JPH11281481A - Radiation temperature detecting element - Google Patents

Radiation temperature detecting element

Info

Publication number
JPH11281481A
JPH11281481A JP10080621A JP8062198A JPH11281481A JP H11281481 A JPH11281481 A JP H11281481A JP 10080621 A JP10080621 A JP 10080621A JP 8062198 A JP8062198 A JP 8062198A JP H11281481 A JPH11281481 A JP H11281481A
Authority
JP
Japan
Prior art keywords
detecting element
temperature
infrared
stem
temperature detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10080621A
Other languages
Japanese (ja)
Inventor
Yoshiaki Honda
由明 本多
Yoshifumi Watabe
祥文 渡部
Koichi Aizawa
浩一 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP10080621A priority Critical patent/JPH11281481A/en
Publication of JPH11281481A publication Critical patent/JPH11281481A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a radiation temperature detecting element which eliminates a waiting time and stably measures the temperature in non contact under such a state as changing an ambient atmosphere temperature. SOLUTION: An approximately recessed, for example, metal can 3 is connected to a stem 1 where a lead 2 formed by penetrating from one surface side through the other surface side is integrally molded and the stem 1 and the can 3 constitute a space. An opening part, is formed in a recessed part, bottom face of the can 3 and an infrared transmission filter 4 is sealed in the opening part. A support body 5 is provided on the lead 2 rising from the stem 1 in the space and an infrared detecting element 6 and a thermistor 7 which is a contact type temperature detecting element for measuring the temperature of the infrared detecting element 6 are mounted on the support body 5. In this case, the lead 2 raising the support body 5 is jointly served as a signal output terminal of the infrared detecting element 6 and the thermistor 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、赤外線を利用して
非接触で温度を検出する放射温度計に用いる放射温度検
出素子に関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a radiation temperature detecting element used for a radiation thermometer that detects temperature in a non-contact manner using infrared rays.

【0002】[0002]

【従来の技術】従来の放射温度計、特に、例えば0〜500
℃のような中低温領域においては、主に熱型赤外線検出
素子が用いられ、熱型赤外線検出素子としては、チョッ
パーを用いた焦電素子やサーモパイル素子が使用されて
いる。
2. Description of the Related Art Conventional radiation thermometers, particularly, for example, 0 to 500
In a medium to low temperature range such as ° C, a thermal infrared detecting element is mainly used, and as the thermal infrared detecting element, a pyroelectric element using a chopper or a thermopile element is used.

【0003】実際に赤外線を用いて、非接触で温度を計
測するためには、赤外線の検出と赤外線素子の素子温度
の計測が必要である。即ち、赤外線検出素子に入射され
る赤外線により、赤外線素子と対象物との温度差が算出
でき、この値に赤外線素子の素子温度を加えることによ
り、対象物の絶対温度を計測できるのである。
In order to actually measure the temperature in a non-contact manner using infrared light, it is necessary to detect infrared light and measure the temperature of the infrared light element. That is, the temperature difference between the infrared element and the object can be calculated from the infrared light incident on the infrared detection element, and the absolute temperature of the object can be measured by adding the element temperature of the infrared element to this value.

【0004】従来においては、サーモパイルのような赤
外線素子とサーミスタのような接触式温度検出素子を用
いて、対象物の絶対温度を計測していた。より具体的に
は、キャンパッケージタイプの赤外線素子に外付けでサ
ーミスタを接触させたり、キャンパッケージ内のステム
側にサーミスタを接着させることによって、赤外線素子
の温度をキャンパッケージの温度で代用していた。
Conventionally, the absolute temperature of an object has been measured using an infrared element such as a thermopile and a contact-type temperature detecting element such as a thermistor. More specifically, the temperature of the infrared device was replaced by the temperature of the can package by attaching an external thermistor to the can package type infrared device or bonding the thermistor to the stem side in the can package. .

【0005】[0005]

【発明が解決しようとする課題】上記に示したように、
キャンパッケージの外側や、キャンパッケージ内のステ
ム側にサーミスタを接着させることで赤外線素子の温度
の計測を行った場合、上記の赤外線素子と接触式温度検
出素子から成る放射温度検出素子を使用する雰囲気温度
が変化すると、先ず、キャンパッケージ外周の温度が変
化し、特にパッケージの熱容量の小さいキャンが変化
し、その後、熱容量の大きなステムが外側及びキャンへ
の接着部から変化し、サーミスタ,赤外線素子の順で温
度が変化する。
As described above, as described above,
If the temperature of the infrared element is measured by attaching a thermistor to the outside of the can package or to the stem side in the can package, the atmosphere in which the radiation temperature detection element including the infrared element and the contact-type temperature detection element is used is used. When the temperature changes, first, the temperature of the outer periphery of the can package changes, and in particular, the can having a small heat capacity of the package changes, and thereafter, the stem having a large heat capacity changes from the outside and the bonded portion to the can, and the thermistor, the infrared element The temperature changes in order.

【0006】このため、非常に大きな熱容量のメタル製
ブロックで放射温度検出素子を囲んだり、また、温度が
安定するまでの待機時間を必要とした。
For this reason, it is necessary to surround the radiation temperature detecting element with a metal block having a very large heat capacity and to wait for the temperature to stabilize.

【0007】この待機時間は、測定精度が上がれば上が
るほど大きくなり、赤外線より温度換算するまでの時間
が1秒以内であっても、待機時間が数十分にもおよんで
実使用上問題がある。
The standby time increases as the measurement accuracy increases, and even if the time required to convert the temperature from infrared rays is less than 1 second, the standby time extends to tens of minutes, which poses a problem in practical use. is there.

【0008】本発明は、上記の点に鑑みて成されたもの
であり、その目的とするところは、待機時間をなくし、
雰囲気温度が変化が起こる状況下でも安定に非接触で温
度を計測できる放射温度検出素子を提供することにあ
る。
[0008] The present invention has been made in view of the above points, and an object thereof is to eliminate a waiting time,
An object of the present invention is to provide a radiation temperature detecting element capable of stably measuring a temperature in a non-contact manner even under a situation where an ambient temperature changes.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
ステムと、赤外線を透過する開口を備えて成るキャンと
で構成される空間内に、該ステム及びキャンに接触しな
いように支持体が配置され、該支持体上に赤外線検出素
子及び接触式温度検出素子を実装したことを特徴とする
ものである。
According to the first aspect of the present invention,
A support is arranged in a space formed by a stem and a can having an opening that transmits infrared rays so as not to come into contact with the stem and the can, and an infrared detecting element and a contact-type temperature detector are provided on the support. It is characterized by mounting the element.

【0010】請求項2記載の発明は、請求項1記載の放
射温度検出素子において、前記キャンの内部に空隙部を
設けたことを特徴とするものである。
According to a second aspect of the present invention, in the radiation temperature detecting element according to the first aspect, a gap is provided inside the can.

【0011】請求項3記載の発明は、請求項1または請
求項2記載の放射温度検出素子において、前記空間内に
おける前記キャンに、接触式温度検出素子を設けたこと
を特徴とするものである。
According to a third aspect of the present invention, in the radiation temperature detecting element according to the first or second aspect, a contact-type temperature detecting element is provided on the can in the space. .

【0012】請求項4記載の発明は、請求項3記載の放
射温度検出素子において、前記空間内における前記キャ
ンに、赤外線の放射率が一定な塗料を塗布したことを特
徴とするものである。
According to a fourth aspect of the present invention, in the radiation temperature detecting element according to the third aspect, a paint having a constant infrared emissivity is applied to the can in the space.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態について
図面に基づき説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】=実施の形態1= 図1は、本発明の一実施の形態に係る放射温度検出素子
の概略構成図である。本実施の形態に係る放射温度検出
素子は、一方の面側から他方の面側に貫通して成るリー
ド2が一体成型されたステム1に、略凹型形状の、例え
ば金属製のキャン3が接続され、ステム1とキャン3と
で空間を構成している。キャン3の凹部底面には開口部
が形成され、該開口部には赤外線透過フィルタ4が封止
されている。
Embodiment 1 FIG. 1 is a schematic configuration diagram of a radiation temperature detecting element according to an embodiment of the present invention. In the radiation temperature detecting element according to the present embodiment, a substantially concave, for example, metal can 3 is connected to a stem 1 integrally formed with a lead 2 penetrating from one surface side to the other surface side. The stem 1 and the can 3 constitute a space. An opening is formed in the bottom of the concave portion of the can 3, and an infrared transmitting filter 4 is sealed in the opening.

【0015】空間内のステム1から立ち上がったリード
2上には、支持体5が設けられ、支持体5上には、赤外
線検出素子6と、赤外線検出素子6の素子温度を計測す
る接触式温度検出素子であるサーミスタ7が実装されて
いる。ここで、支持体5を持ち上げているリード2は、
赤外線検出素子6及びサーミスタ7の信号の出力端子を
兼ねている。
A support 5 is provided on the lead 2 rising from the stem 1 in the space. On the support 5, an infrared detecting element 6 and a contact-type temperature measuring element temperature of the infrared detecting element 6 are provided. A thermistor 7 serving as a detection element is mounted. Here, the lead 2 lifting the support 5 is
Also serves as an output terminal for the signals of the infrared detecting element 6 and the thermistor 7.

【0016】従って、本実施の形態においては、赤外線
検出素子6とサーミスタ7とを支持体5を用いてステム
1から離すことにより、ステム1及びキャン3から直接
伝わる温度変化を大幅に緩和することができ、このた
め、赤外線検出素子6及びサーミスタ7はステム1及び
キャン3の温度変化に比べ非常に長い時定数を持って変
化し、ステム1及びキャン3の温度が変化した場合にお
いても、安定に放射温度を検出することができる。
Therefore, in the present embodiment, by separating the infrared detecting element 6 and the thermistor 7 from the stem 1 using the support 5, the temperature change transmitted directly from the stem 1 and the can 3 can be greatly reduced. Therefore, the infrared detecting element 6 and the thermistor 7 change with a very long time constant compared with the temperature change of the stem 1 and the can 3, and are stable even when the temperature of the stem 1 and the can 3 change. Radiation temperature can be detected.

【0017】また、赤外線検出素子6及びサーミスタ7
は、1つの支持体5上に実装されているので、同じ温度
勾配で変化し、雰囲気温度の変化が起こる状況下でも安
定に非接触で温度を計測することができる。
The infrared detecting element 6 and the thermistor 7
Is mounted on one support member 5, the temperature changes with the same temperature gradient, and the temperature can be stably measured in a non-contact manner even under a situation where the ambient temperature changes.

【0018】=実施の形態2= 図2は、本発明の他の実施の形態に係る放射温度検出素
子の概略構成図である。本実施の形態に係る放射温度検
出素子は、実施の形態1として図1に示す放射温度検出
素子において、キャン3の代わりに、2重構造にして空
隙部を設け、該空隙部を空気層8aで満たしたキャン8
を用いた構成である。
Embodiment 2 = FIG. 2 is a schematic configuration diagram of a radiation temperature detecting element according to another embodiment of the present invention. The radiation temperature detecting element according to the present embodiment is different from the radiation temperature detecting element shown in FIG. 1 as the first embodiment in that a gap is provided in a double structure instead of the can 3, and the gap is formed by the air layer 8a. Can filled with 8
This is a configuration using.

【0019】なお、本実施の形態においては、キャン8
の内部に空気層8aを設けたが、これに限定されるもの
ではなく、その他の気体を充填したり、また真空にして
も良い。
In the present embodiment, the can 8
Although the air layer 8a is provided in the inside, the present invention is not limited to this, and another gas may be filled or vacuum may be applied.

【0020】通常、ステム1とキャン3とでは、厚さの
違いにより熱容量が異なり、雰囲気温度が変化した場
合、先ずキャン1側が温度変化を起こしやすいが、本実
施の形態においては、2重構造で、内部に空気層8aを
設けたキャン8を用いたので、ステム1とキャン8とで
構成される空間への温度変動を緩和することができる。
Normally, the heat capacity of the stem 1 differs from that of the can 3 due to the difference in thickness, and when the ambient temperature changes, first the temperature of the can 1 tends to change. However, in the present embodiment, the double structure is used. Since the can 8 having the air layer 8a therein is used, temperature fluctuations in the space formed by the stem 1 and the can 8 can be reduced.

【0021】=実施の形態3= 図3は、本発明の他の実施の形態に係る放射温度検出素
子の概略構成図である。本実施の形態に係る放射温度検
出素子は、実施の形態1として図1に示す放射温度検出
素子において、キャン3の内面にサーミスタ9を接着し
た構成である。
Embodiment 3 = FIG. 3 is a schematic configuration diagram of a radiation temperature detecting element according to another embodiment of the present invention. The radiation temperature detecting element according to the present embodiment has a configuration in which the thermistor 9 is adhered to the inner surface of the can 3 in the radiation temperature detecting element shown in FIG.

【0022】従って、本実施の形態においては、サーミ
スタ9によりキャン3の温度を計測することで、赤外線
検出素子6がキャン3の温度変化により出力変化する度
合いを見積もることが可能となる。
Therefore, in the present embodiment, by measuring the temperature of the can 3 with the thermistor 9, it is possible to estimate the degree of the output change of the infrared detecting element 6 due to the temperature change of the can 3.

【0023】=実施の形態4= 図4は、本発明の他の実施の形態に係る放射温度検出素
子の概略構成図である。本実施の形態に係る放射温度検
出素子は、実施の形態3として図3に示す放射温度検出
素子において、キャン3の内面における、赤外線検出素
子6の視野角に含まれる部分を、予め放射率のわかって
いる塗料10(例えば黒色塗料)を塗布した構成であ
る。
Embodiment 4 = FIG. 4 is a schematic configuration diagram of a radiation temperature detecting element according to another embodiment of the present invention. The radiation temperature detecting element according to the present embodiment differs from the radiation temperature detecting element shown in FIG. 3 as the third embodiment in that the portion included in the viewing angle of the infrared detecting element 6 on the inner surface of the can 3 is determined in advance by the emissivity. This is a configuration in which a known paint 10 (for example, a black paint) is applied.

【0024】従って、本実施の形態においては、キャン
3の温度をより正確に求めることができ、キャン3の温
度が変化した場合においても安定に放射温度を検出する
ことができる。
Therefore, in the present embodiment, the temperature of the can 3 can be obtained more accurately, and the radiation temperature can be stably detected even when the temperature of the can 3 changes.

【0025】なお、実施の形態3,4においては、キャ
ン3を用いたが、これに限定されるものではなく、キャ
ン8を用いても良い。
In the third and fourth embodiments, the can 3 is used. However, the present invention is not limited to this, and the can 8 may be used.

【0026】[0026]

【発明の効果】請求項1記載の発明は、ステムと、赤外
線を透過する開口を備えて成るキャンとで構成される空
間内に、該ステム及びキャンに接触しないように支持体
が配置され、該支持体上に赤外線検出素子及び接触式温
度検出素子を実装したので、ステム及びキャンの温度変
化の影響を受けず、このため赤外線検出素子と接触式温
度検出素子がステム及びキャンの温度変化に比べ非常に
長い時定数を持って変化し、さらに、赤外線検出素子と
接触式温度検出素子が1つの支持体上に実装されている
ので、同じ温度勾配で変化し、待機時間をなくし、雰囲
気温度が変化が起こる状況下でも安定に非接触で温度を
計測できる放射温度検出素子を提供することができた。
According to the first aspect of the present invention, a support is arranged in a space formed by a stem and a can having an opening for transmitting infrared rays so as not to contact the stem and the can. Since the infrared detecting element and the contact type temperature detecting element are mounted on the support, it is not affected by the temperature change of the stem and the can, so that the infrared detecting element and the contact type temperature detecting element are not affected by the temperature change of the stem and the can. It changes with a very long time constant, and furthermore, since the infrared detecting element and the contact-type temperature detecting element are mounted on one support, it changes with the same temperature gradient, eliminating standby time and reducing ambient temperature. A radiation temperature detecting element capable of stably measuring the temperature in a non-contact manner even in a situation where the temperature changes may be provided.

【0027】請求項2記載の発明は、請求項1記載の放
射温度検出素子において、キャンの内部に空隙部を設け
たので、請求項1記載の発明の効果に加えて、ステムと
キャンにより構成される空間内に伝わる温度変化を非常
に遅くすることができる。
According to a second aspect of the present invention, in the radiation temperature detecting element according to the first aspect, a cavity is provided inside the can, so that in addition to the effect of the first aspect, the present invention comprises a stem and a can. The temperature change transmitted in the space to be performed can be made very slow.

【0028】請求項3記載の発明は、請求項1または請
求項2記載の放射温度検出素子において、空間内におけ
るキャンに、接触式温度検出素子を設けたので、請求項
1または請求項2記載の発明の効果に加えて、赤外線検
出素子の視野角に入るキャンの温度変化情報を得ること
ができ、ステム及びキャンの温度変化が起こった場合に
おいても、キャンより入る赤外線を信号処理によって除
去することができ、対象物からの赤外線のみを算出する
ことができる。
According to a third aspect of the present invention, in the radiation temperature detecting element according to the first or second aspect, a contact-type temperature detecting element is provided on the can in the space. In addition to the effects of the invention, it is possible to obtain information on the temperature change of the can that falls within the viewing angle of the infrared detecting element. Even when the temperature of the stem and the can change, the infrared ray entering from the can is removed by signal processing. And only the infrared rays from the target object can be calculated.

【0029】請求項4記載の発明は、請求項3記載の放
射温度検出素子において、空間内におけるキャンに、赤
外線の放射率が一定な塗料を塗布したので、請求項3記
載の発明の効果に加えて、キャンの温度変化情報をより
正確に得ることができる。
According to a fourth aspect of the present invention, in the radiation temperature detecting element according to the third aspect, a paint having a constant infrared emissivity is applied to the can in the space. In addition, it is possible to more accurately obtain can temperature change information.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態に係る放射温度検出素子
の概略構成図である。
FIG. 1 is a schematic configuration diagram of a radiation temperature detecting element according to an embodiment of the present invention.

【図2】本発明の他の実施の形態に係る放射温度検出素
子の概略構成図である。
FIG. 2 is a schematic configuration diagram of a radiation temperature detecting element according to another embodiment of the present invention.

【図3】本発明の他の実施の形態に係る放射温度検出素
子の概略構成図である。
FIG. 3 is a schematic configuration diagram of a radiation temperature detecting element according to another embodiment of the present invention.

【図4】本発明の他の実施の形態に係る放射温度検出素
子の概略構成図である。
FIG. 4 is a schematic configuration diagram of a radiation temperature detecting element according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ステム 2 リード 3 キャン 4 赤外線透過フィルタ 5 支持体 6 赤外線検出素子 7 サーミスタ 8 キャン 8a 空気層 9 サーミスタ 10 塗料 Reference Signs List 1 stem 2 lead 3 can 4 infrared transmitting filter 5 support 6 infrared detecting element 7 thermistor 8 can 8a air layer 9 thermistor 10 paint

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ステムと、赤外線を透過する開口を備え
て成るキャンとで構成される空間内に、該ステム及びキ
ャンに接触しないように支持体が配置され、該支持体上
に赤外線検出素子及び接触式温度検出素子を実装したこ
とを特徴とする放射温度検出素子。
1. A support is arranged in a space formed by a stem and a can having an opening through which infrared light passes so as not to contact the stem and the can, and an infrared detecting element is provided on the support. And a radiation temperature detecting element comprising a contact temperature detecting element.
【請求項2】 前記キャンの内部に空隙部を設けたこと
を特徴とする請求項1記載の放射温度検出素子。
2. The radiation temperature detecting element according to claim 1, wherein a void is provided inside the can.
【請求項3】 前記空間内における前記キャンに、接触
式温度検出素子を設けたことを特徴とする請求項1また
は請求項2記載の放射温度検出素子。
3. The radiation temperature detecting element according to claim 1, wherein a contact-type temperature detecting element is provided on the can in the space.
【請求項4】 前記空間内における前記キャンに、赤外
線の放射率が一定な塗料を塗布したことを特徴とする請
求項3記載の放射温度検出素子。
4. A radiation temperature detecting element according to claim 3, wherein a paint having a constant infrared emissivity is applied to said can in said space.
JP10080621A 1998-03-27 1998-03-27 Radiation temperature detecting element Pending JPH11281481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10080621A JPH11281481A (en) 1998-03-27 1998-03-27 Radiation temperature detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10080621A JPH11281481A (en) 1998-03-27 1998-03-27 Radiation temperature detecting element

Publications (1)

Publication Number Publication Date
JPH11281481A true JPH11281481A (en) 1999-10-15

Family

ID=13723432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10080621A Pending JPH11281481A (en) 1998-03-27 1998-03-27 Radiation temperature detecting element

Country Status (1)

Country Link
JP (1) JPH11281481A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021519A1 (en) * 2009-08-17 2011-02-24 パナソニック電工株式会社 Infrared sensor
WO2020084811A1 (en) * 2018-10-24 2020-04-30 三菱マテリアル株式会社 Infrared sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021519A1 (en) * 2009-08-17 2011-02-24 パナソニック電工株式会社 Infrared sensor
CN102625907A (en) * 2009-08-17 2012-08-01 松下电器产业株式会社 Infrared sensor
JP5492213B2 (en) * 2009-08-17 2014-05-14 パナソニック株式会社 Infrared sensor
US9074935B2 (en) 2009-08-17 2015-07-07 Panasonic Intellectual Property Management Co., Ltd. Infrared sensor
WO2020084811A1 (en) * 2018-10-24 2020-04-30 三菱マテリアル株式会社 Infrared sensor

Similar Documents

Publication Publication Date Title
US7385199B2 (en) Microbolometer IR focal plane array (FPA) with in-situ mirco vacuum sensor and method of fabrication
US6129673A (en) Infrared thermometer
JP5054523B2 (en) Sensor
JP2826337B2 (en) Radiation thermometer
US6043493A (en) Infrared sensor and method for compensating temperature thereof
US10436647B2 (en) Non-contact temperature measurement sensor
JP2008145133A (en) Radiation thermometer
JPH09329499A (en) Infrared sensor and infrared detector
US20090207882A1 (en) Temperature Sensor Module
JP5564681B2 (en) Infrared sensor
JPH1075934A (en) Radiation thermometer
JPH11337415A (en) Radiation temperature detecting element
JPH1164111A (en) Infrared detecting element
JPH11281481A (en) Radiation temperature detecting element
KR20170135153A (en) Non-contact infrared temperature sensor module
JP2006105651A (en) Thermopile element and infrared sensor using it
JPH11281483A (en) Radiation temperature detecting element
JP2003294526A (en) Laser power detection device
JP3750340B2 (en) Radiation temperature detector
JPS63286729A (en) Thermopile detector
JP3855458B2 (en) Radiation temperature detector
JPS5866028A (en) Light/resistance-value converting element and compensation circuit using the same
JPH11337416A (en) Radiation temperature detecting element
JP2001091360A (en) Radiation temperature detecting element
JPH0634448A (en) Radiation thermometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050308