JPH0634448A - Radiation thermometer - Google Patents

Radiation thermometer

Info

Publication number
JPH0634448A
JPH0634448A JP18724992A JP18724992A JPH0634448A JP H0634448 A JPH0634448 A JP H0634448A JP 18724992 A JP18724992 A JP 18724992A JP 18724992 A JP18724992 A JP 18724992A JP H0634448 A JPH0634448 A JP H0634448A
Authority
JP
Japan
Prior art keywords
temperature
infrared
thermistor
infrared ray
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18724992A
Other languages
Japanese (ja)
Inventor
Hidekazu Himesawa
秀和 姫澤
Motoo Igari
素生 井狩
Fumihiro Kamiya
文啓 紙谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP18724992A priority Critical patent/JPH0634448A/en
Publication of JPH0634448A publication Critical patent/JPH0634448A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To obtain a high-performance thermometer without providing a separate means for measuring a room temperature by providing an infrared ray detection part and a temperature-sensitive part on one surface of a semiconductor substrate and forming a recessed cut-out part by eliminating the substrate by etching at a part corresponding to the lower part of the infrared ray detection part on the other surface of the substrate. CONSTITUTION:An infrared ray detection part 2 and a temperaturesensitive part 3 are provided on one surface of a semiconductor substrate 1 and a recessed cut-out part K is formed at a part corresponding to the lower part of the detection part 2 on the other surface of the substrate 1 by eliminating the substrate 1 by etching. The detection part 2 and the temperature-sensitive part 3 consist of an infrared ray detection thermistor 4 with equal temperature characteristics, a temperature-sensitive thermistor 5, amorphous silicon etc. Then, an infrared ray absorption film 9 is formed on the surface of a thermal insulation thin film 6, a plurality of electrodes 7 and 8, and further the detection surface 2. The detection part 2 and the substrate 1 are thermally isolated by the thin film 6, thus increasing temperature rise of the detection part 2 owing to infrared ray radiation for improved sensitivity. Also, the recessed cut-out part K allows a thermally isolated space with a high heat-insulating effect to be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、非接触で温度を計測
する放射温度計に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation thermometer for measuring temperature without contact.

【0002】[0002]

【従来の技術】従来、一般に使用されている非接触で温
度を計測する温度計は、被計測物体からの赤外線放射量
を検出して温度測定を行なう赤外線放射温度計が公知で
ある。これは、赤外線検出部に焦電素子,サーモパイル
等を使用しているが、基準となる温度、換言すれば、現
在の環境温度(室温)を計測する手段が別途に必要であ
る。
2. Description of the Related Art Conventionally, as a generally used non-contact thermometer for measuring temperature, an infrared radiation thermometer for detecting temperature of infrared radiation from an object to be measured is known. This uses a pyroelectric element, a thermopile, etc. for the infrared detecting section, but a means for measuring the reference temperature, in other words, the current environmental temperature (room temperature) is additionally required.

【0003】図7は赤外線検出部に焦電素子を使用した
従来の放射温度計のブロック図を示している。この図に
ついて、被計測物体の温度を計測する要領を説明する
と、被計測物体から放射される赤外線Xを光学系Aによ
り集光し、チヨツパBにより入射赤外線を遮断すること
により温度変化を起こし、その温度変化を焦電素子(赤
外線検出素子)Cで検出するもので、基準となる室温と
の温度差により焦電素子Cからの出力が変化するため、
基準温度検出素子Dにより得られる室温と合成すること
により被計測物体の表面温度を測定するのである。なお
図6において、Eは同期信号発生,Fは増幅器,Gは増
幅位相検波,Hは合成,Iは出力である。
FIG. 7 shows a block diagram of a conventional radiation thermometer using a pyroelectric element for an infrared detecting section. With respect to this figure, the procedure for measuring the temperature of the object to be measured will be described. Infrared rays X emitted from the object to be measured are condensed by the optical system A, and the incident infrared rays are blocked by the chip B to cause a temperature change, The temperature change is detected by the pyroelectric element (infrared ray detecting element) C, and the output from the pyroelectric element C changes due to the temperature difference from the reference room temperature.
The surface temperature of the object to be measured is measured by combining with the room temperature obtained by the reference temperature detecting element D. In FIG. 6, E is a sync signal generation, F is an amplifier, G is an amplified phase detection, H is a combination, and I is an output.

【0004】[0004]

【発明が解決しようとする課題】上記した従来の放射温
度計は、被計測物体から放射される赤外線による温度変
化を赤外線検出素子の出力として検出するのであるが、
赤外線検出素子によって得られるものは室温との温度差
であり、被計測物体表面の温度を知るためには、別の手
段によって室温を測定しなければならない。
The conventional radiation thermometer described above detects a temperature change due to infrared rays radiated from an object to be measured as an output of the infrared detection element.
What is obtained by the infrared detecting element is the temperature difference from the room temperature, and in order to know the temperature of the surface of the measured object, the room temperature must be measured by another means.

【0005】この発明によれば、このような課題を解決
するために、室温を測定するために別の手段を設けるこ
となく、簡易な構成により高性能の放射温度計を提供す
ることを目的としている。
According to the present invention, in order to solve such a problem, an object is to provide a high-performance radiation thermometer with a simple structure without providing another means for measuring the room temperature. There is.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
め、この発明の放射温度計は、半導体基板の片面に、赤
外線検出部および感温部を備えており、また、その半導
体基板の他方の片面では、前記赤外線検出部の下部に対
応する個所において、前記半導体基板をエッチングによ
り除去して凹欠部を形成するのであるが、その赤外線検
出部および感温部はサーミスタで構成されており、その
赤外線検出部および感温部は、各々固定抵抗と直列接続
されたブリッジ回路を構成している。
To achieve the above object, the radiation thermometer of the present invention comprises an infrared detecting section and a temperature sensitive section on one side of a semiconductor substrate, and the other side of the semiconductor substrate. On one side, at a location corresponding to the lower portion of the infrared detection section, the semiconductor substrate is removed by etching to form a recessed section, but the infrared detection section and the temperature sensing section are composed of a thermistor. The infrared detecting section and the temperature sensing section respectively form a bridge circuit connected in series with a fixed resistor.

【0007】[0007]

【作用】この発明の作用について述べる。半導体基板の
片面に設けられた赤外線検出部と感温部とは熱的に分離
された状態であるから、赤外線輻射による赤外線検出部
の温度上昇が大きくなるもので、半導体基板の他方の片
面では、赤外線検出部の下部に対応する個所において、
半導体基板をエッチングにより除去して凹欠部を形成す
ることで断熱効果の高い熱分離空間を形成している。
The operation of the present invention will be described. Since the infrared detection unit and the temperature sensing unit provided on one side of the semiconductor substrate are in a state of being thermally separated, the temperature rise of the infrared detection unit due to infrared radiation is large, and the other side of the semiconductor substrate is , At the location corresponding to the bottom of the infrared detector,
The semiconductor substrate is removed by etching to form a recessed portion, thereby forming a heat separation space having a high heat insulating effect.

【0008】[0008]

【実施例】以下、図面を参照しながらこの発明の実施例
を具体的に説明する。図1の(a)はこの発明の放射温
度計の赤外線検出部および感温部の平面図、(b)は同
上の断面図を示しており、図2の(a)はこの発明の放
射温度計の他の例を示す赤外線検出部および感温部の平
面図、(b)は同上の断面図を示している。
Embodiments of the present invention will be described in detail below with reference to the drawings. 1 (a) is a plan view of an infrared detection unit and a temperature sensing unit of a radiation thermometer of the present invention, FIG. 1 (b) is a sectional view of the same, and FIG. 2 (a) is a radiation temperature of the present invention. The top view of the infrared detection part and temperature sensing part which show the other example of a meter, (b) has shown sectional drawing same as the above.

【0009】図1では、半導体基板1の片面に、赤外線
検出部2および感温部3を備えており、半導体基板1の
他方の片面では、赤外線検出部2の下部に対応する個所
において、半導体基板1をエッチングにより除去して凹
欠部kを形成した構造を示している。また、図2では、
半導体プロセスにより、図1に示す構造に加えて、さら
に固定抵抗R,Rも同一の半導体基板1の片面に形成し
て、図3のようなブリッジ回路を構成するものである。
In FIG. 1, an infrared detecting section 2 and a temperature sensing section 3 are provided on one side of a semiconductor substrate 1. On the other side of the semiconductor substrate 1, a semiconductor is provided at a portion corresponding to a lower portion of the infrared detecting section 2. This shows a structure in which the substrate 1 is removed by etching to form a recess k. In addition, in FIG.
By the semiconductor process, in addition to the structure shown in FIG. 1, fixed resistors R, R are further formed on one surface of the same semiconductor substrate 1 to form a bridge circuit as shown in FIG.

【0010】そして、この赤外線検出部2および感温部
3は、半導体基板1の片面に通常のIC回路作成におけ
る半導体プロセスと同様の薄膜形成技術や微細加工技術
を利用して形成するのである。さらに、この赤外線検出
部2および感温部3は、相等しい温度特性を有する赤外
線検出サーミスタ4および感温部サーミスタ5、非晶質
シリコンまたは多結晶シリコンから成る薄膜抵抗体6、
この表面に形成された複数の電極7,8から成ってお
り、さらに、赤外線検出部2の表面には赤外線吸収膜9
を形成するのである。
The infrared detecting section 2 and the temperature sensing section 3 are formed on one surface of the semiconductor substrate 1 by using a thin film forming technique and a fine processing technique similar to the semiconductor process in the usual IC circuit production. Further, the infrared detecting section 2 and the temperature sensing section 3 include an infrared detecting thermistor 4 and a temperature sensing section thermistor 5 having equal temperature characteristics, a thin film resistor 6 made of amorphous silicon or polycrystalline silicon,
It is composed of a plurality of electrodes 7 and 8 formed on this surface, and further, an infrared absorption film 9 is formed on the surface of the infrared detection section 2.
Is formed.

【0011】薄膜抵抗体6は熱伝導率が小さく、半導体
プロセスに適した物質、例えば、シリコン酸化膜、シリ
コン窒化膜あるいはこれら膜の多層膜で構成されてい
る。この薄膜抵抗体6により、赤外線検出部2と半導体
基板1とを熱的に分離していることになり、赤外線輻射
による赤外線検出部2の温度上昇が大きくなり、その分
だけ感度が良好となるのである。半導体基板1をエッチ
ングにより除去して凹欠部kを形成しているので、断熱
効果の高い熱分離空間を形成することができる。
The thin-film resistor 6 has a low thermal conductivity and is made of a material suitable for a semiconductor process, such as a silicon oxide film, a silicon nitride film, or a multilayer film of these films. The thin film resistor 6 thermally separates the infrared detecting section 2 and the semiconductor substrate 1, and the temperature rise of the infrared detecting section 2 due to infrared radiation increases, and the sensitivity becomes better accordingly. Of. Since the semiconductor substrate 1 is removed by etching to form the recess k, it is possible to form a heat separation space having a high heat insulation effect.

【0012】感温部3は赤外線を吸収しないために、入
射してきた赤外線に対する感度はほとんどなく、たと
え、若干の熱の吸収があってもその吸収された熱は、半
導体基板1へ拡散してしまって感温部サーミスタ5の温
度変化に寄与しないために、その感温部サーミスタ5の
抵抗値は室温に対応した抵抗値を示すことになる。赤外
線検出部2に入射してきた赤外線は、赤外線吸収膜9に
よって吸収されてその赤外線検出サーミスタ4の温度が
変化することになり、電気抵抗値が変化する。従って、
図3においてこの発明の放射温度計の第1実施例を示す
電気回路図中のb点における電位により室温を計測する
ことができる。赤外線検出部2の感度(単位赤外線入射
量当たりの赤外線検出サーミスタ4の上昇温度)が既知
であれば、赤外線検出部2への入射赤外線量を求めるこ
とができ、ステファン−ボルツマンの法則により被計測
物体の温度が得られるのである。
Since the temperature sensing portion 3 does not absorb infrared rays, it has almost no sensitivity to incident infrared rays. Even if some heat is absorbed, the absorbed heat diffuses to the semiconductor substrate 1. Since it does not contribute to the temperature change of the temperature sensing part thermistor 5, the resistance value of the temperature sensing part thermistor 5 shows a resistance value corresponding to room temperature. The infrared rays that have entered the infrared detection section 2 are absorbed by the infrared absorption film 9 and the temperature of the infrared detection thermistor 4 changes, so that the electric resistance value changes. Therefore,
In FIG. 3, the room temperature can be measured by the potential at point b in the electric circuit diagram showing the first embodiment of the radiation thermometer of the present invention. If the sensitivity of the infrared detecting section 2 (increased temperature of the infrared detecting thermistor 4 per unit infrared incident quantity) is known, the incident infrared quantity to the infrared detecting section 2 can be obtained, and measured by the Stefan-Boltzmann law. The temperature of the object is obtained.

【0013】上記のことを簡単に説明する。電源電圧を
V,室温Toのときの赤外線検出サーミスタ4の抵抗お
よび固定抵抗をR,赤外線検出サーミスタ4の抵抗変化
率をB(B:定数)とする。また、周囲温度Teのと
き、ある赤外線入力があったときのa点およびb点の電
位をVrおよびVeとする。このときの感温部サーミス
タ5の抵抗Reは、b点の電位Veより次式で表すこと
ができる。
The above will be briefly described. The power supply voltage is V, the resistance and the fixed resistance of the infrared detection thermistor 4 at room temperature To are R, and the resistance change rate of the infrared detection thermistor 4 is B (B: constant). Further, at the ambient temperature Te, the potentials at the points a and b when a certain infrared ray is input are Vr and Ve. The resistance Re of the temperature sensing part thermistor 5 at this time can be expressed by the following equation from the potential Ve at the point b.

【0014】Re=R・(V−Ve)/Ve 従って、室温Teは次式で表すことができる。 Te=1/{(1/To)−ln(R/Re)/B) 一方、赤外線検出サーミスタ4の抵抗Rrは、a点の電
位Vrより、 Rr=Rf・(V−Vr)/Vr であるから、赤外線検出サーミスタ4の表面温度Ts
は、 Ts=1/{(1/To)−ln(R/Rr)/B) となる。
Re = R · (V−Ve) / Ve Therefore, the room temperature Te can be expressed by the following equation. Te = 1 / {(1 / To) −ln (R / Re) / B) On the other hand, the resistance Rr of the infrared detection thermistor 4 is Rr = Rf · (V−Vr) / Vr from the potential Vr at the point a. Therefore, the surface temperature Ts of the infrared detection thermistor 4
Is Ts = 1 / {(1 / To) -ln (R / Rr) / B).

【0015】ここで、単位入力当たりのサーミスタ温度
変化Δtが既知であるとき、サーミスタへの赤外線入射
量は次式のようになり、入射量と室温およびステファン
−ボルツマンの法則により被計測物体の温度を得ること
ができる。 Pr=(Ts−Te)/Δt 図4はこの発明の放射温度計の第2実施例を示す電気回
路図である。前記した第1実施例の場合と同様、感温部
サーミスタ5は室温に対応した抵抗値を示し、赤外線検
出サーミスタ4は室温と入射赤外線による抵抗変化を示
す。そして、図5に示すサーミスタThと固定抵抗Rと
の回路において、室温に対する出力電圧V0 の関係を図
6に示している。これは、室温が低温,高温の場合に比
較して常温付近の方が、同じ温度変化に対して出力電圧
が大きく、精度が高いことを示している。
Here, when the thermistor temperature change Δt per unit input is known, the infrared ray incident amount on the thermistor is given by the following equation, and the incident amount and the room temperature and the temperature of the object to be measured according to the Stefan-Boltzmann law. Can be obtained. Pr = (Ts-Te) / Δt FIG. 4 is an electric circuit diagram showing a second embodiment of the radiation thermometer of the present invention. As in the case of the first embodiment described above, the temperature sensing part thermistor 5 exhibits a resistance value corresponding to room temperature, and the infrared detection thermistor 4 exhibits a resistance change due to room temperature and incident infrared rays. Then, in the circuit of the thermistor Th and the fixed resistance R shown in FIG. 5, the relationship of the output voltage V 0 with respect to room temperature is shown in FIG. This indicates that the output voltage is larger and the accuracy is higher near the room temperature than when the room temperature is low or high.

【0016】図4の電気回路図では感温部サーミスタ5
と赤外線検出サーミスタ4とを直列に接続しており、固
定抵抗Rによる基準電圧との差を検出するために、室温
の影響を受けることがなく、一定の精度を保持すること
ができる。しかしながら、室温を知るために、さらに感
温部を付加する必要がある。
In the electric circuit diagram of FIG. 4, the temperature sensing part thermistor 5 is used.
And the infrared detection thermistor 4 are connected in series, and a difference from the reference voltage due to the fixed resistance R is detected, so that a certain accuracy can be maintained without being affected by room temperature. However, in order to know the room temperature, it is necessary to add a temperature sensitive part.

【0017】[0017]

【発明の効果】この発明は前記のように構成して成るも
ので以下のような効果がある。即ち、半導体基板の片面
に設けられた赤外線検出部と感温部とは、熱的に分離さ
れた状態であるから、赤外線輻射による赤外線検出部の
温度上昇は大きくなり、半導体基板の他方の片面では、
赤外線検出部の下部に対応する個所において、半導体基
板をエッチングにより除去して凹欠部を形成することで
断熱効果の高い熱分離空間を形成できるから、室温を知
るために別の手段を設けることなく、簡易な構成により
高性能の放射温度計を得ることができる特長を有してい
る。
The present invention is constructed as described above and has the following effects. That is, since the infrared detecting section and the temperature sensitive section provided on one side of the semiconductor substrate are in a state of being thermally separated, the temperature rise of the infrared detecting section due to infrared radiation becomes large, and the other side of the semiconductor substrate Then
At the location corresponding to the lower part of the infrared detector, the semiconductor substrate is removed by etching to form a recessed portion to form a heat separation space with a high heat insulation effect.Therefore, provide another means to know the room temperature. In addition, it has the feature that a high-performance radiation thermometer can be obtained with a simple configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)はこの発明の放射温度計の赤外線検出部
および感温部の平面図、(b)は同上の断面図。
FIG. 1A is a plan view of an infrared detection unit and a temperature sensing unit of a radiation thermometer of the present invention, and FIG. 1B is a sectional view of the same.

【図2】(a)はこの発明の放射温度計の他の例を示す
赤外線検出部および感温部の平面図、(b)は同上の断
面図。
FIG. 2A is a plan view of an infrared detection unit and a temperature sensing unit showing another example of the radiation thermometer of the present invention, and FIG. 2B is a sectional view of the same.

【図3】この発明の放射温度計の第1実施例を示す電気
回路図。
FIG. 3 is an electric circuit diagram showing a first embodiment of a radiation thermometer of the present invention.

【図4】この発明の放射温度計の第2実施例を示す電気
回路図。
FIG. 4 is an electric circuit diagram showing a second embodiment of the radiation thermometer of the present invention.

【図5】サーミスタと固定抵抗の電気回路図。FIG. 5 is an electric circuit diagram of a thermistor and a fixed resistor.

【図6】図5の電気回路図において室温に対する出力電
圧の関係を示す図。
6 is a diagram showing a relationship of an output voltage with respect to room temperature in the electric circuit diagram of FIG.

【図7】赤外線検出部に焦電素子を使用した従来の放射
温度計のブロック図。
FIG. 7 is a block diagram of a conventional radiation thermometer using a pyroelectric element for an infrared detection unit.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 赤外線検出部 3 感温部 4 赤外線検出部サーミスタ 5 感温部サーミスタ 6 薄膜抵抗体 k 凹欠 1 Semiconductor Substrate 2 Infrared Detector 3 Temperature Sensing 4 Infrared Detector Thermistor 5 Temperature Sensing Thermistor 6 Thin Film Resistor k Recessed

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年10月12日[Submission date] October 12, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】そして、この赤外線検出部2および感温部
3は、半導体基板1の片面に通常のIC回路作成におけ
る半導体プロセスと同様の薄膜形成技術や微細加工技術
を利用して形成するのである。さらに、この赤外線検出
部2および感温部3は、相等しい温度特性を有する赤外
線検出サーミスタ4および感温部サーミスタ5、熱絶縁
薄膜6、この表面に形成された複数の電極7,8から成
っており、さらに、赤外線検出部2の表面には赤外線吸
収膜9を形成するのである。
The infrared detecting section 2 and the temperature sensing section 3 are formed on one surface of the semiconductor substrate 1 by using a thin film forming technique and a fine processing technique similar to the semiconductor process in the usual IC circuit production. Further, the infrared detecting section 2 and the temperature sensing section 3 include an infrared detecting thermistor 4 and a temperature sensing section thermistor 5 having the same temperature characteristics, and thermal insulation.
The thin film 6 is composed of a plurality of electrodes 7 and 8 formed on the surface of the thin film 6, and an infrared absorbing film 9 is formed on the surface of the infrared detecting section 2.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】Re=R・(V−Ve)/Ve 従って、室温Teは次式で表すことができる。 Te=1/{(1/To)−ln(R/Re)/B) 一方、赤外線検出サーミスタ4の抵抗Rrは、a点の電
位Vrより、 Rr=・(V−Vr)/Vr であるから、赤外線検出サーミスタ4の表面温度Ts
は、 Ts=1/{(1/To)−ln(R/Rr)/B) となる。
Re = R · (V−Ve) / Ve Therefore, the room temperature Te can be expressed by the following equation. Te = 1 / {(1 / To) −ln (R / Re) / B) On the other hand, the resistance Rr of the infrared detection thermistor 4 is Rr = R · (V−Vr) / Vr from the potential Vr at the point a. Therefore, the surface temperature Ts of the infrared detection thermistor 4
Is Ts = 1 / {(1 / To) -ln (R / Rr) / B).

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)はこの発明の放射温度計の赤外線検出部
および感温部の平面図、(b)は同上の断面図。
FIG. 1A is a plan view of an infrared detection unit and a temperature sensing unit of a radiation thermometer of the present invention, and FIG. 1B is a sectional view of the same.

【図2】(a)はこの発明の放射温度計の他の例を示す
赤外線検出部および感温部の平面図、(b)は同上の断
面図。
FIG. 2A is a plan view of an infrared detection unit and a temperature sensing unit showing another example of the radiation thermometer of the present invention, and FIG. 2B is a sectional view of the same.

【図3】この発明の放射温度計の第1実施例を示す電気
回路図。
FIG. 3 is an electric circuit diagram showing a first embodiment of a radiation thermometer of the present invention.

【図4】この発明の放射温度計の第2実施例を示す電気
回路図。
FIG. 4 is an electric circuit diagram showing a second embodiment of the radiation thermometer of the present invention.

【図5】サーミスタと固定抵抗の電気回路図。FIG. 5 is an electric circuit diagram of a thermistor and a fixed resistor.

【図6】図5の電気回路図において室温に対する出力電
圧の関係を示す図。
6 is a diagram showing a relationship of an output voltage with respect to room temperature in the electric circuit diagram of FIG.

【図7】赤外線検出部に焦電素子を使用した従来の放射
温度計のブロック図。
FIG. 7 is a block diagram of a conventional radiation thermometer using a pyroelectric element for an infrared detection unit.

【符号の説明】 1 半導体基板 2 赤外線検出部 3 感温部 4 赤外線検出部サーミスタ 5 感温部サーミスタ 6 熱絶縁薄膜 k 凹欠[Explanation of reference numerals] 1 semiconductor substrate 2 infrared detection section 3 temperature sensing section 4 infrared detection section thermistor 5 temperature sensing section thermistor 6 thermal insulation thin film k concave

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の片面に、赤外線検出部およ
び感温部を備えており、また、その半導体基板の他方の
片面では、前記赤外線検出部の下部に対応する個所にお
いて、前記半導体基板をエッチングにより除去して凹欠
部を形成していることを特徴とする放射温度計。
1. A semiconductor substrate is provided with an infrared detecting section and a temperature sensing section on one side, and the semiconductor substrate is provided on the other side of the semiconductor substrate at a location corresponding to a lower portion of the infrared detecting section. A radiation thermometer, characterized in that a recess is formed by removing it by etching.
【請求項2】 サーミスタで赤外線検出部および感温部
を構成し、その赤外線検出部および感温部は、各々固定
抵抗と直列接続されたブリッジ回路を構成していること
を特徴とする請求項1記載の放射温度計。
2. The thermistor constitutes an infrared detecting section and a temperature sensing section, and the infrared detecting section and the temperature sensing section respectively constitute a bridge circuit connected in series with a fixed resistor. The radiation thermometer according to 1.
JP18724992A 1992-07-15 1992-07-15 Radiation thermometer Withdrawn JPH0634448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18724992A JPH0634448A (en) 1992-07-15 1992-07-15 Radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18724992A JPH0634448A (en) 1992-07-15 1992-07-15 Radiation thermometer

Publications (1)

Publication Number Publication Date
JPH0634448A true JPH0634448A (en) 1994-02-08

Family

ID=16202663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18724992A Withdrawn JPH0634448A (en) 1992-07-15 1992-07-15 Radiation thermometer

Country Status (1)

Country Link
JP (1) JPH0634448A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111397A (en) * 1998-10-05 2000-04-18 Nec Corp Two-dimensional array-type infrared detecting element and its manufacture
WO2000023774A1 (en) * 1998-10-19 2000-04-27 Mitsubishi Denki Kabushiki Kaisha Infrared sensor and infrared sensor array comprising the same
JP2013003014A (en) * 2011-06-17 2013-01-07 Tdk Corp Infrared sensor
JP2016014622A (en) * 2014-07-03 2016-01-28 Tdk株式会社 Sensor circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000111397A (en) * 1998-10-05 2000-04-18 Nec Corp Two-dimensional array-type infrared detecting element and its manufacture
US6441372B1 (en) 1998-10-05 2002-08-27 Nec Corporation Infrared focal plane array detector and method of producing the same
WO2000023774A1 (en) * 1998-10-19 2000-04-27 Mitsubishi Denki Kabushiki Kaisha Infrared sensor and infrared sensor array comprising the same
US6211520B1 (en) 1998-10-19 2001-04-03 Mitsubishi Denki Kabushiki Kaisha Infrared sensor and infrared sensor array using the same
JP2013003014A (en) * 2011-06-17 2013-01-07 Tdk Corp Infrared sensor
JP2016014622A (en) * 2014-07-03 2016-01-28 Tdk株式会社 Sensor circuit

Similar Documents

Publication Publication Date Title
US7385199B2 (en) Microbolometer IR focal plane array (FPA) with in-situ mirco vacuum sensor and method of fabrication
JPS6129648B2 (en)
KR20000076051A (en) Thermopile sensor and radiation thermometer with a thermopile sensor
JPH09329499A (en) Infrared sensor and infrared detector
JPH0634448A (en) Radiation thermometer
JPH1164111A (en) Infrared detecting element
US4472594A (en) Method of increasing the sensitivity of thermopile
JPS645646B2 (en)
JPH0666639A (en) Infrared thermometer
JPH11337415A (en) Radiation temperature detecting element
JP3303786B2 (en) Bolometer type infrared sensor
US4812801A (en) Solid state gas pressure sensor
JP5669678B2 (en) Infrared sensor
JPS63286729A (en) Thermopile detector
JPH07140008A (en) Radiation thermometer
JPH04299225A (en) Clinical thermometer
JP2002156283A (en) Thermopile-type infrared sensor
JP3855458B2 (en) Radiation temperature detector
JPH0394127A (en) Infrared ray sensor
JPH0763617A (en) Radiation thermometer
JP2856753B2 (en) Infrared sensor
JPH11258040A (en) Thermopile type infrared ray sensor
JPH0539467Y2 (en)
JP2005147768A (en) Infrared detector
JP3176798B2 (en) Radiant heat sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005