JPH11281634A - Ultrasonic microscope device for quantitative measurement - Google Patents

Ultrasonic microscope device for quantitative measurement

Info

Publication number
JPH11281634A
JPH11281634A JP10081271A JP8127198A JPH11281634A JP H11281634 A JPH11281634 A JP H11281634A JP 10081271 A JP10081271 A JP 10081271A JP 8127198 A JP8127198 A JP 8127198A JP H11281634 A JPH11281634 A JP H11281634A
Authority
JP
Japan
Prior art keywords
temperature
sample
water
coupler
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10081271A
Other languages
Japanese (ja)
Other versions
JP3392041B2 (en
Inventor
Junichi Kushibiki
淳一 櫛引
Takeshi Ono
雄 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUSHIBIKI JUNICHI
Original Assignee
KUSHIBIKI JUNICHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUSHIBIKI JUNICHI filed Critical KUSHIBIKI JUNICHI
Priority to JP08127198A priority Critical patent/JP3392041B2/en
Publication of JPH11281634A publication Critical patent/JPH11281634A/en
Application granted granted Critical
Publication of JP3392041B2 publication Critical patent/JP3392041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve precision in the quantitative measurement of material characteristics by circulating temperature-controlled air in a case, enclosing a water coupler with a space shielding means to form approximately closed space, and suppressing temperature fluctuations due to the flow of air and temperature changes in the coupler due to the evaporation of the coupler. SOLUTION: Air temperature-controlled by an air conditioner is supplied from the upper part of a case by a circulating fan. Half space or closed space is formed around an ultrasonic device and a sample to interrupt the flow of air as much as possible, and the temperature of a water coupler 6 is stabilized. Furthermore, as environments around the water coupler 6 become much closer to a state of steam saturation, it is possible to suppress the evaporation of water coupler 6. By providing a curtain so as to surround the water coupler 6, the flow of air is interrupted, and steam in the environments is brought closer to saturation. In other words, a top plate 28 is provided above an ultrasonic device 24, and a curtain 29 is provided as a space shielding means so as to enclose the ultrasonic device 24 and the water coupler 6 from the circumferential edge of the top plate 28.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば漏洩弾性表
面波(LSAW)の伝搬特性、特に位相速度の高精度な測定
を行なうための定量計測用超音波顕微鏡装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quantitative measurement ultrasonic microscope apparatus for measuring, for example, the propagation characteristics of leaky surface acoustic waves (LSAW), particularly the phase velocity with high accuracy.

【0002】[0002]

【従来の技術】新しい物質・材料特性の解析・評価技術
として超音波顕微鏡が開発されている。超音波顕微鏡に
よる計測法には、画像計測法と定量計測法がある。定量
計測法においてはV(z)曲線解析法が使われ、試料表面に
励起されるLSAWの伝搬特性(位相速度・伝搬減衰)が計
測される。この計測のためには、点集束超音波ビーム
(PFB)と直線集束超音波ビーム(LFB)が使用でき
る。ここでは、定量計測専用のLFB超音波顕微鏡(文
献1参照)をとりあげて説明を進める。
2. Description of the Related Art An ultrasonic microscope has been developed as a new technique for analyzing and evaluating substances and material properties. Measurement methods using an ultrasonic microscope include an image measurement method and a quantitative measurement method. In the quantitative measurement method, the V (z) curve analysis method is used to measure the propagation characteristics (phase velocity and propagation attenuation) of the LSAW excited on the sample surface. For this measurement, a point focused ultrasonic beam (PFB) and a linear focused ultrasonic beam (LFB) can be used. Here, the description will proceed with an LFB ultrasonic microscope (see Document 1) dedicated to quantitative measurement.

【0003】図1は従来の超音波顕微鏡の原理的ブロッ
ク図である。座標軸x, y, z は図に示すようにとる。超
音波顕微鏡14は超音波機構部14Aと、制御測定部1
4Bから構成されている。超音波機構部14Aは超音波
トランスジューサ4、LFB音響レンズ5、水カプラ
6、試料7、熱電対9、機械操作部11から構成されて
いる。制御測定部14Bはパルスモード測定システム
1、方向性ブリッジ3、A/D変換器8、ディジタルボ
ルトメータ10、ステージコントローラ12、コンピュ
ータ13から構成されている。制御測定部14Bのパル
スモード測定システム1において発生された高周波パル
ス信号2は、方向性ブリッジ3を介して超音波トランス
ジューサ4に与えられ、超音波信号に変換され、開口面
が円筒状に形成されたLFB音響レンズ5により、水カ
プラ6を介してくさび状に集束されて試料7に入射され
る。試料表面からの反射信号は再び電気信号に変換さ
れ、その出力が方向性ブリッジ3を介してパルスモード
測定システム1によって検波され、A/D変換器8によ
りデジタル信号に変換された後、コンピュータ13内の
データ記録媒体に保存される。
FIG. 1 is a block diagram showing the principle of a conventional ultrasonic microscope. The coordinate axes x, y, and z are set as shown in the figure. The ultrasonic microscope 14 includes an ultrasonic mechanism unit 14A and a control and measurement unit 1
4B. The ultrasonic mechanism section 14A includes an ultrasonic transducer 4, an LFB acoustic lens 5, a water coupler 6, a sample 7, a thermocouple 9, and a mechanical operation section 11. The control and measurement unit 14B includes the pulse mode measurement system 1, the directional bridge 3, the A / D converter 8, the digital voltmeter 10, the stage controller 12, and the computer 13. The high-frequency pulse signal 2 generated in the pulse mode measurement system 1 of the control and measurement unit 14B is provided to the ultrasonic transducer 4 through the directional bridge 3, and is converted into an ultrasonic signal, and the aperture surface is formed in a cylindrical shape. The LFB acoustic lens 5 converges in a wedge shape via a water coupler 6 and enters the sample 7. The reflected signal from the sample surface is converted into an electric signal again, and its output is detected by the pulse mode measurement system 1 through the directional bridge 3 and converted into a digital signal by the A / D converter 8. It is stored in the data recording medium inside.

【0004】ここで、試料7とLFB音響レンズ5間の
距離zを音響レンズの焦点位置から近づけていくと、図
2に示すようにトランスジューサ出力V(z)は周期的に変
化する。これはV(z)曲線と呼ばれ、機械操作部11のZ
(垂直移動)ステージの移動と同期したパルスをステー
ジコントローラ12からA/D変換器8に送ることによ
り、zの関数として記録される。また、熱電対9とデジ
タルボルトメータ10を利用して、水カプラ6の温度が
同時に計測される。機械操作部11はZステージの他、
LSAW伝搬特性の伝搬方向依存性を測定するためのθ(回
転)ステージ、試料面上の分布を測定するためのXY
(水平移動)ステージ、アライメント用θ x,θy(傾
斜)ステージ、試料台などにより構成されている。X
Y、Z及びθステージはそれぞれモータにより駆動さ
れ、ステージコントローラ12により制御される。ま
た、コンピュータ13はシステム全体を制御し、V(z)曲
線の測定・解析を行ないLSAW伝搬特性を求める。
Here, the distance between the sample 7 and the LFB acoustic lens 5 is
As the distance z approaches the focal position of the acoustic lens,
As shown in Fig. 2, the transducer output V (z) changes periodically.
Become This is called a V (z) curve, and the Z
(Vertical movement) A pulse synchronized with the stage movement
From the controller 12 to the A / D converter 8.
And is recorded as a function of z. In addition, thermocouple 9 and digital
Using the tall volt meter 10, the temperature of the water coupler 6
Measured at the same time. The machine operation unit 11 has a Z stage,
Θ (time) for measuring the propagation direction dependence of LSAW propagation characteristics
XY) for measuring distribution on stage and sample surface
(Horizontal movement) stage, alignment θ x, Θy(Incline
(Oblique) It is composed of a stage, a sample stage and the like. X
The Y, Z and θ stages are each driven by a motor.
And is controlled by the stage controller 12. Ma
The computer 13 controls the entire system, and
Measure and analyze the line to determine the LSAW propagation characteristics.

【0005】V(z)曲線における干渉周期ΔzからLSAWの
位相速度VLSAW が、波形減衰率から規格化伝搬減衰率α
LSAWが求まる。ここでは特に位相速度の測定について詳
しく述べる。図2は測定したV(z)曲線の例である。V(z)
曲線における干渉周期Δzから次式によりLSAW速度V
LSAW が求まる。 VLSAW=VW/{1−(1−VW/2fΔz)21/2 (1) ここで、fは超音波周波数、VWは水中の縦波音速であ
る。VWは温度の関数として既知であるから、V(z)曲線測
定時の水カプラ6の温度を測定することにより求めるこ
とができる。これよりVLSAW の測定精度は主にVWを決め
る水の温度の測定精度と、zステージの移動精度に依存
することが分かる。
[0005] From the interference period Δz in the V (z) curve, the LSAW phase velocity V LSAW is calculated from the waveform attenuation rate to the normalized propagation attenuation rate α.
LSAW is determined. Here, the measurement of the phase velocity will be described in detail. FIG. 2 is an example of a measured V (z) curve. V (z)
LSAW velocity V from the interference period Δz in the curve
LSAW is determined. V LSAW = V W / {1− (1−V W / 2fΔz) 21/2 (1) where f is the ultrasonic frequency, and V W is the velocity of the longitudinal acoustic wave in water. Since VW is known as a function of temperature, it can be obtained by measuring the temperature of the water coupler 6 when measuring the V (z) curve. This indicates that the measurement accuracy of V LSAW mainly depends on the measurement accuracy of the water temperature that determines V W and the movement accuracy of the z stage.

【0006】例えば、0.01%のLSAW速度の測定分解能を
得るためには0.1℃ 以内のカプラ温度の測定精度が要求
される(文献2参照)。実際の装置においては、図1に
示されるように熱電対9はできる限り音波の伝搬領域の
近くに設置されるが、音波の伝搬領域に熱電対9を直接
挿入することはできない。通常カプラ内には温度分布が
存在する。この主な原因は、カプラの蒸発による気化熱
のためにカプラ表面付近の温度が低下しカプラ内に温度
勾配が生じることと、空気の流れによりカプラ周辺の温
度環境に変動が生じることである。このため、カプラ温
度の高精度な測定を行なうためには、試料周辺の温度環
境の安定化が極めて重要である。
For example, in order to obtain a 0.01% LSAW speed measurement resolution, a coupler temperature measurement accuracy within 0.1 ° C. is required (see Reference 2). In an actual device, the thermocouple 9 is installed as close as possible to the sound wave propagation region as shown in FIG. 1, but the thermocouple 9 cannot be directly inserted into the sound wave propagation region. Usually, there is a temperature distribution in the coupler. The main reasons for this are that the temperature near the surface of the coupler decreases due to the heat of vaporization due to the evaporation of the coupler, causing a temperature gradient in the coupler, and that the temperature environment around the coupler fluctuates due to the flow of air. Therefore, in order to measure the coupler temperature with high accuracy, it is very important to stabilize the temperature environment around the sample.

【0007】更に、一般に材料の弾性特性は温度依存性
をもつ。例えば、代表的な弾性表面波デバイス用基板で
ある128°回転Y板ニオブ酸リチウム単結晶基板における
結晶X軸伝搬のLSAW速度は、-0.16(m/s)/℃の温度係数を
もつ(文献2参照)。よって1℃の温度変化に対してLS
AW速度は0.16m/s(0.004%)変化する。このため、試料
間の弾性特性を比較するためには安定した温度環境を実
現すると共に、同一の温度でLSAW伝搬特性を測定するこ
とが必須となる。
Furthermore, the elastic properties of a material generally have a temperature dependence. For example, the LSAW velocity of crystal X-axis propagation on a 128 ° rotated Y-plate lithium niobate single crystal substrate, which is a typical substrate for surface acoustic wave devices, has a temperature coefficient of -0.16 (m / s) / ° C (Reference 2). Therefore, for a temperature change of 1 ° C, LS
The AW speed changes by 0.16m / s (0.004%). Therefore, in order to compare the elastic characteristics between samples, it is necessary to realize a stable temperature environment and measure the LSAW propagation characteristics at the same temperature.

【0008】また、よく知られているように機械ステー
ジの移動特性は、ガイドやリードスクリューの熱膨脹の
ため温度によって変化する。このため、再現性のある高
精度なz座標の位置決めを行なうためにも、温度環境の
安定化が極めて重要である。これまで、装置全体を恒温
室内に設置することにより、温度環境の安定性が改善さ
れLSAW速度の測定精度が向上し、短時間における測定再
現性としては±0.005% が達成されている(文献2参
照)。しかし、長期的には温度の安定点に変動が生じ、
測定されるLSAW速度の絶対値に変動が生じてしまうとい
う問題がある。また、恒温室は温度の安定化に時間を要
すること、在室人数や室内照明のON/OFF、室内の稼働装
置の数などの内部熱負荷条件により温度の安定点が変化
すること、人の入退室や移動などにより局所的な温度変
化が生じること、空調装置からの風の吹き出しにより試
料周辺雰囲気の温度環境の変化が生じることなどの問題
点がある。このため、カプラ温度の安定点は測定条件に
よって約±1℃程度の変動が生じ、また測定中の安定性
は約±0.2℃ 程度である。
Further, as is well known, the moving characteristics of the mechanical stage change depending on the temperature due to the thermal expansion of the guide and the lead screw. Therefore, the stabilization of the temperature environment is extremely important in order to perform reproducible and highly accurate z-coordinate positioning. Until now, by installing the entire device in a constant temperature room, the stability of the temperature environment has been improved, the measurement accuracy of the LSAW speed has been improved, and the measurement reproducibility in a short time has been achieved ± 0.005% (Reference 2). reference). However, in the long term, the temperature stable point fluctuates,
There is a problem that the absolute value of the measured LSAW speed varies. In addition, it takes time to stabilize the temperature in a constant temperature room, the temperature stability point changes depending on the internal heat load conditions such as the number of people in the room, ON / OFF of indoor lighting, and the number of operating devices in the room. There are problems such as a local temperature change due to entry and exit and movement, and a change in the temperature environment of the atmosphere around the sample due to the blowing of air from the air conditioner. For this reason, the stable point of the coupler temperature fluctuates by about ± 1 ° C. depending on the measurement conditions, and the stability during the measurement is about ± 0.2 ° C.

【0009】また、超音波デバイスと試料間の水カプラ
は試料交換の際に一旦除去され、試料設置後に再注入さ
れる。このため、試料や水カプラの温度が再度安定する
までに待ち時間を必要とし、複数の試料を連続して効率
的に測定することが困難である。
Further, the water coupler between the ultrasonic device and the sample is once removed at the time of sample exchange, and is re-injected after setting the sample. Therefore, a waiting time is required until the temperatures of the sample and the water coupler are stabilized again, and it is difficult to measure a plurality of samples continuously and efficiently.

【0010】[0010]

【発明が解決しようとする課題】上述のように、従来の
装置においては測定環境を所望の温度に安定化すること
が安易ではなく、電子デバイス材料として用いられるよ
うな均質性の高い単結晶材料基板などの、わずかな弾性
特性の変化を捉えるためには測定精度が不十分であっ
た。
As described above, in the conventional apparatus, it is not easy to stabilize the measurement environment at a desired temperature, and a highly uniform single crystal material used as an electronic device material is used. The measurement accuracy was insufficient to capture a slight change in elastic characteristics of a substrate or the like.

【0011】この発明の目的は、高い精度で材料特性の
定量計測を可能とする温度安定化された超音波顕微鏡装
置を提供することである。
An object of the present invention is to provide a temperature-stabilized ultrasonic microscope apparatus capable of quantitatively measuring material characteristics with high accuracy.

【0012】[0012]

【課題を解決するための手段】本発明の定量計測用超音
波顕微鏡装置は、超音波デバイス及び試料を含む機械操
作部が温度制御が可能なケース内に設置され、温度制御
手段により温度制御された空気をケース内に循環させ、
かつ空間遮蔽手段により水カプラの周囲を囲みほぼ閉じ
た空間にすることにより、空気の流れによる温度変動や
カプラの蒸発によるカプラ内の温度変化を抑制する。
In the ultrasonic microscope apparatus for quantitative measurement of the present invention, a mechanical operation section including an ultrasonic device and a sample is installed in a case capable of temperature control, and the temperature is controlled by temperature control means. Circulated air through the case,
In addition, by making the space around the water coupler substantially closed by the space shielding means, temperature fluctuation due to air flow and temperature change in the coupler due to evaporation of the coupler are suppressed.

【0013】更に、より精密な、例えば0.01℃以内の温
度制御が必要な場合は、超音波デバイス及び試料周辺を
完全閉空間にし、その周辺に精密に温度制御された恒温
水を循環させる。このように材料評価において要求され
るLSAW速度の測定精度に応じて、さらなる温度環境の安
定化を図る。複数の試料を連続して測定する場合、安定
化した温度環境を崩すことなく水カプラの給排水、試料
の交換、及び超音波デバイスと試料間のアライメントを
可能とするために、0.01℃の温度制御機能を有する給排
水装置、試料搬送装置、及び自動傾斜ステージを備えて
おり、より高精度な測定を効率的に行なうことができ
る。
Further, when more precise temperature control, for example, within 0.01 ° C., is required, the area around the ultrasonic device and the sample is completely closed, and constant temperature water whose temperature is precisely controlled is circulated around the space. Thus, the temperature environment is further stabilized in accordance with the measurement accuracy of the LSAW speed required in the material evaluation. When measuring multiple samples continuously, 0.01 ° C temperature control to enable water coupler water supply and drainage, sample exchange, and alignment between the ultrasonic device and the sample without breaking the stabilized temperature environment A water supply / drainage device having a function, a sample transport device, and an automatic tilt stage are provided, so that more accurate measurement can be efficiently performed.

【0014】[0014]

【発明の実施の形態】図3はこの発明による超音波顕微
鏡装置の実施例を示す。図におけるケース15内に設け
られたLPB超音波顕微鏡機構部14Aは、図1におけ
るトランスジューサ4、音響レンズ5、水カプラ6、試
料7、熱電対9、機械操作部11を含むように構成され
ている。また、ケース15の外に設けられた制御測定部
14Bも、図1におけるパルスモード測定システム1、
方向性ブリッジ3、A/D変換器8、ディジタルボルト
メータ10、ステージコントローラ12、コンピュータ
13を含むように構成されており、配線によりケース1
5内のトランスジューサに接続されている。
FIG. 3 shows an embodiment of an ultrasonic microscope apparatus according to the present invention. The LPB ultrasonic microscope mechanism unit 14A provided in the case 15 shown in the figure is configured to include the transducer 4, the acoustic lens 5, the water coupler 6, the sample 7, the thermocouple 9, and the machine operation unit 11 shown in FIG. I have. Further, the control and measurement unit 14B provided outside the case 15 also includes the pulse mode measurement system 1 in FIG.
It is configured to include a directional bridge 3, an A / D converter 8, a digital voltmeter 10, a stage controller 12, and a computer 13.
5 are connected to the transducers.

【0015】超音波デバイス(トランスジューサ4と音
響レンズ5)と、試料台を含む機械操作部11とから構
成されたLFB超音波顕微鏡機構部14Aはアクリルケ
ース15内に設置する。ケース15内は設定分解能0.00
1℃ の温度コントローラ16により所望の温度に設定す
ることができる。ケース内部の温度は白金測温抵抗体を
用いた温度センサー17により測定され、温度コントロ
ーラ16に入力される。ケース15の上部からは空調機
によって温度制御された空気が、循環ファン18により
送風ダクト19及び高性能フィルタ20を介して供給さ
れる。フィルタ20は空気中の塵埃を除去すると共に供
給された空気の流れに対する緩衝として作用し、空気流
を均一化する。また、ケース15下部より排出された空
気は排気ダクト21を通って空調機へ戻る。空調機へ戻
った空気は冷却機22により冷却され、電気ヒーター2
3により再加熱される。このとき、電気ヒーター23の
出力はケース15内部の温度センサー17の設置位置
(制御点)における温度が常に設定温度となるように、
温度コントローラ16によりPID制御(比例・積分・
微分制御)される。ここで、ケース15の材質に断熱効
果の高いものを用いることや、ケース15の外部の温度
を安定化させることにより、ケース15内部の温度安定
性をより向上できることは言うまでもない。
An LFB ultrasonic microscope mechanism 14A including an ultrasonic device (transducer 4 and acoustic lens 5) and a mechanical operation unit 11 including a sample stage is installed in an acrylic case 15. Case 15 has a setting resolution of 0.00
The desired temperature can be set by the temperature controller 16 of 1 ° C. The temperature inside the case is measured by a temperature sensor 17 using a platinum resistance temperature sensor and input to a temperature controller 16. Air whose temperature is controlled by the air conditioner is supplied from the upper part of the case 15 by the circulation fan 18 through the ventilation duct 19 and the high-performance filter 20. The filter 20 removes dust in the air and acts as a buffer for the supplied air flow, thereby equalizing the air flow. The air discharged from the lower portion of the case 15 returns to the air conditioner through the exhaust duct 21. The air returned to the air conditioner is cooled by the cooler 22 and the electric heater 2
Reheated by 3. At this time, the output of the electric heater 23 is set so that the temperature at the installation position (control point) of the temperature sensor 17 inside the case 15 always becomes the set temperature.
PID control (proportional / integral /
Differential control). Here, it is needless to say that the temperature stability inside the case 15 can be further improved by using a material having a high heat insulating effect for the material of the case 15 and stabilizing the temperature outside the case 15.

【0016】図4のA,B,Cはそれぞれ図3の実施例
における超音波顕微鏡機構部14Aの実施例を示す。水
カプラ6内に温度分布が生じる主な原因は、前述のよう
に水カプラの蒸発と水カプラ6周辺の空気の流れによる
温度環境の変動である。そこで、超音波デバイスと試料
周辺部を半空間あるいは閉空間にして空気の流れを極力
遮断することによって水カプラ6の温度を安定化でき
る。更に、水カプラ6周辺の雰囲気は水蒸気の飽和状態
により近くなるので、それだけ水カプラの蒸発が抑制で
き、カプラ内の温度分布を低減させ温度環境を更に安定
化することができる。
FIGS. 4A, 4B and 4C show an embodiment of the ultrasonic microscope mechanism 14A in the embodiment of FIG. The main cause of the temperature distribution in the water coupler 6 is the fluctuation of the temperature environment due to the evaporation of the water coupler and the flow of the air around the water coupler 6 as described above. Therefore, the temperature of the water coupler 6 can be stabilized by cutting off the air flow as much as possible by making the ultrasonic device and the sample peripheral part a half space or a closed space. Further, since the atmosphere around the water coupler 6 becomes closer to the saturated state of water vapor, the evaporation of the water coupler can be suppressed accordingly, the temperature distribution in the coupler can be reduced, and the temperature environment can be further stabilized.

【0017】図4は水カプラ6の周囲を囲むようにカー
テンを設けることにより、空気流を遮断し、かつ雰囲気
内の水蒸気を飽和に近づけた実施の形態のいくつかを示
す。LSAW速度の試料面分布の測定や伝搬方向依存性の測
定を行なう場合は、機械操作部11を構成するXYステ
ージ34やθステージ33の移動が伴う。そこでステー
ジの移動に支障がないように、図4、Aの実施例に示す
ように超音波デバイス24の上に天板28を設け、その
天板28の周縁から超音波デバイス24,水カプラ6,
を囲むようにして下方に延長するポリエチレンフィルム
やプラスチックフィルム、アクリル板などによって、試
料台8上の試料7の表面に届かないようなカーテン29
を空間遮蔽手段として設ける。これによりLFB超音波
デバイス24(トランスジューサ4と音響レンズ5)と
水カプラ6の周辺を半閉空間とすることができる。ま
た、図4、Bの実施例ように、カーテン29をθステー
ジ33にかぶさる程度まで覆ってもよい。更に、一固定
点における測定や試料が小さくXYステージ34の移動
量が少ない場合は、図4、Cの実施例に示すように試料
台32までカーテン29を延ばせば、より機密性の高い閉
空間を造ることができる。このように目的に応じた閉空
間を造ることにより、簡便に温度環境の安定化を向上す
ることができる。
FIG. 4 shows some embodiments in which a curtain is provided around the periphery of the water coupler 6 to block the air flow and to make the water vapor in the atmosphere close to saturation. When the measurement of the sample surface distribution of the LSAW velocity or the measurement of the propagation direction dependence is performed, the movement of the XY stage 34 and the θ stage 33 constituting the machine operation unit 11 is accompanied. Therefore, a top plate 28 is provided on the ultrasonic device 24 as shown in the embodiment of FIG. 4A so as not to hinder the movement of the stage, and the ultrasonic device 24 and the water coupler 6 ,
A curtain 29 that does not reach the surface of the sample 7 on the sample stage 8 by a polyethylene film, a plastic film, an acrylic plate, or the like that extends downward so as to surround the sample 7.
Are provided as space shielding means. Thereby, the periphery of the LFB ultrasonic device 24 (the transducer 4 and the acoustic lens 5) and the periphery of the water coupler 6 can be made a semi-closed space. 4 and B, the curtain 29 may be covered to the extent that it covers the θ stage 33. Further, when the measurement at one fixed point or the sample is small and the moving amount of the XY stage 34 is small, the curtain 29 can be extended to the sample stage 32 as shown in the embodiment of FIG. Can be built. Thus, by creating a closed space according to the purpose, the stabilization of the temperature environment can be easily improved.

【0018】また、図5に示すように水カプラ36を特
定の温度に極めて高精度に、例えば0.01℃以内で安定化
させるためには、恒温水循環装置39により精密に温度
制御した恒温水38を循環させた壁により恒温チャンバ
ー40を空間遮蔽手段として構成し、その内部にトラン
スジューサ、音響レンズからなる超音波デバイス24及
び水カプラ6,試料7を配置する。これによって水カプ
ラ6へ風が当たるのを防ぐと共に、雰囲気内の水蒸気を
飽和により近くする。図5、Aの実施例はLFB超音波
デバイス24(トランスジューサ4と音響レンズ5)と
試料7の周辺を恒温チャンバー40により囲った場合で
あり、図5、Bの実施例は更に安定化させるために必要
な電気接続部をのぞいて底部も含めて全体を囲った場合
である。この様にすれば、ケース15内に導入される空
気の流れが水カプラ6に当たることがない上、恒温水に
より温度が安定化されるので、高精度の定量計測が可能
となる。
As shown in FIG. 5, in order to stabilize the water coupler 36 at a specific temperature with high precision, for example, within 0.01 ° C., the constant temperature water 38 whose temperature is precisely controlled by a constant temperature water circulating device 39 is used. The circulated wall constitutes a constant temperature chamber 40 as a space shielding means, in which a transducer, an ultrasonic device 24 including an acoustic lens, a water coupler 6, and a sample 7 are arranged. This prevents wind from hitting the water coupler 6 and makes the water vapor in the atmosphere closer to saturation. 5A is a case where the periphery of the LFB ultrasonic device 24 (transducer 4 and acoustic lens 5) and the sample 7 are surrounded by a constant temperature chamber 40, and the embodiment of FIGS. This is a case where the whole is enclosed including the bottom except for the electrical connection required for the above. In this way, the flow of the air introduced into the case 15 does not hit the water coupler 6 and the temperature is stabilized by the constant temperature water, so that high-precision quantitative measurement becomes possible.

【0019】ところで、試料交換の際には超音波デバイ
スと試料間の水カプラの除去と再注入が必要となる。図
6は測定環境の安定性を崩すことなくカプラの給排水を
行なうための、給排水装置の一例のブロック図であり、
超音波顕微鏡機構部14Aとして図4のA,B,Cの実
施例、あるいは図5A,Bの実施例のいずれかに示すも
のを使用するが、ダクト19、21、フィルタ20、カ
ーテン29又は恒温チャンバ40等は図示してない。水
カプラ6として用いられる純水44は純水タンク45の
中に保存され、給水ポンプ46により音響レンズ5と試
料7の間に注入される。また、測定終了後は排水ポンプ
47により吸い出され排水タンク48へ排出される。純
水タンク45は恒温水循環装置49により0.01℃以内で
温度を制御した恒温水槽50内に設置されており、常に
一定温度の純水44がカプラ6として供給できるように
なっている。また、タンク45内の純水44は脱気装置
51により内部に溶けて込んでいる空気が除去され、純
水維持装置52によりその純度が保たれる。
By the way, when exchanging the sample, it is necessary to remove and re-inject the water coupler between the ultrasonic device and the sample. FIG. 6 is a block diagram of an example of a water supply / drainage device for supplying / draining the coupler without deteriorating the stability of the measurement environment.
As the ultrasonic microscope mechanism 14A, the one shown in the embodiment shown in FIGS. 4A, 4B and 5C or the embodiment shown in FIGS. 5A and 5B is used, but the ducts 19 and 21, the filter 20, the curtain 29 or the thermostat are used. The chamber 40 and the like are not shown. Pure water 44 used as the water coupler 6 is stored in a pure water tank 45 and injected between the acoustic lens 5 and the sample 7 by a water supply pump 46. After the measurement, the water is sucked out by the drainage pump 47 and discharged to the drainage tank 48. The pure water tank 45 is installed in a constant temperature water tank 50 whose temperature is controlled within 0.01 ° C. by a constant temperature water circulation device 49, so that pure water 44 at a constant temperature can always be supplied as the coupler 6. Further, the pure water 44 in the tank 45 is removed by a deaerator 51 to remove the air dissolved therein, and its purity is maintained by a pure water maintaining device 52.

【0020】図4,5及び6に示した各実施例において
は、水カプラ6として水滴を音響レンズ6と試料7の間
に注入する場合を示したが、図7に示すように水槽27
を設け、試料7全体を水カプラ6中に浸してもよい。複
数の試料を連続して測定する場合、温度環境の安定性を
崩すことなく試料の交換を行なうことができれば、ケー
ス15を開閉する必要がなくなり、より高精度な測定が
できると共に測定の効率化が図れる。図8はこのための
試料搬送装置の一例を示したものである。測定試料7は
試料カセット54に設置され、必要に応じて搬送アーム
55により自動的に試料台8に搬送される。また、測定
が終了した試料7は搬送アーム55により再び試料カセ
ット54へ戻される。これらは、図3に示した温度環境
を安定化したケース15内に設置されているので、試料
交換の作業をケースを開閉することなく行なえ、安定し
た温度環境を維持したまま複数の試料を連続的に効率よ
く高精度に測定することができる。
In each of the embodiments shown in FIGS. 4, 5 and 6, the case where a water drop is injected between the acoustic lens 6 and the sample 7 as the water coupler 6 has been shown, but as shown in FIG.
And the entire sample 7 may be immersed in the water coupler 6. In the case of continuously measuring a plurality of samples, if the samples can be exchanged without deteriorating the stability of the temperature environment, it is not necessary to open and close the case 15, so that more accurate measurement can be performed and measurement efficiency can be improved. Can be achieved. FIG. 8 shows an example of a sample transport device for this purpose. The measurement sample 7 is set in the sample cassette 54 and is automatically transferred to the sample table 8 by the transfer arm 55 as needed. The sample 7 for which measurement has been completed is returned to the sample cassette 54 by the transfer arm 55 again. Since these are installed in the case 15 in which the temperature environment is stabilized as shown in FIG. 3, the work of exchanging the samples can be performed without opening and closing the case, and a plurality of samples can be continuously transferred while maintaining the stable temperature environment. Measurement can be performed efficiently and accurately.

【0021】試料設置及びカプラ注入後には、超音波デ
バイスと試料間のアライメントをとる必要がある。超音
波デバイスに関しては、デバイスの設置時においてのみ
アライメントをとればよく、その後はデバイスを交換し
ない限りは試料面のアライメントのみを行なえばよい。
従来の装置では試料台が設置されている傾斜ステージは
手動で操作しなければならなかったが、本発明の装置に
おいてはモータ駆動の自動傾斜ステージを備えることに
より、測定環境の安定性を崩すことなく自動的に試料面
のアライメントをとることができる。
After setting the sample and injecting the coupler, it is necessary to take alignment between the ultrasonic device and the sample. With respect to the ultrasonic device, alignment need only be performed when the device is installed, and thereafter, only alignment of the sample surface need be performed unless the device is replaced.
In the conventional device, the tilt stage on which the sample stage is installed had to be manually operated.However, the device of the present invention has a motor-driven automatic tilt stage, which destabilizes the measurement environment. Alignment of the sample surface can be automatically performed without any need.

【0022】また、高精度なzの位置決めを行なうため
にはレーザー干渉測長器を用いて、z座標の絶対位置決
めを行なえばよい。
Further, in order to perform high-precision z positioning, absolute z-coordinate positioning may be performed using a laser interferometer.

【0023】[0023]

【実施例】定量計測用超音波顕微鏡によるLSAW伝搬特性
の測定精度の向上において、その根本的要因は温度環境
の安定化である。試作した装置ではケース内の温度制御
点における空気の温度は設定値±0.005℃ 以内で安定し
た。実験には開口面曲率半径1mmの200MHz帯LFB超音
波デバイスを用い、試料には前述の 128°回転Y板ニオ
ブ酸リチウム単結晶基板をとりあげた。超音波周波数は
225MHz、LFB超音波デバイスと試料間の水カプラの量
は約1cm3 であり、水滴の形態である。温度コントロー
ラは水カプラの温度が23℃付近になるように設定し
た。超音波デバイスと試料のアライメントをとるために
用いた自動傾斜ステージの分解能は6×10-7radであり、
十分な精度及び再現性でアライメントをとることができ
る。また、Zステージには真直性に優れた空気ベアリン
グステージを用い、z軸上に設置したレーザー干渉測長
器(分解能20nm)により、z座標の絶対位置決めを行な
った。ただし、本実施例においては試料搬送装置及び自
動給排水装置は使用していない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In improving the measurement accuracy of LSAW propagation characteristics by an ultrasonic microscope for quantitative measurement, the fundamental factor is to stabilize the temperature environment. In the prototype device, the air temperature at the temperature control point in the case was stable within the set value ± 0.005 ° C. A 200 MHz band LFB ultrasonic device having an opening surface curvature radius of 1 mm was used in the experiment, and the above-mentioned 128 ° rotated Y-plate lithium niobate single crystal substrate was used as a sample. The ultrasonic frequency is
225 MHz, the amount of water coupler between LFB ultrasonic device and the sample is approximately 1 cm 3, in the form of water droplets. The temperature controller was set so that the temperature of the water coupler was around 23 ° C. The resolution of the automatic tilt stage used to align the ultrasonic device with the sample is 6 × 10 -7 rad,
Alignment can be performed with sufficient accuracy and reproducibility. An air bearing stage having excellent straightness was used as the Z stage, and absolute positioning of the z coordinate was performed by a laser interferometer (resolution 20 nm) installed on the z axis. However, in this embodiment, the sample transport device and the automatic water supply / drainage device are not used.

【0024】図9はLFB超音波顕微鏡による材料の評
価において通常行われる、LSAW伝搬特性の繰り返し測定
(○印)、伝搬方向依存性の測定(□印)、ラインスキ
ャン(△印)を行なった際のカプラ温度の平均値をそれ
ぞれ示したものである。繰り返しにおいては 100回の、
伝搬方向依存性においては1°毎に200°の範囲の、ライ
ンスキャンにおいては1m毎に±30mm の領域の測定を行
なった。エラーバーは各測定中におけるカプラ温度の最
大値と最小値を示す。全測定を通してカプラの温度変化
は全体で23℃±0.1 ℃以内を、また、各測定における温
度の平均値の変化は23℃±0.05℃以内を実現しているこ
とが分かる。前述の温度係数(-0.16(m/s)/℃)より、
±0.1℃の温度変化に対するLSAW速度の変化は±0.016m/
sであり十分小さい。
FIG. 9 shows the repetitive measurement of the LSAW propagation characteristics (印), the measurement of the propagation direction dependence (□), and the line scan (△), which are usually performed in the evaluation of the material by the LFB ultrasonic microscope. In this case, the average values of the coupler temperatures are shown. 100 times in repetition,
In the direction of propagation, a range of 200 ° was measured every 1 °, and an area of ± 30 mm was measured every 1 m in the line scan. Error bars indicate the maximum and minimum values of the coupler temperature during each measurement. It can be seen that the temperature change of the coupler as a whole is within 23 ° C. ± 0.1 ° C. throughout all the measurements, and the change in the average value of the temperature in each measurement is within 23 ° C. ± 0.05 ° C. From the above temperature coefficient (-0.16 (m / s) / ° C),
LSAW speed change for temperature change of ± 0.1 ° C is ± 0.016m /
s is small enough.

【0025】図10、Aは一固定点における繰り返し10
0回の測定を行なった際のLSAW速度の測定結果である。L
SAWの伝搬方向は結晶X軸方向とした。このときのカプラ
温度は平均値が23.043℃、最大変化が0.017℃であっ
た。また、LSAW速度の測定結果は平均値が3898.21m/s、
標準偏差σは0.038m/s(0.001%)であった。また、図
10、Bは、このときの伝搬減衰の測定結果であり、平
均値は 1.6373×10-2、σは7.4×10-6(0.045%)であ
った。LSAW速度の測定分解能を±2σで評価すると±0.0
02%である。
FIG. 10A shows the repetition at one fixed point.
It is a measurement result of the LSAW speed at the time of performing the measurement 0 times. L
The SAW propagation direction was the crystal X-axis direction. At this time, the average value of the coupler temperature was 23.043 ° C. and the maximum change was 0.017 ° C. In addition, the average value of the LSAW speed measurement results was 3898.21 m / s,
The standard deviation σ was 0.038 m / s (0.001%). 10 and B show the measurement results of the propagation attenuation at this time. The average value was 1.6373 × 10 −2 and σ was 7.4 × 10 −6 (0.045%). Evaluating the measurement resolution of LSAW speed with ± 2σ is ± 0.0
02%.

【0026】次に図5、Bに示すように試料周辺をポリ
エチレンフィルムで半閉空間とし、一固定点における繰
り返し 100回の測定を行なった。このときのカプラ温度
の最大変化は0.007℃ であった。また、LSAW速度の測定
結果は平均値が3898.23m/s、σは0.027m/s(0.0007%)
であった。また、伝搬減衰の測定結果は平均値が1.6377
×10-2、σは6.2×10-6(0.038%)であり、前述の開放
系での測定結果と比較して、温度安定性及び測定再現性
が共に向上していることが分かる。
Next, as shown in FIGS. 5 and 5B, the periphery of the sample was made a semi-closed space with a polyethylene film, and the measurement was repeated 100 times at one fixed point. The maximum change in the coupler temperature at this time was 0.007 ° C. The average value of the LSAW speed measurement results was 3988.23 m / s, and σ was 0.027 m / s (0.0007%)
Met. The average value of the measured propagation attenuation was 1.6377.
× 10 -2 and σ are 6.2 × 10 -6 (0.038%), which indicates that both the temperature stability and the measurement reproducibility are improved as compared with the measurement results in the open system described above.

【0027】ここで、例えば、この単結晶材料を評価す
るために望まれるLSAW速度の分解能を0.1m/s(0.0026
%)とすれば、本装置はこれを満足する測定環境の安定
性、及びLSAW伝搬特性の測定再現性を実現していること
が分かる。
Here, for example, the resolution of the LSAW speed desired for evaluating this single crystal material is set to 0.1 m / s (0.0026
%), It can be seen that the present apparatus realizes the stability of the measurement environment and the measurement reproducibility of the LSAW propagation characteristics that satisfy this.

【0028】[0028]

【発明の効果】本発明によれば、超音波顕微鏡における
測定の温度環境、特に水カプラと試料の周辺を所望の温
度に容易に安定化できることになり、LSAW伝搬特性の測
定精度が向上し、高精度な材料特性の解析・評価が可能
となる。また、任意の温度に設定可能なため物質材料の
LSAW伝搬特性の温度依存性も容易に計測できることにな
る。更に、温度環境の安定性を保ちつつ試料交換を行な
えるので、複数の試料を連続して測定する場合も高精度
で効率的な測定が可能となる。また、PFB超音波顕微
鏡を用いた場合も同様な手法で、同様な効果が得られ
る。なお、ここではLSAW伝搬特性の測定に関して述べた
が、本装置は、超音波デバイスをバルク超音波デバイス
に交換することにより、容易にバルク波伝搬特性(縦
波、横波の位相速度・伝搬減衰)の測定にも適用可能と
なる。
According to the present invention, it is possible to easily stabilize the temperature environment of the measurement by the ultrasonic microscope, particularly the water coupler and the periphery of the sample at a desired temperature, and improve the measurement accuracy of the LSAW propagation characteristics. High-precision analysis and evaluation of material properties becomes possible. In addition, since it can be set to any temperature,
The temperature dependency of the LSAW propagation characteristics can also be easily measured. Further, since the sample exchange can be performed while maintaining the stability of the temperature environment, highly accurate and efficient measurement can be performed even when a plurality of samples are continuously measured. Also, the same effect can be obtained by using a PFB ultrasonic microscope in a similar manner. Although the measurement of the LSAW propagation characteristics has been described here, the present device can easily replace the ultrasonic device with a bulk ultrasonic device to facilitate bulk wave propagation characteristics (phase velocity and propagation attenuation of longitudinal and transverse waves). Can also be applied to the measurement of

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のLFB超音波顕微鏡装置のブロック図。FIG. 1 is a block diagram of a conventional LFB ultrasonic microscope apparatus.

【図2】LFB超音波顕微鏡により測定したV(z)曲線の
例。
FIG. 2 is an example of a V (z) curve measured by an LFB ultrasonic microscope.

【図3】この発明の超音波顕微鏡装置の全体構成を示す
ブロック図。
FIG. 3 is a block diagram showing the overall configuration of the ultrasonic microscope device of the present invention.

【図4】図3における超音波顕微鏡機構部の実施例を示
し、Aは試料表面近くまでおろしたカーテンで水カプラ
を囲む閉空間を形成した場合、Bはθステージまでかぶ
せるようにカーテンをおろして閉空間を形成した場合、
Cは試料台をまでをかぶせるようにカーテンをおろして
閉空間を形成した場合を示す。
FIG. 4 shows an embodiment of the ultrasonic microscope mechanism in FIG. 3. A is a curtain lowered near the sample surface to form a closed space surrounding the water coupler, and B is a curtain lowered so as to cover the θ stage. To form a closed space,
C shows a case where the curtain is lowered so as to cover the sample stage to form a closed space.

【図5】Aは超音波デバイス、水カプラ及び試料の周辺
を恒温チャンバ内に配置し、底面をのぞくその周辺に恒
温水を循環させる構成とした場合、BはAにおいて底面
も恒温水で囲んだ場合の実施例を示す。
FIG. 5A shows a configuration in which the periphery of the ultrasonic device, the water coupler, and the sample is arranged in a constant temperature chamber and the constant temperature water is circulated around the bottom except for the bottom surface. In this case, an embodiment will be described.

【図6】カプラ自動給排水装置の例。FIG. 6 shows an example of a coupler automatic water supply / drainage device.

【図7】超音波デバイスと試料間の水カプラの設置の形
態の例。
FIG. 7 is an example of a form of installation of a water coupler between an ultrasonic device and a sample.

【図8】試料搬送装置の例。FIG. 8 shows an example of a sample transport device.

【図9】測定時のカプラ温度の変化を示すグラフ。FIG. 9 is a graph showing a change in coupler temperature during measurement.

【図10】一固定点における繰り返し100回のLSAW伝搬
特性の測定結果であり、AはLSAW速度、Bは規格化伝搬
減衰を示す。 参考文献 文献1:J. Kushibiki and N. Chubachi, "Material ch
aracterization byline-focus-beam acoustic microsco
pe," IEEE Trans. Sonics and Ultrason.,SU-32, pp. 1
89-212 (1985). 文献2:小林岳彦、櫛引淳一、中鉢憲賢、”直線集束ビ
ーム超音波顕微鏡の測定精度”、信学技法、US91-43、p
p. 27-34 (1991).
FIG. 10 shows measurement results of LSAW propagation characteristics at one fixed point after 100 repetitions, where A indicates LSAW speed and B indicates normalized propagation attenuation. References 1: J. Kushibiki and N. Chubachi, "Material ch
aracterization byline-focus-beam acoustic microsco
pe, "IEEE Trans. Sonics and Ultrason., SU-32, pp. 1
89-212 (1985). Literature 2: Takehiko Kobayashi, Junichi Kushibiki, Noriyoshi Nakabachi, "Measurement Accuracy of a Linear Focused Beam Ultrasonic Microscope", IEICE Techniques, US91-43, p.
p. 27-34 (1991).

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 試料表面との間に水カプラを介在させて
音響レンズが設けられた超音波顕微鏡機構部と、 上記超音波顕微鏡機構部を収容し、外部環境から遮断す
るケースと、 上記ケースの外に設けられ、上記超音波顕微鏡機構部に
電気的に接続されて高周波パルスを供給し、その応答信
号を測定することにより上記試料の特性を測定する制御
測定部と、 上記ケース内に設けられ、温度を検出して検出温度信号
を出力する温度センサと、 上記ケースと送風ダクトと排気ダクトにより接続され、
温度制御された空気を上記送風ダクト、上記ケース、上
記排気ダクトを通して循環させる空調手段と、上記温度
センサからの検出温度信号に基づいて上記空調手段にお
ける送風温度を制御する温度制御手段と、 上記ケース内において上記水カプラの周囲を囲んでほぼ
閉じた空間を形成するための空間遮蔽手段と、 を含む定量計測用超音波顕微鏡装置。
1. An ultrasonic microscope mechanism provided with an acoustic lens with a water coupler interposed between the sample surface and a sample surface, a case accommodating the ultrasonic microscope mechanism, and being shielded from an external environment; A control and measurement unit that is electrically connected to the ultrasonic microscope mechanism unit, supplies a high-frequency pulse, and measures the response signal to measure the characteristics of the sample. A temperature sensor that detects a temperature and outputs a detected temperature signal, and is connected by the case, the air duct, and the exhaust duct,
Air-conditioning means for circulating temperature-controlled air through the air duct, the case, and the exhaust duct; temperature control means for controlling air temperature in the air-conditioning means based on a detected temperature signal from the temperature sensor; And a space shielding means for forming a substantially closed space surrounding the periphery of the water coupler.
【請求項2】 請求項1の定量計測用超音波顕微鏡装置
において、上記超音波顕微鏡機構部は、 上記制御測定部からの高周波パルスが与えられて超音波
パルスを出射し、上記試料からの漏洩弾性表面波を受け
て上記応答信号を上記制御測定部に与えるトランスジュ
ーサと、 上記トランスジューサからの超音波パルスを集束して上
記水カプラを介して上記試料に入射させ、上記試料から
の上記漏洩弾性表面波を検出して上記トランスジューサ
に与える音響レンズと、 上記試料を載せる試料台を有し、それを上記音響レンズ
に対し移動させる機械操作部と、を含む。
2. The ultrasonic microscope apparatus for quantitative measurement according to claim 1, wherein said ultrasonic microscope mechanism section receives a high-frequency pulse from said control and measurement section, emits an ultrasonic pulse, and leaks from said sample. A transducer for receiving the surface acoustic wave and providing the response signal to the control and measurement unit; an ultrasonic pulse from the transducer being focused and incident on the sample via the water coupler, and the leakage elastic surface from the sample is An acoustic lens that detects a wave and supplies the transducer to the transducer; and a mechanical operation unit that has a sample stage on which the sample is placed and moves the sample stage with respect to the acoustic lens.
【請求項3】 請求項2の定量計測用超音波顕微鏡装置
において、上記空間遮蔽手段は上記水カプラと上記音響
レンズと上記トランスジューサとの周囲を囲んで設けら
れたカーテンを含む。
3. The ultrasonic microscope for quantitative measurement according to claim 2, wherein the space shielding means includes a curtain provided around the water coupler, the acoustic lens, and the transducer.
【請求項4】 請求項3の定量計測用超音波顕微鏡装置
において、上記空間遮蔽手段は上記トランスジューサの
上に設けた天板を含み、上記カーテンは上記天板の周縁
から下方に延長されている。
4. The ultrasonic microscope apparatus for quantitative measurement according to claim 3, wherein said space shielding means includes a top plate provided on said transducer, and said curtain extends downward from a peripheral edge of said top plate. .
【請求項5】 請求項2の定量計測用超音波顕微鏡装置
において、上記空間遮蔽手段は上記水カプラと上記音響
レンズと上記トランスジューサとを囲んで設けられ、恒
温水の壁で構成された恒温チャンバと、上記恒温水の温
度を制御して循環させる恒温水循環手段とを含む。
5. An ultrasonic microscope apparatus for quantitative measurement according to claim 2, wherein said space shielding means is provided so as to surround said water coupler, said acoustic lens and said transducer, and is constituted by a wall of constant temperature water. And a constant temperature water circulating means for controlling and circulating the temperature of the constant temperature water.
【請求項6】 請求項1乃至5のいずれか1つの定量計
測用超音波顕微鏡装置において、上記水カプラは上記試
料の表面と上記音響レンズの下端面の間にそれらと接触
して設けられた水滴である。
6. The ultrasonic microscope for quantitative measurement according to claim 1, wherein the water coupler is provided between a surface of the sample and a lower end surface of the acoustic lens in contact therewith. It is a water drop.
【請求項7】 請求項1乃至5のいずれか1つの定量計
測用超音波顕微鏡装置において、上記水カプラは上記試
料と、上記試料の表面と間隔を置いて対向する上記音響
レンズの下端部を浸水させる水と、その水を入れる容器
とを含む。
7. The ultrasonic microscope apparatus for quantitative measurement according to claim 1, wherein the water coupler is provided between the sample and a lower end of the acoustic lens which faces the surface of the sample at an interval. Includes water to be submerged and a container for containing the water.
【請求項8】 請求項1乃至7のいずれか1つの定量計
測用超音波顕微鏡装置において、上記ケースの外に設け
られ、外周が恒温循環水で囲まれ、内側が純水を入れる
タンクとされた恒温水槽と、上記タンクの外周の恒温循
環水の温度を制御して循環させる恒温循環装置と、上記
タンク内の純水を必要に応じて上記ケース内の上記水カ
プラに補給する給水手段を更に含む。
8. The ultrasonic microscope apparatus for quantitative measurement according to claim 1, wherein the tank is provided outside the case, the outer periphery is surrounded by constant-temperature circulating water, and the inner side is a tank for containing pure water. A constant-temperature water tank, a constant-temperature circulating device for controlling and circulating the temperature of constant-temperature circulating water on the outer periphery of the tank, and a water supply means for supplying pure water in the tank to the water coupler in the case as necessary. In addition.
【請求項9】 請求項8の定量計測用超音波顕微鏡装置
において、上記水カプラから水を上記ケースの外に排出
する排出手段が設けられている。
9. An ultrasonic microscope for quantitative measurement according to claim 8, further comprising a discharging means for discharging water from said water coupler out of said case.
【請求項10】 請求項1乃至8のいずれか1つの定量
計測用超音波顕微鏡装置において、上記送風ダクトから
上記ケース内への入り口に上記空気中の塵埃を除去する
と共に空気流を緩衝させるフィルタが設けられている。
10. An ultrasonic microscope for quantitative measurement according to claim 1, wherein the filter removes dust in the air and buffers an air flow at an entrance from the ventilation duct to the inside of the case. Is provided.
【請求項11】 請求項1乃至8のいずれか1つの定量
計測用超音波顕微鏡装置において、上記空調手段は上記
温度制御手段の制御に従って空気を加熱するヒータと、
上記過熱した空気を上記送風ダクトに送り込む循環ファ
ンと、上記排気ダクトからの空気を冷却する冷却器とを
含む。
11. The ultrasonic microscope for quantitative measurement according to claim 1, wherein the air-conditioning unit heats the air under the control of the temperature control unit.
A circulation fan that sends the superheated air into the air duct and a cooler that cools the air from the exhaust duct are included.
【請求項12】 請求項1乃至8のいずれか1つの定量
計測用超音波顕微鏡装置において、互いに隙間を空けて
対向配列された複数の試料を保持する試料カセットと、
上記試料カセットから試料を上記試料台に搬送し、測定
済みの試料を上記試料台から上記試料カセットに搬送す
る搬送アームとが上記ケース内に設けられている。
12. An ultrasonic microscope for quantitative measurement according to claim 1, wherein a sample cassette for holding a plurality of samples arranged opposite to each other with a gap therebetween is provided.
A transfer arm for transferring the sample from the sample cassette to the sample table and transferring the measured sample from the sample table to the sample cassette is provided in the case.
【請求項13】 請求項1又は2の定量計測用超音波顕
微鏡装置において、上記機械操作部は上記ケース内に設
けられ、上記試料台をx,y,z,θx,θy方向に移動
する機械操作部と、上記ケースの外に設けられ、上記機
械操作部と電気的に接続され、その移動を制御する移動
制御部とを含む。
13. The ultrasonic microscope apparatus for quantitative measurement according to claim 1, wherein the mechanical operation unit is provided in the case, and moves the sample stage in x, y, z, θ x , and θ y directions. And a movement control unit provided outside the case, electrically connected to the machine operation unit, and controlling the movement thereof.
JP08127198A 1998-03-27 1998-03-27 Ultrasonic microscope for quantitative measurement Expired - Fee Related JP3392041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08127198A JP3392041B2 (en) 1998-03-27 1998-03-27 Ultrasonic microscope for quantitative measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08127198A JP3392041B2 (en) 1998-03-27 1998-03-27 Ultrasonic microscope for quantitative measurement

Publications (2)

Publication Number Publication Date
JPH11281634A true JPH11281634A (en) 1999-10-15
JP3392041B2 JP3392041B2 (en) 2003-03-31

Family

ID=13741714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08127198A Expired - Fee Related JP3392041B2 (en) 1998-03-27 1998-03-27 Ultrasonic microscope for quantitative measurement

Country Status (1)

Country Link
JP (1) JP3392041B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4394918B2 (en) * 2003-10-03 2010-01-06 淳一 櫛引 High-accuracy ultrasonic material characteristic analyzer and temperature control method thereof

Also Published As

Publication number Publication date
JP3392041B2 (en) 2003-03-31

Similar Documents

Publication Publication Date Title
Kushibiki et al. Development of the line-focus-beam ultrasonic material characterization system
US8718989B2 (en) Method to determine the internal structure of a heat conducting body
JPH01299449A (en) Method and apparatus for measuring distribution of heat flux and heat transmission coefficient on surface of part
CN112630261B (en) Measuring device and measuring method for multiple thermophysical parameters of material
US11193901B2 (en) Thermal conductivity measuring device, thermal conductivity measuring method and vacuum evaluation device
JPS58124938A (en) Flaw detector by infrared ray detection
KR101910697B1 (en) Method for detecting heat generation points and device for detecting heat generate points
JPH11281634A (en) Ultrasonic microscope device for quantitative measurement
JPH06124126A (en) Positioning device
JP2004226369A (en) Device for measuring linear expansion coefficient
Hemette et al. Friction setup and real-time insights of the contact under controlled cold environment: The KŌRI tribometer for rubber-ice contact application
RU2262686C1 (en) Method of thermal non-destructive inspection
JP3510201B2 (en) LSAW propagation characteristic measuring method and measuring device
Kobayashi et al. Improvement of measurement accuracy of line-focus beam acoustic microscope system
JP2005098863A (en) Apparatus for measuring coefficient of thermal expansion of solid
JPH04331360A (en) Detector of surface layer defect
JP5061055B2 (en) Temperature measuring device and temperature measuring method
JP2001289627A (en) Thickness measuring instrument
Ohashi et al. Improvement of velocity measurement accuracy of leaky surface acoustic waves for materials with highly attenuated waveform of the V (z) curve by the line-focus-beam ultrasonic material characterization system
RU2480739C1 (en) Thermal non-destructive testing method of resistance to heat transfer of building structure
JPH087170B2 (en) Adiabatic temperature rise test equipment for concrete etc.
JP4394918B2 (en) High-accuracy ultrasonic material characteristic analyzer and temperature control method thereof
CN108362252A (en) The test method of window chinky altitude
JPH1137937A (en) Method and apparatus for measuring refractive index distribution using the same
JPH0658862A (en) Temperature compensation for oscillating density meter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100124

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110124

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140124

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees