冷却速度を
大きくして行う場合には、配向規制力の強い側の基板か
ら、液晶層、配向規制力の弱い側の基板の順に転移点温
度が移動していくこととなる。このため、まず強い配向
規制力に従って液晶層が配向され、その配向が厚さ方向
に連続して順次弱い配向規制力による配向に変化してい
く。従って、液晶層が所望の配向状態となる。
In the case where the cooling control is performed by increasing the temperature of the substrate surface on the side where the liquid crystal alignment is weakly controlled or on the side where the liquid crystal alignment is weak, or on the side where the liquid crystal alignment is strongly controlled or the liquid crystal alignment. In the case of increasing the cooling rate of the substrate surface on the side where the regulating force is strong, the transition point temperature moves in the order of the liquid crystal layer and the substrate on the side where the alignment regulating force is weak, from the substrate having the strong alignment regulating force. It will go. For this reason, the liquid crystal layer is first aligned in accordance with the strong alignment control force, and the alignment is successively changed in the thickness direction and gradually changes to the alignment by the weak alignment control force. Therefore, the liquid crystal layer is in a desired alignment state.

【0019】冷却制御を、液晶の配向規制を強く行う側
又は液晶の配向規制力の強い側の基板表面に対し、液晶
の配向規制を弱く行う側又は液晶の配向規制力の弱い側
の冷却の開始時期を遅らせて行うと、液晶の配向規制を
弱く行う側又は液晶の配向規制力の弱い側の基板表面の
温度が高くなり、かつ、対向する2つの基板の法線方向
で各基板表面に所定の温度差をもたせた状態で冷却する
ことが可能となる。このため、両基板間の温度勾配に従
って、両基板に挟まれた液晶層が同じ温度勾配となり、
この温度勾配を維持したまま、一方の基板から、液晶
層、他方の基板の順に転移点温度が移動していくことと
なる。従って、液晶層の配向が厚さ方向に連続して順次
変化していくため、液晶層の配向が均一な状態となる。
The cooling control is performed on the side where the liquid crystal alignment is weakly controlled or on the side where the liquid crystal alignment is weakly controlled, with respect to the substrate surface on the side where the liquid crystal alignment is strongly controlled or the side where the liquid crystal alignment controlling force is strong. When the start timing is delayed, the temperature of the substrate surface on the side where the alignment of the liquid crystal is weakly controlled or the side on which the alignment control force of the liquid crystal is weak increases, and the surface of each substrate is oriented in the normal direction of the two opposing substrates. Cooling can be performed with a predetermined temperature difference. Therefore, according to the temperature gradient between the two substrates, the liquid crystal layer sandwiched between the two substrates has the same temperature gradient,
While maintaining this temperature gradient, the transition point temperature moves from one substrate to the liquid crystal layer and then to the other substrate. Therefore, since the orientation of the liquid crystal layer changes continuously in the thickness direction, the orientation of the liquid crystal layer becomes uniform.

【0020】より具体的には、例えば、液晶に接する基
板表面の凹凸の小さい側や、配向膜の液晶分子の配向規
制力の大きい基板側から冷却する。対向する基板側は温
度を高めにしたり冷却速度を遅らして冷却する。どちら
の基板側を早く冷却するかは、配向規制力の強弱を調べ
て決定する。また、液晶の配向規制を強く行いたい側を
早く冷却する側とし、配向膜が損傷を受けている場合に
は配向膜が損傷を受けていない基板側を早く冷却する。
More specifically, for example, cooling is performed from the side of the substrate surface which is in contact with the liquid crystal with less unevenness or the substrate side where the alignment regulating force of the liquid crystal molecules of the alignment film is large. The opposing substrate is cooled by increasing the temperature or slowing the cooling rate. Which substrate side is cooled earlier is determined by examining the strength of the alignment regulating force. Further, the side on which the alignment of the liquid crystal is to be strongly regulated is set as the side to be cooled quickly, and if the alignment film is damaged, the substrate side where the alignment film is not damaged is cooled quickly.

【0021】冷却速度に関しては、ドメイン発生状態の
飽和する温度降下速度以上の急冷を行えば液晶相転移の
ドメインの大きさは小さくなり、領域全体に数多くのド
メインが発生する。このため、均一ドメイン領域を作成
する場合には、冷却過程で発生している異なるドメイン
領域の発生は抑えられる。徐冷を行えば液晶相転移のド
メインの大きさは大きくなり、発生するドメインの数は
少なくなる。このため、均一ドメイン領域を作成する場
合には、水平方向へのドメイン成長のほうが早いため、
異なるドメイン領域は減少するか若しくは残らないよう
になる。
With respect to the cooling rate, if the cooling is performed at a rate higher than the temperature drop rate at which the domain generation state is saturated, the size of the domain of the liquid crystal phase transition is reduced, and many domains are generated in the entire region. For this reason, when creating a uniform domain region, the occurrence of different domain regions occurring during the cooling process can be suppressed. When the cooling is performed, the size of the domain of the liquid crystal phase transition increases, and the number of generated domains decreases. For this reason, when creating a uniform domain region, domain growth in the horizontal direction is faster,
Different domain regions will be reduced or will not remain.

【0022】この2つの間の冷却速度をとったとき、液
晶の配向方向を規制している場合は、その配向方向に従
う領域以外に、異なるドメイン領域が残るようになる。
液晶の配向方向を規制していない場合は、ドメインの数
と大きさが変化するようになる。
When the cooling rate between the two is taken, if the alignment direction of the liquid crystal is regulated, a different domain region is left in addition to the region according to the alignment direction.
When the orientation direction of the liquid crystal is not regulated, the number and size of the domains change.

【0023】対向する両基板の配向規制力に差が生じて
いる場合や、相手基板側の配向規制力が強すぎる場合に
は、両基板の法線方向の温度差を制御することで、両基
板の配向規制力を調整することができる。従って、先に
冷却をする基板側に配向規制力を大きく持たせること
で、より安定して液晶素子を作成することが可能とな
り、また繰り返し生産することが可能となる。また、こ
の法線方向の温度差により、両基板の配向規制力の差に
よる水平方向に対してのドメイン成長の影響を小さくし
ている。複数のドメインを作成する場合には、この法線
方向の温度差を設けることにより法線方向での液晶の配
向の均一性を上げることができる。このときの冷却速度
は、従来に比較して、急冷条件では小さくすることがで
き、除冷条件では大きくすることができる。
When there is a difference between the alignment regulating forces of the two substrates facing each other, or when the alignment regulating force of the counterpart substrate is too strong, the temperature difference in the normal direction between the two substrates is controlled. The alignment regulating force of the substrate can be adjusted. Therefore, by giving a large alignment regulating force to the substrate to be cooled first, it is possible to more stably produce a liquid crystal element, and it is possible to repeatedly produce the liquid crystal element. In addition, the temperature difference in the normal direction reduces the influence of domain growth in the horizontal direction due to the difference in alignment control force between the two substrates. When a plurality of domains are formed, the uniformity of the orientation of the liquid crystal in the normal direction can be improved by providing the temperature difference in the normal direction. The cooling rate at this time can be reduced under the rapid cooling condition, and can be increased under the cooling-removing condition, as compared with the related art.

【0024】このように、液晶分子の対向する両基板の
配向規制力の差を、液晶素子の法線方向での温度勾配と
冷却速度の制御により調整することにより、液晶のドメ
インの大きさや数を制御することが可能となる。また、
再配向する際の冷却速度を極端に大きくしたり、又極端
に小さくしたりする必要もなくなり、冷却制御が容易と
なる。
As described above, by adjusting the difference between the alignment regulating forces of the two substrates facing the liquid crystal molecules by controlling the temperature gradient and the cooling rate in the normal direction of the liquid crystal element, the size and the number of the domains of the liquid crystal are controlled. Can be controlled. Also,
There is no need to extremely increase or decrease the cooling rate during reorientation, and cooling control becomes easy.

【0025】[0025]

【発明の実施の形態】以下に、本発明の液晶素子の製造
方法を図1〜図4に基づいて具体的に説明する。液晶素
子の製造工程には、一般的には液晶を所望の配向状態に
するための液晶の配向、再配向工程が包含されている。
本発明における液晶の配向、再配向工程は、図1に示す
雰囲気制御用槽1内で行う。この雰囲気制御用槽1は、
加熱炉等により槽内の雰囲気温度が制御されるようにな
っており、内部には液晶素子4を載置する保持部材2
と、この保持部材2を加熱又は冷却する温度制御装置3
とが設けられており、保持部材2上に載置された液晶素
子4の温度が、温度制御装置3や加熱炉等により制御さ
れるようになっている。この液晶素子4は、図2に示す
ように、対向する2つの基板6、7の間に液晶5を注入
し、その周囲をシール材8で封じた構成からなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a liquid crystal device according to the present invention will be specifically described with reference to FIGS. The manufacturing process of the liquid crystal element generally includes a process of aligning and realigning the liquid crystal to bring the liquid crystal into a desired alignment state.
The liquid crystal alignment and realignment steps in the present invention are performed in the atmosphere control tank 1 shown in FIG. This atmosphere control tank 1 is
The atmosphere temperature in the tank is controlled by a heating furnace or the like, and a holding member 2 on which the liquid crystal element 4 is mounted is provided inside.
And a temperature control device 3 for heating or cooling the holding member 2
The temperature of the liquid crystal element 4 placed on the holding member 2 is controlled by the temperature control device 3, a heating furnace, or the like. As shown in FIG. 2, the liquid crystal element 4 has a configuration in which a liquid crystal 5 is injected between two opposing substrates 6 and 7, and the periphery thereof is sealed with a sealing material 8.

【0026】まず、この雰囲気制御用槽1内の保持部材
2上に液晶素子4を載置する。次に、雰囲気制御用槽1
に備えられた加熱炉や温度制御装置3により液晶素子4
の液晶5を転移点温度以上に加熱する。次に、液晶素子
4を温度制御装置3により保持部材2を介して基板7側
から所定の冷却速度で冷却する。その際、液晶素子4の
対向する基板6側は、加熱炉等により雰囲気温度の制御
を行うか、図3に示すような別の加熱部材9、又は図4
に示すような別の冷却部材10により温度制御を行う。
それにより、図2示す液晶素子4の法線方向Vに所定の
温度勾配を持たせ、この温度勾配を維持したまま液晶素
子4を冷却することができる。こうした状態で冷却を続
け、液晶素子4が転移点温度を通過すると液晶が再配向
する。
First, the liquid crystal element 4 is placed on the holding member 2 in the atmosphere control tank 1. Next, the atmosphere control tank 1
The liquid crystal element 4 is controlled by the heating furnace and the temperature control device 3 provided in the device.
Is heated above the transition temperature. Next, the liquid crystal element 4 is cooled by the temperature controller 3 from the substrate 7 side via the holding member 2 at a predetermined cooling rate. At this time, on the side of the substrate 6 facing the liquid crystal element 4, the ambient temperature is controlled by a heating furnace or the like, or another heating member 9 as shown in FIG.
The temperature is controlled by another cooling member 10 as shown in FIG.
Thus, a predetermined temperature gradient is provided in the normal direction V of the liquid crystal element 4 shown in FIG. 2, and the liquid crystal element 4 can be cooled while maintaining this temperature gradient. In such a state, cooling is continued, and when the liquid crystal element 4 passes the transition point temperature, the liquid crystal is realigned.

【0027】上記の冷却を行う際に、液晶素子の両基板
の配向規制力の差等を考慮し、温度勾配、冷却速度等の
条件を調整して冷却を行うことにより、液晶のドメイン
の大きさや数を制御することができ、液晶素子を所望の
配向状態にすることができる。しかも、液晶を再配向す
る際の冷却速度を極端に大きくしたり、又極端に小さく
したりする必要もなくなり、冷却速度の条件も改善さ
れ、冷却制御も容易となる。
At the time of performing the above-mentioned cooling, the cooling is performed by adjusting the conditions such as the temperature gradient and the cooling rate in consideration of the difference between the alignment regulating forces of the two substrates of the liquid crystal element, etc. The number of pods can be controlled, and the liquid crystal element can be brought into a desired alignment state. Moreover, there is no need to extremely increase or decrease the cooling rate when the liquid crystal is realigned, and the condition of the cooling rate is improved, and the cooling control is facilitated.

【0028】図5にその様子を示しており、ここでは、
均一な配向の中で表示を乱すドメインの発生数と冷却速
度との関係を表している。即ち、表示を乱すドメインの
発生数に着目すると、本発明を表す実線Naと従来を表
す破線Nbとの対比から明らかなように、本発明により
表示を乱すドメインの発生数が大きく減少していること
がわかる。また、冷却速度に着目すると、表示を乱すド
メインの発生数が本発明と従来とが同じ場合には、冷却
速度が極端に小さかった部分では冷却速度の値が大きく
なり、冷却速度が極端に大きかった部分では冷却速度の
値が小さくなり冷却速度の条件が改善されていることが
わかる。尚、上記の結果は、発生するドメインの大きさ
と冷却速度とが図6に示す曲線Sの関係を有し、発生す
るドメインの数と冷却速度とが図7に示す曲線Ncの関
係を有する場合である。
FIG. 5 shows this state. Here,
It shows the relationship between the number of domains that disturb the display in a uniform orientation and the cooling rate. That is, paying attention to the number of domains that disturb the display, the number of domains that disturb the display is greatly reduced by the present invention, as is clear from the comparison between the solid line Na representing the present invention and the broken line Nb representing the conventional technique. You can see that. Focusing on the cooling rate, when the number of domains that disturb the display is the same as that of the present invention and the related art, the value of the cooling rate becomes large in the portion where the cooling rate is extremely low, and the cooling rate is extremely large. It can be seen that the value of the cooling rate was smaller in the portion where the cooling rate was, and the condition of the cooling rate was improved. Note that the above results indicate that the size of the generated domain and the cooling rate have the relationship of the curve S shown in FIG. 6, and the number of generated domains and the cooling rate have the relationship of the curve Nc shown in FIG. It is.

【0029】以下に、本発明の実施の形態を図面に基づ
いてより具体的に説明する。
Hereinafter, embodiments of the present invention will be described more specifically with reference to the drawings.

【0030】(実施形態1)液晶素子の表面の所定領域
に選択的に光照射を行ない、その選択領域の配向規制力
を弱めた液晶素子において、液晶の再配向を行う液晶素
子の製造方法を示す。
(Embodiment 1) A method of manufacturing a liquid crystal element in which a predetermined area on the surface of the liquid crystal element is selectively irradiated with light and the liquid crystal element is realigned in a liquid crystal element in which the alignment regulating force in the selected area is weakened. Show.

【0031】この実施形態1では、図8に示すように、
雰囲気制御用槽1内にセットした液晶素子4の液晶5を
転移点温度TM以上の所定温度TCに加熱した後、非照
射領域を多く含む基板7側からt1時点より冷却速度C
Vを2℃/秒以上にして除冷を開始する(実線TB参
照)。次に、対向する基板6を、冷却の開始時期を2秒
程度遅らせたt2時点より同じ冷却速度で除冷を開始す
る(破線TA参照)。これにより、基板6の温度を基板
7に対し5℃程度高くして、基板6と基板7の温度差T
Dを5℃程度とし、冷却速度CVを2℃/秒以上とした
状態で、液晶の転移点温度TMを通過させて液晶の再配
向を行った。ここで、この温度差TDは、対向する基板
6と基板7の配向規制力の差に基づいて決めた。
In the first embodiment, as shown in FIG.
After the liquid crystal 5 of the liquid crystal element 4 set in the atmosphere control tank 1 is heated to a predetermined temperature TC equal to or higher than the transition point temperature TM, the cooling rate C is increased from the time point t1 from the substrate 7 side including many non-irradiated areas.
V is set to 2 ° C./sec or more to start cooling (see solid line TB). Next, the cooling of the opposing substrate 6 is started at the same cooling rate from time t2 when the start time of the cooling is delayed by about 2 seconds (see the broken line TA). As a result, the temperature of the substrate 6 is raised by about 5 ° C. with respect to the substrate 7, and the temperature difference T between the substrate 6 and the substrate 7 is increased.
With D set at about 5 ° C. and a cooling rate CV set at 2 ° C./sec or more, the liquid crystal was re-aligned by passing the transition temperature TM of the liquid crystal. Here, the temperature difference TD was determined based on the difference in the alignment regulating force between the substrate 6 and the substrate 7 facing each other.

【0032】この方法により、選択領域、又は非選択領
域で均一なドメインを作成した液晶素子4を製造するこ
とができた。この方法によれば、従来に比較して冷却速
度CVを小さくすることができた。
According to this method, it was possible to manufacture the liquid crystal element 4 in which a uniform domain was formed in a selected region or a non-selected region. According to this method, the cooling rate CV could be reduced as compared with the conventional method.

【0033】即ち、この方法は、冷却制御を、液晶の配
向規制を強く行う側又は液晶の配向規制力の強い側の基
板表面に対し、液晶の配向規制を弱く行う側又は液晶の
配向規制力の弱い側の冷却の開始時期を遅らせて行い、
液晶の配向規制を弱く行う側又は液晶の配向規制力の弱
い側の基板表面の温度を高くし、かつ、対向する2つの
基板の法線方向で各基板表面に所定の温度差をもたせた
状態で冷却することで、両基板間の温度勾配に従って、
両基板に挟まれた液晶層が同じ温度勾配となり、この温
度勾配を維持したまま、配向規制力の強い側の基板か
ら、液晶層、配向規制力の弱い側の基板の順に転移点温
度が移動していくため、まず強い配向規制力に従って液
晶層が配向され、その配向が厚さ方向に連続して順次弱
い配向規制力による配向に変化していくことで、液晶層
が所望の配向状態となるようにするものである。
That is, in this method, the cooling control is performed with respect to the substrate surface on which the liquid crystal alignment is strongly regulated or the substrate surface on which the liquid crystal alignment regulating force is strong. The cooling start of the weak side of the
A state in which the temperature of the substrate surface on the side where the liquid crystal alignment is weakly controlled or on the side where the liquid crystal alignment control force is weak is increased, and a predetermined temperature difference is provided between the surfaces of the two substrates facing each other in the normal direction. By cooling in, according to the temperature gradient between the two substrates,
The liquid crystal layer sandwiched between both substrates has the same temperature gradient, and the transition point temperature moves from the substrate on the side with strong alignment control force to the liquid crystal layer and the substrate on the side with weak alignment control force while maintaining this temperature gradient. First, the liquid crystal layer is aligned according to a strong alignment control force, and the alignment is continuously changed in the thickness direction to an alignment according to the weak alignment control force, so that the liquid crystal layer has a desired alignment state. It is to become.

【0034】(実施形態2)液晶素子の対向する両基板
の配向規制力の差に起因して、部分的に配向規制力の強
い基板側の影響を受けて期待するドメイン以外の領域が
発生し、表示品位を落としていた液晶素子に対し、液晶
の再配向を行う液晶素子の製造方法を示す。
(Embodiment 2) Due to the difference between the alignment control forces of the two substrates facing each other of the liquid crystal element, a region other than the expected domain is generated due to the partial influence of the substrate having the strong alignment control force. A method of manufacturing a liquid crystal element for performing liquid crystal reorientation on a liquid crystal element with reduced display quality will be described.

【0035】この実施形態2では、図8に示すように、
雰囲気制御用槽1内にセットした液晶素子4の液晶5を
転移点温度TM以上の所定温度TCに加熱した後、配向
規制力の弱い基板7側からt3時点より冷却速度CVを
2℃/秒以上にして除冷を開始する(実線TB参照)。
次に、対向する基板6を、冷却の開始時期を2秒程度遅
らせたt4時点より同じ冷却速度CVで除冷を開始する
(破線TA参照)。これにより、基板6の温度を基板7
に対し5℃以内の範囲で高くして、基板6と基板7の温
度差TDを5℃以内とし、冷却速度CVを2℃/秒以上
とした状態で、液晶の転移点温度TMを通過させて液晶
の再配向を行った。ここで、この温度差TDは、対向す
る基板6と基板7の液晶の配向規制力の差に基づいて決
めた。
In the second embodiment, as shown in FIG.
After the liquid crystal 5 of the liquid crystal element 4 set in the atmosphere control tank 1 is heated to a predetermined temperature TC equal to or higher than the transition point temperature TM, the cooling rate CV is set to 2 ° C./sec from the time point t3 from the substrate 7 having a weak alignment control force. The cooling is started as described above (see the solid line TB).
Next, the cooling of the opposing substrate 6 is started at the same cooling rate CV from the time t4 when the start time of the cooling is delayed by about 2 seconds (see the broken line TA). Thereby, the temperature of the substrate 6 is
, The temperature difference TD between the substrate 6 and the substrate 7 is set within 5 ° C., and the cooling rate CV is set to 2 ° C./sec or more. To realign the liquid crystal. Here, the temperature difference TD was determined based on the difference in the alignment control force of the liquid crystal between the opposing substrates 6 and 7.

【0036】この方法により、液晶の配向規制力の弱い
基板7側の制御を受け、均一なドメインを生成すること
ができた。尚、t3とt4の差である遅れ時間△tを0
に近づけた場合には、部分的に配向規制力の強い基板6
側の影響を受け、期待するドメイン以外の領域が発生し
た。
According to this method, a uniform domain can be generated under the control of the substrate 7 having a weak liquid crystal alignment regulating force. Note that the delay time Δt, which is the difference between t3 and t4, is set to 0.
, The substrate 6 having a strong alignment regulating force
Aside from the expected domain, an area other than the expected domain occurred.

【0037】即ち、この方法は、相手基板側の配向規制
力が強すぎる場合に、その影響を受けないようにするた
めに、配向規制を優先したい基板側を先に冷却し、その
基板側に配向規制力を大きく持たせるようにして、両基
板の配向規制力の差を調整し、配向規制力の強い基板側
の影響を受けて期待するドメイン以外の領域が発生する
のを防ぐようにするものである。
That is, in this method, when the alignment regulating force of the partner substrate side is too strong, in order not to be affected by the influence, the substrate side for which the alignment regulation is to be prioritized is cooled first, and the substrate side is cooled. Adjust the difference between the alignment control forces of both substrates so as to have a large alignment control force to prevent the occurrence of regions other than the expected domains due to the influence of the substrate side with the strong alignment control force. Things.

【0038】(実施形態3)強誘電液晶又は反強誘電液
晶を用いて均一なドメインを作成する液晶素子におい
て、液晶の再配向を行う液晶素子の製造方法を示す。
(Embodiment 3) A method of manufacturing a liquid crystal element in which a uniform domain is formed using a ferroelectric liquid crystal or an antiferroelectric liquid crystal and the liquid crystal is realigned will be described.

【0039】この実施形態3では、図8に示すように、
雰囲気制御用槽1内にセットした液晶素子4の液晶5を
転移点温度TM以上の所定温度TCに加熱した後、配向
規制力の強い基板7側からt5時点より冷却速度CVを
1℃/分以下にして除冷を開始する(実線TB参照)。
次に、対向する基板6を、冷却の開始時期を2秒程度遅
らせたt6時点より同じ冷却速度CVで除冷を開始する
(破線TA参照)。これにより、基板6の温度を基板7
に対し7℃以上高くして、基板6と基板7の温度差TD
を7℃以上とし、冷却速度CVを1℃/分以下とした状
態で、液晶の転移点温度TMを通過させて液晶の再配向
を行った。ここで、この温度差TDは、対向する基板6
と基板7の配向規制力の差に基づいて決めた。この方法
により、従来に比較して冷却速度CVを大きくすること
ができた。
In the third embodiment, as shown in FIG.
After the liquid crystal 5 of the liquid crystal element 4 set in the atmosphere control tank 1 is heated to a predetermined temperature TC equal to or higher than the transition point temperature TM, the cooling rate CV is set to 1 ° C./min from time t5 from the substrate 7 having the strong alignment control force. The cooling is started as follows (see the solid line TB).
Next, the cooling of the opposing substrate 6 is started at the same cooling rate CV from the time t6 when the start time of the cooling is delayed by about 2 seconds (see the broken line TA). Thereby, the temperature of the substrate 6 is
And the temperature difference TD between the substrate 6 and the substrate 7
Was set to 7 ° C. or more and the cooling rate CV was set to 1 ° C./min or less, and the liquid crystal was realigned by passing the transition point temperature TM of the liquid crystal. Here, this temperature difference TD is determined by
And the orientation regulating force of the substrate 7. With this method, the cooling rate CV could be increased as compared with the conventional method.

【0040】即ち、この方法は、冷却速度を十分に小さ
くした徐冷を行い、ドメインの発生が飽和するようにす
ることで、液晶相転移のドメインの大きさが大きくな
り、発生するドメインの数が少なくなり、水平方向への
ドメイン成長の方が早くなるようにして、異なるドメイ
ン領域が減少するか若しくは残らないようにして、均一
なドメイン領域を作成するものである。
That is, in this method, the size of the domain of the liquid crystal phase transition is increased by performing slow cooling at a sufficiently low cooling rate so that the generation of the domain is saturated. Is reduced, and the domain growth in the horizontal direction is made faster, so that different domain regions are reduced or do not remain, thereby creating a uniform domain region.

【0041】(実施形態4)積極的に配向処理を行わな
いで、複数のドメインを微少に数多く生成する液晶素子
の製造方法を示す。
(Embodiment 4) A method of manufacturing a liquid crystal element in which a plurality of domains are minutely and numerously generated without actively performing an alignment process will be described.

【0042】この実施形態4では、図9に示すように、
雰囲気制御用槽1内にセットした液晶素子4の液晶5を
転移点温度TM以上の所定温度TCに加熱した後、基板
7側からt7時点より冷却速度CVを5℃/秒以上にし
て急冷を開始する(実線TB参照)。次に、対向する基
板6を、冷却の開始時期を2秒以上遅らせたt8時点よ
り同じ冷却速度CVで急冷を開始する(破線TA参
照)。これにより、基板6の温度を基板7に対し5℃以
上高くして、基板6と基板7の温度差TDを5℃以上と
し、冷却速度CVを5℃/秒以上とした状態で、液晶の
転移点温度TMを通過させて液晶の再配向を行った。こ
こで、この温度差TDは、対向する基板6と基板7の配
向規制力の差に基づいて決めた。この方法により、従来
に比較して冷却速度CVを小さくすることができた。
In the fourth embodiment, as shown in FIG.
After heating the liquid crystal 5 of the liquid crystal element 4 set in the atmosphere control tank 1 to a predetermined temperature TC equal to or higher than the transition point temperature TM, the cooling rate CV is set to 5 ° C./sec or more from the substrate 7 side at time t7 to perform rapid cooling. Start (see solid line TB). Next, rapid cooling of the opposing substrate 6 is started at the same cooling rate CV from time t8 when the start time of cooling is delayed by 2 seconds or more (see the broken line TA). As a result, the temperature of the substrate 6 is raised by 5 ° C. or more with respect to the substrate 7, the temperature difference TD between the substrate 6 and the substrate 7 is set to 5 ° C. or more, and the cooling rate CV is set to 5 ° C./sec or more. The liquid crystal was realigned by passing through the transition point temperature TM. Here, the temperature difference TD was determined based on the difference in the alignment regulating force between the substrate 6 and the substrate 7 facing each other. With this method, the cooling rate CV could be reduced as compared with the conventional method.

【0043】即ち、この方法は、冷却速度をドメイン発
生状態の飽和する温度降下速度以上の急冷を行うこと
で、液晶相転移のドメインの大きさが小さくなり、領域
全体に数多くのドメインが発生するようにして、冷却過
程で発生する異なるドメイン領域の発生は抑え、均一な
ドメイン領域を作成するものである。
In other words, according to this method, the size of the domain of the liquid crystal phase transition is reduced by performing rapid cooling at a cooling rate equal to or higher than the temperature drop rate at which the domain generation state saturates, and many domains are generated in the entire region. In this way, the generation of different domain regions generated in the cooling process is suppressed, and a uniform domain region is created.

【0044】尚、上記の各実施形態では、対向する2つ
の基板の冷却速度CVを同じにする場合を示したが、温
度差TDが上記の所定の条件を満たせば、各基板の冷却
速度が異なっていてもかまわない。
In each of the above embodiments, the case where the cooling rates CV of the two opposing substrates are the same is shown. However, if the temperature difference TD satisfies the above-mentioned predetermined condition, the cooling rates of the respective substrates are reduced. It can be different.

【0045】また、上記の各実施形態において、冷却制
御を、対向する2つの基板の法線方向で各基板表面に所
定の温度差をもたせて行うことがとても重要である。そ
れは、両基板間の温度勾配により、両基板に挟まれた液
晶層が同じ温度勾配となり、転移点温度以上とされた液
晶層を、この温度勾配を維持しながら冷却すると、一方
の基板から、液晶層、他方の基板の順に転移点温度が移
動していくので、液晶層の配向が厚さ方向に連続して順
次変化していくため、液晶層の配向が均一な状態となる
からである。
In each of the above embodiments, it is very important that the cooling control is performed by giving a predetermined temperature difference to the surface of each substrate in the normal direction of the two substrates facing each other. The reason is that the temperature gradient between the two substrates causes the liquid crystal layer sandwiched between the two substrates to have the same temperature gradient, and the liquid crystal layer having a transition point temperature or higher is cooled while maintaining this temperature gradient. This is because the transition point temperature moves in the order of the liquid crystal layer and the other substrate, so that the orientation of the liquid crystal layer continuously changes in the thickness direction, so that the orientation of the liquid crystal layer becomes uniform. .

【0046】加えて、液晶層の配向を均一にするには、
液晶層に温度勾配を設ける際の温度分布状態も関係す
る。図10に、液晶素子における上下の各基板表面及び
液晶の温度分布状態を示す。図中の符号a、b、cで示
す温度分布状態では、上下の各基板表面の温度の間に液
晶層の温度が分布しており、この場合には液晶層の配向
が均一な状態となる。これに対し、符号d、eで示す温
度分布状態では、液晶層の温度が上下の各基板表面の温
度より高い温度分布状態又は低い温度分布状態になる場
合があり、この場合には液晶層の配向が不均一な状態と
なる。従って、液晶層の配向が均一な状態となる符号
a、b、cで示す温度分布状態で、液晶素子に温度勾配
を設けるとよい。
In addition, in order to make the orientation of the liquid crystal layer uniform,
The temperature distribution state when the temperature gradient is provided in the liquid crystal layer is also relevant. FIG. 10 shows the temperature distribution state of the upper and lower substrate surfaces and the liquid crystal in the liquid crystal element. In the temperature distribution states indicated by reference numerals a, b, and c in the figure, the temperature of the liquid crystal layer is distributed between the temperatures of the upper and lower substrate surfaces, and in this case, the orientation of the liquid crystal layer is uniform. . On the other hand, in the temperature distribution states indicated by reference signs d and e, the temperature of the liquid crystal layer may be higher or lower than the temperatures of the upper and lower substrate surfaces. The orientation becomes non-uniform. Therefore, it is preferable to provide a temperature gradient to the liquid crystal element in a temperature distribution state indicated by reference numerals a, b, and c where the orientation of the liquid crystal layer is uniform.

【0047】[0047]

【発明の効果】上記本発明の液晶素子の製造方法によれ
ば、基板の表面状態に起因する対向する各基板における
液晶分子の配向規制力の差を、液晶素子の法線方向での
温度勾配と冷却速度の制御により調整することにより、
液晶のドメインの大きさや数を制御することができるの
で、液晶を所望の配向状態にすることができる。
According to the method for manufacturing a liquid crystal element of the present invention, the difference between the alignment regulating forces of the liquid crystal molecules on the opposing substrates due to the surface condition of the substrate is determined by the temperature gradient in the normal direction of the liquid crystal element. And by controlling the cooling rate,
Since the size and number of domains of the liquid crystal can be controlled, the liquid crystal can be brought into a desired alignment state.

【0048】加えて、液晶を再配向する際の冷却速度を
極端に大きくしたり、又極端に小さくしたりする必要も
なくなり、冷却制御が容易となるので、配向不良による
不良品率を低減することができる。
In addition, there is no need to extremely increase or decrease the cooling rate when the liquid crystal is realigned, and the cooling control is facilitated. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の液晶素子の製造方法により、液晶の配
向、再配向を行う装置を示す図である。
FIG. 1 is a view showing an apparatus for aligning and re-aligning a liquid crystal according to a method for manufacturing a liquid crystal element of the present invention.

【図2】本発明の液晶素子の製造方法により、液晶の配
向、再配向を行う液晶素子の構造を示すと共にその法線
方向Vを表す図である。
FIG. 2 is a diagram showing a structure of a liquid crystal element for performing alignment and realignment of liquid crystal by a method of manufacturing a liquid crystal element of the present invention, and showing a normal direction V thereof.

【図3】本発明の液晶素子の製造方法により、液晶の配
向、再配向を行う装置において、別の加熱部材を用いる
場合を示す図である。
FIG. 3 is a view showing a case where another heating member is used in an apparatus for aligning and realigning liquid crystal by the method for manufacturing a liquid crystal element of the present invention.

【図4】本発明の液晶素子の製造方法により、液晶の配
向、再配向を行う装置において、別の冷却部材を用いる
場合を示す図である。
FIG. 4 is a diagram showing a case where another cooling member is used in an apparatus for aligning and realigning liquid crystal by the method for manufacturing a liquid crystal element of the present invention.

【図5】発生する表示を乱すドメインの数と冷却速度と
の関係を表すグラフである。
FIG. 5 is a graph showing the relationship between the number of domains that disturb the generated display and the cooling rate.

【図6】発生するドメインの大きさと冷却速度との関係
を表すグラフである。
FIG. 6 is a graph showing a relationship between a size of a generated domain and a cooling rate.

【図7】発生するドメインの数と冷却速度との関係を表
すグラフである。
FIG. 7 is a graph showing a relationship between the number of generated domains and a cooling rate.

【図8】実施形態1〜実施形態3における液晶の配向、
再配向を行うための冷却制御過程を表すグラフである。
FIG. 8 shows alignment of liquid crystal in Embodiments 1 to 3,
4 is a graph illustrating a cooling control process for performing reorientation.

【図9】実施形態4における液晶の配向、再配向を行う
ための冷却制御過程を表すグラフである。
FIG. 9 is a graph showing a cooling control process for aligning and re-aligning the liquid crystal in the fourth embodiment.

【図10】液晶素子の上側基板、液晶層、下側基板にお
いて、温度勾配を設ける場合の温度の分布状態を表すグ
ラフである。
FIG. 10 is a graph showing a temperature distribution state when a temperature gradient is provided in an upper substrate, a liquid crystal layer, and a lower substrate of a liquid crystal element.

【符号の説明】[Explanation of symbols]

1 雰囲気制御用槽 2 保持部材 3 温度制御装置 4 液晶素子 5 液晶 6、7 基板 8 シール材 9 別の加熱部材 10 別の冷却部材 DESCRIPTION OF SYMBOLS 1 Atmosphere control tank 2 Holding member 3 Temperature controller 4 Liquid crystal element 5 Liquid crystal 6, 7 Substrate 8 Sealing material 9 Another heating member 10 Another cooling member

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 液晶を挟んで対向する2つの基板を有す
る液晶素子の製造方法であって、 液晶に接する各基板表面がもつ液晶の配向規制力に対応
させて、該基板表面の冷却制御を行い、液晶の配向、再
配向を行う工程を包含する液晶素子の製造方法。
1. A method for manufacturing a liquid crystal device having two substrates opposed to each other with a liquid crystal interposed therebetween, the method comprising controlling cooling of the substrate surface in accordance with the alignment regulating force of the liquid crystal on each substrate surface in contact with the liquid crystal. And a method of manufacturing a liquid crystal element including a step of performing liquid crystal alignment and realignment.
【請求項2】 前記冷却制御を、対向する2つの基板の
法線方向で各基板表面に所定の温度差をもたせて行う請
求項1記載の液晶素子の製造方法。
2. The method for manufacturing a liquid crystal element according to claim 1, wherein the cooling control is performed by giving a predetermined temperature difference to each substrate surface in a normal direction of two opposing substrates.
【請求項3】 前記冷却制御を、液晶の配向規制を弱く
行う側又は液晶の配向規制力の弱い側の前記基板表面の
温度を高くして行う請求項1又は請求項2記載の液晶素
子の製造方法。
3. The liquid crystal device according to claim 1, wherein the cooling control is performed by increasing the temperature of the substrate surface on the side where the alignment control of the liquid crystal is weakly performed or on the side where the alignment control force of the liquid crystal is weak. Production method.
【請求項4】 前記冷却制御を、液晶の配向規制を強く
行う側又は液晶の配向規制力の強い側の前記基板表面の
冷却速度を大きくして行う請求項1〜請求項3のいずれ
かに記載の液晶素子の製造方法。
4. The cooling control according to claim 1, wherein the cooling control is performed by increasing the cooling rate of the substrate surface on the side where the alignment of the liquid crystal is strongly regulated or on the side where the alignment regulating force of the liquid crystal is strong. The manufacturing method of the liquid crystal element of the description.
【請求項5】 前記冷却制御を、液晶の配向規制を強く
行う側又は液晶の配向規制力の強い側の前記基板表面に
対し、液晶の配向規制を弱く行う側又は液晶の配向規制
力の弱い側の前記基板表面の冷却の開始時期を遅らせて
行う請求項1〜請求項4のいずれかに記載の液晶素子の
製造方法。
5. The liquid crystal device according to claim 1, wherein the cooling control is performed on a side on which the liquid crystal alignment is strongly regulated or on a side on which the liquid crystal alignment regulating force is strong. The method for manufacturing a liquid crystal element according to claim 1, wherein the start timing of cooling the substrate surface on the side is delayed.
JP8183098A 1998-03-27 1998-03-27 Manufacture of liquid crystal element Pending JPH11281982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8183098A JPH11281982A (en) 1998-03-27 1998-03-27 Manufacture of liquid crystal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8183098A JPH11281982A (en) 1998-03-27 1998-03-27 Manufacture of liquid crystal element

Publications (1)

Publication Number Publication Date
JPH11281982A true JPH11281982A (en) 1999-10-15

Family

ID=13757402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8183098A Pending JPH11281982A (en) 1998-03-27 1998-03-27 Manufacture of liquid crystal element

Country Status (1)

Country Link
JP (1) JPH11281982A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010231198A (en) * 2009-03-02 2010-10-14 Fujifilm Corp Optical compensation sheet, polarizing plate, liquid crystal display device, and method for manufacturing optical compensation sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010231198A (en) * 2009-03-02 2010-10-14 Fujifilm Corp Optical compensation sheet, polarizing plate, liquid crystal display device, and method for manufacturing optical compensation sheet

Similar Documents

Publication Publication Date Title
JP4129846B2 (en) Pretilt control method for liquid crystal cell
JP2003324188A (en) Method for manufacturing large-area single-crystal silicon substrate
JPH08201814A (en) Liquid crystal panel body using antiferroelectric liquid crystal and manufacture of panel body
US4275107A (en) Polyester stabilization process and product
JPH11281982A (en) Manufacture of liquid crystal element
JPH0218A (en) Orientation device and orientation method for liquid crystal display element
JPH07261185A (en) Production of liquid crystal display element
TW200411773A (en) Method of laser crystallization
JP2004311592A (en) Substrate cleaning device and method of manufacturing electronic device
US4086124A (en) Method of polarization of a ferroelectric material
JPH0519259A (en) Heat treatment of liquid crystal display element
JP2002350837A (en) Polarizing plate peeling method
JP2000105373A (en) Production of liquid crystal display element
JP2023051486A (en) Manufacturing method of ferroelectric liquid crystal panel
JPH07333619A (en) Liquid crystal display element
JPH08304829A (en) Liquid crystal display element and its production
JPH10319401A (en) Production of liquid crystal display element
JP2018173567A (en) Method for manufacturing liquid crystal display element
JPH04365317A (en) Semiconductor growth apparatus
JPH01156721A (en) Liquid crystal display element
JPH06265900A (en) Production of liquid crystal display device and liquid crystal display device
JPS6330827A (en) Production of liquid crystal device
KR100502336B1 (en) Crystallization method for silicone film
JPH08240806A (en) Liquid crystal display device and its production
JPS62275222A (en) Manufacture of liquid crystal display device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030805