JPH11281116A - Ventilator - Google Patents

Ventilator

Info

Publication number
JPH11281116A
JPH11281116A JP8318398A JP8318398A JPH11281116A JP H11281116 A JPH11281116 A JP H11281116A JP 8318398 A JP8318398 A JP 8318398A JP 8318398 A JP8318398 A JP 8318398A JP H11281116 A JPH11281116 A JP H11281116A
Authority
JP
Japan
Prior art keywords
temperature
air
heat exchanger
indoor
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8318398A
Other languages
Japanese (ja)
Inventor
Makoto Saito
信 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8318398A priority Critical patent/JPH11281116A/en
Publication of JPH11281116A publication Critical patent/JPH11281116A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent drying of air inside of a house in winter and mitigate load of air conditioning in summer by interposing a thermo-electric element between an air-supply side heat exchanger and an exhaust-air side heat exchanger, with an endothermic portion and a radiating portion of the thermo-electric element being, respectively, connected to both of the heat exchangers. SOLUTION: A thermo-electric element 6 is interposed between an air-supply side heat exchanger 7 and an exhaust-air side heat exchanger 8 with an endothermic portion and a radiating portion at both end surfaces thereof being, respectively, connected to the air-supply side heat exchanger 7 and the exhaust- air side heat exchanger 8. When operated in winter time, the thermo-electric element 6 is applied with current so that the air-supply side heat exchanger 7 serves as a high-temperature (40 deg.C, for instance) side, and the exhaust-air side heat exchanger 8 serves as a low-temperature (5 deg.C, for instance) side. In the summer time operation, on the contrary, the thermo-electric element 6 is applied with current so that the air-supply side heat exchanger 7 serves as the low-temperature side and the exhaust-air side heat exchanger 8 serves as the high-temperature side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、屋内の空気と新鮮
な屋外の空気とを入れ替えて屋内を換気する換気装置に
係り、冬季における屋内の乾燥防止、および夏季の空調
運転の負荷を軽減した単一ユニットの換気装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ventilator for ventilating an indoor space by exchanging indoor air with fresh outdoor air to prevent the indoor from drying in winter and reduce the load of air conditioning operation in summer. It relates to a single unit ventilation system.

【0002】[0002]

【従来の技術】従来、冬季の暖房時に換気を行うと低温
低湿の屋外の空気を20℃程度まで昇温させる必要があ
るために、屋内の相対湿度が20%以下まで低下して肌
や喉が乾燥する等の健康上の不具合が生じていた。この
ような不具合を解決するために、全熱交換型換気装置の
ように屋内排出空気から導入屋外の空気に水分と熱エネ
ルギーを移動させる換気方式が利用されている。
2. Description of the Related Art Conventionally, if ventilation is performed during heating in winter, it is necessary to raise the temperature of low-temperature and low-humidity outdoor air to about 20 ° C., so that the indoor relative humidity decreases to 20% or less and the skin and throat are reduced. Had a health problem such as drying. In order to solve such a problem, a ventilation system that transfers moisture and heat energy from indoor exhaust air to introduced outdoor air, such as a total heat exchange type ventilator, is used.

【0003】また、近年の住宅の高断熱・高気密化によ
り、内部発熱や昼間の日射で屋内温度が屋外の温度より
高温になることがしばしば発生し、空調機起動時の冷房
負荷が従来より著しく大きくなるいという問題もある。
このような課題を解決するために、例えば特開平7−4
702に示されるように屋内温度と屋外の温度を検知
し、その温度差が一定値以上の場合に自動で換気運転を
行って屋内温度を低下させる提案もなされている。
[0003] In addition, due to recent high heat insulation and high airtightness of houses, indoor heat often rises higher than outdoor temperature due to internal heat generation and daytime solar radiation. There is also a problem that it is not significantly increased.
In order to solve such a problem, for example, JP-A-7-4
As indicated by reference numeral 702, a proposal has been made to detect an indoor temperature and an outdoor temperature, and when the temperature difference is equal to or more than a predetermined value, automatically perform a ventilation operation to lower the indoor temperature.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような全熱交換型換気装置においては、全熱交換素子の
通風抵抗が大きいために高静圧のファンを用いる必要が
ある。このため、中間季等屋内外の温度差が無く、熱交
換する必要が無い場合においても運転音が大きくなり騒
音を発するという欠点がある。また、冷房期間において
屋内温度が屋外温度より高い場合においても全熱交換を
行うので、換気による排熱が行えないという不都合もあ
る。
However, in the above-mentioned total heat exchange type ventilator, it is necessary to use a high static pressure fan because the ventilation resistance of the total heat exchange element is large. For this reason, even when there is no difference between indoor and outdoor temperatures such as in the middle season, and there is no need for heat exchange, there is a drawback that the operating noise is increased and noise is generated. Further, even when the indoor temperature is higher than the outdoor temperature during the cooling period, since the total heat exchange is performed, there is a disadvantage that the exhaust heat cannot be exhausted by ventilation.

【0005】また、特開平7−4702のように屋内温
度と屋外温度との温度差に基づいて自動換気運転が行な
われるので、屋内温度は比較的早く屋外温度とほぼ等し
くすることができる。しかしながら、壁や什器等に蓄積
された熱を取り去ることはできず、換気運転の起動と停
止が繰り返されることとなり、屋外の空気により壁内等
の蓄熱の効果的な除去を行うことができない等の問題が
あった。
[0005] Further, since the automatic ventilation operation is performed based on the temperature difference between the indoor temperature and the outdoor temperature as disclosed in Japanese Patent Application Laid-Open No. 7-4702, the indoor temperature can be made relatively equal to the outdoor temperature relatively quickly. However, the heat accumulated in the walls and fixtures cannot be removed, and the start and stop of the ventilation operation are repeated, so that the outdoor air cannot effectively remove the heat stored in the walls and the like. There was a problem.

【0006】この発明は上記のような課題を解消するこ
とを目的として、給気と排気を1つのユニットで行う換
気装置において、冬季の屋内の乾燥を防止し、かつ、夏
季の空調負荷を軽減する換気装置を提供するものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a ventilator for supplying and exhausting air in a single unit, which prevents indoor drying in winter and reduces air conditioning load in summer. The present invention provides a ventilating device that performs the following.

【0007】[0007]

【課題を解決するための手段】第1の発明に係わる換気
装置は、屋外の空気を給気路から給気すると共に屋内の
空気を排気路から排気して屋内の換気動作を行うファン
と、給気路及び排気路に配置されそれぞれ通過気流の熱
交換動作を行う給気側熱交換器及び排気側熱交換器と、
給気側熱交換器と排気側熱交換器の間に介在されて両熱
交換器にそれぞれ吸熱部と放熱部を連結した熱電素子
と、排気側熱交換器と給気側熱交換器の一方に結露した
ドレインを他方に移動させるドレイン移動手段と、ファ
ンと熱電素子を制御する制御手段とを備えたものであ
る。
According to a first aspect of the present invention, there is provided a ventilator for supplying outdoor air from an air supply passage and exhausting indoor air from an exhaust passage to perform indoor ventilation operation. A supply-side heat exchanger and an exhaust-side heat exchanger that are arranged in the supply path and the exhaust path and perform a heat exchange operation of the passing airflow, respectively.
A thermoelectric element interposed between the supply-side heat exchanger and the exhaust-side heat exchanger and connecting the heat-absorbing part and the heat-dissipating part to both heat exchangers, and one of the exhaust-side heat exchanger and the supply-side heat exchanger And a control means for controlling a fan and a thermoelectric element.

【0008】第2の発明に係わる換気装置は、第1の発
明において屋内及び屋外の空気の温度を検知する屋内温
度センサ及び屋外温度センサを設け.屋外温度センサの
検知した屋外の空気の温度と屋内温度センサの検知した
屋内の空気の温度との温度差の変化に応じて制御手段に
より換気動作と熱交換動作を行うものである。
A ventilating apparatus according to a second aspect of the present invention is the ventilation apparatus according to the first aspect, further comprising an indoor temperature sensor and an outdoor temperature sensor for detecting indoor and outdoor air temperatures. The ventilating operation and the heat exchanging operation are performed by the control means in accordance with a change in the temperature difference between the temperature of the outdoor air detected by the outdoor temperature sensor and the temperature of the indoor air detected by the indoor temperature sensor.

【0009】第3の発明に係わる換気装置は、第2の発
明において屋内の放射温度を検知する放射温度センサを
設け、放射温度センサの検知した屋内の放射温度が屋外
温度より高いときに制御手段により換気動作を行うもの
である。
A ventilating apparatus according to a third aspect of the present invention is provided with a radiation temperature sensor for detecting an indoor radiation temperature in the second invention, and controlling means when the indoor radiation temperature detected by the radiation temperature sensor is higher than the outdoor temperature. The ventilating operation is performed.

【0010】第4の発明に係わる換気装置は、第3の発
明において放射温度と屋内温度の両方が屋外温度より高
いときに制御手段により換気動作を行うものである。
A ventilating apparatus according to a fourth aspect of the present invention is the apparatus according to the third aspect, wherein the control means performs a ventilation operation when both the radiation temperature and the indoor temperature are higher than the outdoor temperature.

【0011】[0011]

【発明の実施の形態】実施の形態1.図1〜図4は、こ
の発明の実施の形態における給排気を1つのユニットで
行う換気装置を示す図である。図1はこの換気装置の構
造を示す図、図2は換気装置の熱電素子の原理的な構成
を示す説明図、図3はドレインの移動手段の一例を示す
図、図4は換気装置の外観を示す図である。なお、図中
の同一の符号は同一または相当部分を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 to FIG. 4 are views showing a ventilator that supplies and exhausts air in one unit according to an embodiment of the present invention. FIG. 1 is a diagram showing the structure of the ventilator, FIG. 2 is an explanatory diagram showing the principle configuration of the thermoelectric element of the ventilator, FIG. 3 is a diagram showing an example of a means for moving the drain, and FIG. FIG. The same reference numerals in the drawings indicate the same or corresponding parts.

【0012】図1において、Aは換気装置である。換気
装置Aは、単一のユニットを構成している。1と2は換
気装置Aの給気口と排気口で、共に建物の外壁に設置さ
れて屋外に開口している。そして、屋内の空気が排気口
2から外に排出され、屋外の空気が給気口1から屋内に
導入されて換気が行われる。5はモータで、給気ファン
3と排気ファン4を駆動する。6は熱電素子、7は給気
側熱交換器、8は排気側熱交換器である。熱電素子6は
両方の熱交換器7と8の間に介在され、両端面の吸熱部
と放熱部がそれぞれ給気側熱交換器7と排気側熱交換器
8に連結されている。なお、熱電素子6自体は、周知技
術であり、その代表的な構成が図2に示されている。
In FIG. 1, A is a ventilation device. Ventilation device A constitutes a single unit. Reference numerals 1 and 2 denote an air supply port and an exhaust port of the ventilation device A, both of which are installed on the outer wall of the building and open to the outside. Then, indoor air is exhausted to the outside through the exhaust port 2, and outdoor air is introduced into the indoor through the air supply port 1 to perform ventilation. A motor 5 drives the air supply fan 3 and the exhaust fan 4. Reference numeral 6 denotes a thermoelectric element, 7 denotes a supply-side heat exchanger, and 8 denotes an exhaust-side heat exchanger. The thermoelectric element 6 is interposed between the two heat exchangers 7 and 8, and the heat absorbing portions and the heat radiating portions on both end surfaces are connected to the supply side heat exchanger 7 and the exhaust side heat exchanger 8, respectively. The thermoelectric element 6 itself is a well-known technique, and a typical configuration is shown in FIG.

【0013】図2において、61は熱電素子6を構成す
る半導体素子、62は銅電極、63はセラミック板、6
4は吸熱ブロック、65はヒートシンク、66は直流電
源である。半導体素子61はN型とP型が直列に従属接
続されていて、これらの半導体群を挾持して図示のよう
な板状に形成されている。そして、直流電源66の電流
を流すとN型半導体の電子ーとP型半導体の正孔+が移
動して、吸熱ブロック64側が冷却されてヒートシンク
65側が加熱される。また、直流電源66の電流の流れ
方向を変えると、冷却と加熱の方向も切り換えられる。
In FIG. 2, 61 is a semiconductor element constituting the thermoelectric element 6, 62 is a copper electrode, 63 is a ceramic plate, 6
4 is a heat absorbing block, 65 is a heat sink, and 66 is a DC power supply. The N-type and P-type semiconductor elements 61 are cascade-connected in series, and are formed in a plate shape as shown in FIG. When a current is supplied from the DC power supply 66, electrons of the N-type semiconductor and holes of the P-type semiconductor move, and the heat absorbing block 64 is cooled and the heat sink 65 is heated. Further, when the direction of current flow of the DC power supply 66 is changed, the directions of cooling and heating can also be switched.

【0014】図3において、9はドレインの受け皿で、
内部は多孔質或いは網状等の吸湿体で形成されている。
詳しくは示されていないが、例えば、受け皿9の内部が
上部隔壁で通気側と排気側が区画され、下部分が上記の
ような吸湿体で連通されている。受け皿9内の隔壁と吸
湿体の吸湿により、給気側と排気側との気体の交流が遮
断され液体の相互的な流入と流出だけが許容される。そ
して、後述の換気動作状態において低温側で結露した水
分を受け皿9で回収して、吸湿状態の吸湿体を介して毛
細管現象により集められたドレインを低温側から高温側
(熱で乾燥される方向側)への相互的な移動が行われる
ようになっている。
In FIG. 3, reference numeral 9 denotes a drain tray.
The inside is formed of a porous or net-shaped hygroscopic body.
Although not shown in detail, for example, the inside of the tray 9 is partitioned by a top partition into a ventilation side and an exhaust side, and the lower part is communicated with the above-mentioned moisture absorbing body. Due to the moisture absorption of the partition wall in the receiving tray 9 and the moisture absorbing body, the gas exchange between the supply side and the exhaust side is interrupted, and only the mutual inflow and outflow of the liquid are allowed. Then, in a ventilating operation state described later, the water condensed on the low-temperature side is collected by the tray 9, and the drain collected by the capillary phenomenon via the moisture absorbing body in the moisture absorbing state is changed from the low-temperature side to the high-temperature side (the direction of drying by heat). Side).

【0015】図4において、10は放射温度センサ、1
1は屋内温度センサ、12は屋外温度センサである。放
射温度センサ10は受光面を換気装置Aの前面に露出し
て取り付けられている。そして、視野内の熱源から放射
された赤外線を受光して、前面の三次元領域からの放射
温度Trを非接触で検知する。したがって、放射温度セ
ンサ10の検知する放射温度Trは、天井や周囲の壁面
或いは什器・備品類等の内部に滞留する屋内の総蓄熱量
に対応すると看做すことができる。また、屋内温度セン
サ11と屋外温度センサ12は、それぞれ屋内温度T1
と屋外の温度T2を検知する。13はこのユニット構成
の換気装置Aの制御回路であり、各温度センサ10〜1
2の検知信号に基づいて熱電素子6への通電方向や同期
的なモータ5のON・OFF動作等による自動換気運転
の制御を行う。
In FIG. 4, reference numeral 10 denotes a radiation temperature sensor;
1 is an indoor temperature sensor, and 12 is an outdoor temperature sensor. The radiation temperature sensor 10 is mounted with its light receiving surface exposed to the front of the ventilation device A. Then, infrared rays radiated from the heat source in the visual field are received, and the radiation temperature Tr from the three-dimensional area on the front surface is detected in a non-contact manner. Therefore, it can be considered that the radiation temperature Tr detected by the radiation temperature sensor 10 corresponds to the total amount of heat stored in the room staying in the ceiling, the surrounding wall surface, the interior of the furniture and the fixtures, and the like. Further, the indoor temperature sensor 11 and the outdoor temperature sensor 12 are respectively connected to the indoor temperature T1.
And the outdoor temperature T2. Reference numeral 13 denotes a control circuit of the ventilation device A having the unit configuration, and each of the temperature sensors 10 to 1
Based on the detection signal of No. 2, the control of the automatic ventilation operation is performed by the energizing direction to the thermoelectric element 6, the synchronous ON / OFF operation of the motor 5, and the like.

【0016】次に、実施の形態1の換気装置Aの動作を
説明する。冬季における稼働時には、例えば屋外温度T
2が10℃以下或いは屋内温度T1が15℃以下を暖房
期と定義する。そして、屋外温度センサ12および屋内
温度センサ11の検知温度T1が定義温度以下であれ
ば、制御回路13により熱電素子6に給気側熱交換器7
が高温(例えば40℃)側に、また排気側熱交換器8が
低温(例えば5℃)になるように直流電源66の電流が
供給される。その後、モータ5に通電が行われて排気フ
ァン4が回転し、屋内から排出される空気が排気側熱交
換器8により冷却されて水分が凝縮する。冷却で凝縮し
た水分は、受け皿9の吸湿体に吸収される。その後、排
気側熱交換器8の付近で水分が吸収されて乾燥して低温
となった空気は、排気口2を通って屋外へ排出される。
Next, the operation of the ventilation device A according to the first embodiment will be described. During operation in winter, for example, the outdoor temperature T
2 is 10 ° C. or less or the indoor temperature T1 is 15 ° C. or less is defined as a heating period. If the detected temperature T1 of the outdoor temperature sensor 12 and the indoor temperature sensor 11 is equal to or lower than the defined temperature, the control circuit 13 supplies the thermoelectric element 6 to the supply-side heat exchanger 7.
Is supplied to the high-temperature side (for example, 40 ° C.) and the current of the DC power supply 66 is supplied so that the exhaust-side heat exchanger 8 becomes low-temperature (for example, 5 ° C.). Thereafter, the motor 5 is energized, the exhaust fan 4 rotates, and the air exhausted from the room is cooled by the exhaust-side heat exchanger 8 to condense moisture. The water condensed by the cooling is absorbed by the hygroscopic body of the tray 9. Thereafter, the air that has been dried and has a low temperature by absorbing moisture near the exhaust-side heat exchanger 8 is discharged to the outside through the exhaust port 2.

【0017】一方、給気ファン3の回転により給気口1
を通過してきた冬季の低温低湿の屋外の空気は、給気側
熱交換器7を通過する。このとき、屋外空気は熱電素子
6の放熱を受けた給気側熱交換器7により昇温され、受
け皿9の水分を蒸発させて湿度が高められてから屋内へ
導入される。以上のような冬季の換気と熱交換動作によ
り、屋内の空気の乾燥を抑えると共に屋外から取り入れ
た空気を暖めて屋内へ導入することができる。
On the other hand, the rotation of the air supply fan 3 causes the air supply port 1 to rotate.
The low-temperature, low-humidity outdoor air in winter that has passed through the air-supply-side heat exchanger 7. At this time, the temperature of the outdoor air is increased by the air supply side heat exchanger 7 that has received the heat radiation of the thermoelectric element 6, the moisture in the tray 9 is evaporated to increase the humidity, and then the indoor air is introduced indoors. By the ventilation and heat exchange operation in winter as described above, drying of indoor air can be suppressed, and air taken in from outside can be warmed and introduced into the room.

【0018】夏季の稼働時においては、例えば屋内温度
が26℃以上であれば夏季と定義する。屋内温度センサ
11の検知温度T1がそれ以上であり、かつ屋内温度T
1が屋外温度T2より低い場合には、制御回路13によ
り熱電素子6に給気側熱交換器7が低温側に、排気側熱
交換器8が高温となるように直流電源66から通電され
る。その後、モータ5に通電が行われて給気ファン3の
回転により高温多湿の屋外の空気が低温となった給気側
熱交換器7を通過し、冷却除湿された後に屋内へ導入さ
れる。屋内に導入された屋外の空気の水分は凝縮して、
受け皿9に吸収される。一方、排気ファン4の回転によ
り高温状態の屋内の空気が排気側熱交換器8を通過しな
がら更に温度を高められると共に、受け皿9の水分を加
熱して気化させてから屋外へ排出する。この動作によ
り、夏季の高温多湿の屋外の空気を冷却・除湿してから
屋内へ導入することができ、冷房負荷が軽減される。
During operation in summer, for example, if the indoor temperature is 26 ° C. or higher, it is defined as summer. If the detected temperature T1 of the indoor temperature sensor 11 is higher than that and the indoor temperature T
When 1 is lower than the outdoor temperature T2, the control circuit 13 supplies electricity to the thermoelectric element 6 from the DC power supply 66 so that the supply-side heat exchanger 7 is at a low temperature and the exhaust-side heat exchanger 8 is at a high temperature. . Thereafter, the motor 5 is energized, and the high-temperature and high-humidity outdoor air passes through the low-temperature air supply-side heat exchanger 7 due to the rotation of the air supply fan 3, and is introduced into the room after being cooled and dehumidified. The moisture of the outdoor air introduced indoors condenses,
It is absorbed in the tray 9. On the other hand, the rotation of the exhaust fan 4 raises the temperature of indoor air in a high-temperature state while passing through the exhaust-side heat exchanger 8, and heats and evaporates the water in the tray 9 before discharging it to the outside. By this operation, it is possible to cool and dehumidify the high-temperature, high-humidity outdoor air in the summer and then introduce the air indoors, thereby reducing the cooling load.

【0019】さらに、夏季の運転停止時、屋内温度セン
サ11により夏季と判断され、かつ屋内温度T1が屋外
温度T2より高い場合には次のような換気動作が行われ
る。放射温度センサ10により屋内の放射温度Trを検
知し、その値Trを屋外温度T2と比較する。両温度が
Tr>T2でその差が一定値(例えば2℃)以上の場合
には、熱電素子6には通電せずにモータ5だけに通電さ
れる。このとき、放射温度Trより低温の屋外の空気が
屋内へ導入されて、放射温度Trが低下する。このとき
のモータ5への通電は、屋内温度センサ11と放射温度
センサ10が検知した温度T1とTrが等しくT1=T
rになるか、或いは差が一定の値(例えば1℃)以下に
なるまで連続的に行われる。この結果、居住者等の不在
時に昼間の日射等で壁体や備品類等に蓄積された建物内
に潜在した熱が、屋外から導入された空気を利用して自
動的に除去されることになる。よって、少ない電力で経
済的な換気動作で、空調機起動時の負荷を軽減すること
ができる。
Further, when the operation is stopped in summer, when the indoor temperature sensor 11 determines that summer is in progress and the indoor temperature T1 is higher than the outdoor temperature T2, the following ventilation operation is performed. The radiation temperature sensor 10 detects the indoor radiation temperature Tr, and compares the value Tr with the outdoor temperature T2. If the two temperatures are Tr> T2 and the difference is equal to or greater than a certain value (for example, 2 ° C.), only the motor 5 is energized without energizing the thermoelectric element 6. At this time, outdoor air having a temperature lower than the radiation temperature Tr is introduced indoors, and the radiation temperature Tr decreases. At this time, the current is supplied to the motor 5 so that the temperatures T1 and Tr detected by the indoor temperature sensor 11 and the radiation temperature sensor 10 are equal and T1 = T
r, or until the difference falls below a certain value (for example, 1 ° C.). As a result, in the absence of a resident, etc., the latent heat in the building that was accumulated in the walls and fixtures due to daytime solar radiation, etc., is automatically removed using the air introduced from outside. Become. Therefore, the load at the time of starting the air conditioner can be reduced by the economical ventilation operation with small electric power.

【0020】また、上記のような屋内温度T1が屋外温
度T2より高いT1>T2ときの自動的な換気動作は、
放射温度Trと屋内温度T1の両方が屋外温度T2より
高いとき(Tr>T2)および(T1>T2)にも行わ
れる。この場合は2つの検知温度TrとT1に基づいて
換気動作が行われるので、屋内の蓄熱量に一層正確に対
応した自動的な換気動作を実施できる利点がある。な
お、上記の換気装置Aの運転の判断や温度差の比較等
は、全て制御回路13によって制御されるようになって
いる。
The automatic ventilation operation when T1> T2 when the indoor temperature T1 is higher than the outdoor temperature T2 as described above,
This is also performed when both the radiation temperature Tr and the indoor temperature T1 are higher than the outdoor temperature T2 (Tr> T2) and (T1> T2). In this case, since the ventilation operation is performed based on the two detected temperatures Tr and T1, there is an advantage that an automatic ventilation operation more accurately corresponding to the amount of stored heat indoors can be performed. The determination of the operation of the ventilator A and the comparison of the temperature difference are all controlled by the control circuit 13.

【0021】[0021]

【発明の効果】第1の発明に係わる換気装置は、屋内の
換気動作を行うファンと、給気路及び排気路に配置され
た給気側熱交換器及び排気側熱交換器と、両熱交換器に
吸熱部と放熱部を連結した熱電素子と、両熱交換器の相
互間にドレインを移動させるドレイン移動手段と、ファ
ンと熱電素子を制御する制御手段とを備えた換気装置を
構成したものである。この結果、換気動作と熱交換動作
を行うことのできる小形で便利なユニット型の換気装置
を提供することができる。
The ventilation device according to the first aspect of the present invention provides a fan for performing indoor ventilation, a supply-side heat exchanger and an exhaust-side heat exchanger disposed in a supply passage and an exhaust passage, and a heat exchanger. A ventilator including a thermoelectric element having a heat absorbing part and a heat radiating part connected to an exchanger, a drain moving means for moving a drain between the two heat exchangers, and a control means for controlling a fan and a thermoelectric element was configured. Things. As a result, a small and convenient unit-type ventilator capable of performing the ventilation operation and the heat exchange operation can be provided.

【0022】また、第2の発明によれば、第1の発明に
おいて屋内温度センサ及び屋外温度センサを設け.屋外
と屋内の空気の温度差に応じて制御手段により換気動作
と熱交換動作が行なわれる。この結果、夏季において導
入される高温多湿の屋外の空気が冷却・除湿されるの
で、冷房運転の負荷を軽減することができる。
According to the second invention, the indoor temperature sensor and the outdoor temperature sensor are provided in the first invention. The ventilation means and the heat exchange operation are performed by the control means according to the temperature difference between the outdoor air and the indoor air. As a result, the high-temperature and high-humidity outdoor air introduced in the summer is cooled and dehumidified, so that the load of the cooling operation can be reduced.

【0023】第3の発明によれば、屋内の放射温度が屋
外温度より高いときに換気動作が行なわれる。この結
果、日射等で屋外温度より高温となった屋内の壁体等の
蓄熟まで換気動作だけで効果的に冷却でき、真夏の夜の
寝苦しさ等を解消することができる。同時に、空調機の
起動時の負荷を軽減でき、電力の無駄な消費を押さえて
経済的な換気装置を提供することができる。
According to the third aspect, the ventilation operation is performed when the indoor radiation temperature is higher than the outdoor temperature. As a result, cooling can be effectively performed only by ventilation operation until maturation of an indoor wall or the like that has become higher than the outdoor temperature due to solar radiation or the like, and it is possible to eliminate difficulty in falling asleep in a midsummer night. At the same time, the load at the time of starting the air conditioner can be reduced, and an economical ventilation device can be provided by suppressing wasteful consumption of electric power.

【0024】さらに、第4の発明に係わる換気装置は、
第3の発明において放射温度と屋内温度の両方が屋外温
度より高いときに換気動作が行なわれる。この結果、第
3の発明より更に正確な、換気動作を行うことができ
る。また、空調機の起動時の空調負荷を更に軽減でき、
一層経済的な換気装置を提供することができる。
Further, the ventilating apparatus according to the fourth invention is characterized in that:
In the third invention, the ventilation operation is performed when both the radiation temperature and the indoor temperature are higher than the outdoor temperature. As a result, a more accurate ventilation operation can be performed than in the third aspect. In addition, the air conditioning load at the time of starting the air conditioner can be further reduced,
A more economical ventilator can be provided.

【0025】よって、本発明によれば、例えば建物内の
西日の当たる個室等に設置して、メインの空調システム
の空調動作に効果的に協力して換気動作を行うユニット
型の換気装置を提供することができる。
Thus, according to the present invention, there is provided a unit-type ventilator which is installed in, for example, a private room or the like where a west sun is shining in a building and effectively performs a ventilation operation in cooperation with an air conditioning operation of a main air conditioning system. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1の換気装置の断面図
である。
FIG. 1 is a sectional view of a ventilation device according to a first embodiment of the present invention.

【図2】 この発明の実施の形態1の換気装置の熱電素
子の代表的な構成を示す説明図である。
FIG. 2 is an explanatory diagram illustrating a typical configuration of a thermoelectric element of the ventilation device according to the first embodiment of the present invention.

【図3】 この発明の実施の形態1の換気装置のドレイ
ン移動手段の一例を示す断面図である。
FIG. 3 is a sectional view illustrating an example of a drain moving unit of the ventilation device according to the first embodiment of the present invention.

【図4】 この発明の実施の形態1の換気装置の外観を
示す斜視図である。
FIG. 4 is a perspective view showing an appearance of the ventilation device according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 給気口、2 排気口、3 給気ファン、4 排気フ
ァン、5 モータ、6熱電素子、7 給気側熱交換器、
8 排気側熱交換器、9 ドレイン受け皿、10 放射
温度センサ、11 屋内温度センサ、12 屋外温度セ
ンサ、13制御回路、61 半導体素子、62 銅電
極、63 セラミック板、64 吸熱ブロック、65
ヒートシンク、66 直流電源、A 換気装置、T1
屋内温度、T2 屋外温度、Tr 放射温度。
1 intake port, 2 exhaust port, 3 air supply fan, 4 exhaust fan, 5 motor, 6 thermoelectric element, 7 air supply side heat exchanger,
Reference Signs List 8 exhaust side heat exchanger, 9 drain pan, 10 radiation temperature sensor, 11 indoor temperature sensor, 12 outdoor temperature sensor, 13 control circuit, 61 semiconductor element, 62 copper electrode, 63 ceramic plate, 64 heat absorbing block, 65
Heat sink, 66 DC power supply, A ventilator, T1
Indoor temperature, T2 outdoor temperature, Tr radiation temperature.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 屋外の空気を給気路から給気すると共に
屋内の空気を排気路から排気して屋内の換気動作を行う
ファンと、前記給気路及び排気路に配置されそれぞれ通
過気流の熱交換動作を行う給気側熱交換器及び排気側熱
交換器と、該給気側熱交換器と排気側熱交換器の間に介
在されて該両熱交換器にそれぞれ吸熱部と放熱部を連結
した熱電素子と、前記排気側熱交換器と給気側熱交換器
の一方に結露したドレインを他方に移動させるドレイン
移動手段と、前記ファンと熱電素子を制御する制御手段
とを備えたことを特徴とする換気装置。
1. A fan that supplies outdoor air from an air supply path and exhausts indoor air from an exhaust path to perform indoor ventilation operation, and a fan that is disposed in the air supply path and the exhaust path and has a passing airflow. A supply-side heat exchanger and an exhaust-side heat exchanger for performing a heat exchange operation, and a heat-absorbing part and a heat-dissipating part interposed between the supply-side heat exchanger and the exhaust-side heat exchanger, and And a drain moving means for moving a drain condensed on one of the exhaust side heat exchanger and the supply side heat exchanger to the other, and a control means for controlling the fan and the thermoelectric element. A ventilator characterized by that:
【請求項2】 前記屋内及び屋外の空気の温度を検知す
る屋内温度センサ及び屋外温度センサを設け.該屋外温
度センサの検知した屋外の空気の温度と前記屋内温度セ
ンサの検知した屋内の空気の温度との温度差の変化に応
じて前記制御手段により換気動作と熱交換動作を行うこ
とを特徴とする請求項1記載の換気装置。
2. An indoor temperature sensor and an outdoor temperature sensor for detecting the temperature of the indoor and outdoor air. A ventilating operation and a heat exchange operation are performed by the control means according to a change in a temperature difference between the temperature of the outdoor air detected by the outdoor temperature sensor and the temperature of the indoor air detected by the indoor temperature sensor. 2. The ventilation device according to claim 1, wherein
【請求項3】 前記屋内の放射温度を検知する放射温度
センサを設け、該放射温度センサの検知した屋内の放射
温度が前記屋外温度より高いときに前記制御手段により
換気動作を行うことを特徴とする請求項2記載の換気装
置。
3. A radiant temperature sensor for detecting the indoor radiant temperature, wherein a ventilation operation is performed by the control means when the indoor radiant temperature detected by the radiant temperature sensor is higher than the outdoor temperature. 3. The ventilation device according to claim 2, wherein
【請求項4】 前記放射温度と前記屋内温度の両方が前
記屋外温度より高いときに前記制御手段により換気動作
を行うことを特徴とする請求項3記載の換気装置。
4. The ventilation device according to claim 3, wherein when both the radiation temperature and the indoor temperature are higher than the outdoor temperature, the control means performs a ventilation operation.
JP8318398A 1998-03-30 1998-03-30 Ventilator Pending JPH11281116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8318398A JPH11281116A (en) 1998-03-30 1998-03-30 Ventilator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8318398A JPH11281116A (en) 1998-03-30 1998-03-30 Ventilator

Publications (1)

Publication Number Publication Date
JPH11281116A true JPH11281116A (en) 1999-10-15

Family

ID=13795210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8318398A Pending JPH11281116A (en) 1998-03-30 1998-03-30 Ventilator

Country Status (1)

Country Link
JP (1) JPH11281116A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100408926C (en) * 2006-01-13 2008-08-06 湖南大学 Air ventilating fan with heat recovery function
KR101115778B1 (en) 2004-03-03 2012-03-06 엘지전자 주식회사 The structure for ventilation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101115778B1 (en) 2004-03-03 2012-03-06 엘지전자 주식회사 The structure for ventilation system
CN100408926C (en) * 2006-01-13 2008-08-06 湖南大学 Air ventilating fan with heat recovery function

Similar Documents

Publication Publication Date Title
JP2011174674A (en) Air conditioning system
JP2008039374A (en) Ventilating and air conditioning apparatus
JP2004212038A (en) Air conditioning ventilation system for building
JPH11182907A (en) Ventilator
JP2767342B2 (en) Indoor ventilation system
JP2004020086A (en) Dehumidifying drying air conditioner
JP4581604B2 (en) Ventilation system
JPH11281116A (en) Ventilator
JP2009198095A (en) Solar heating and drying system
JP2922009B2 (en) Air conditioner
JP2006308271A (en) Solar heat collector and outside air treatment system
KR101047586B1 (en) Intelligent air conditioning system
JP2004301375A (en) Ventilation system
JP3443762B2 (en) Method and apparatus for taking air into a house
JP3847880B2 (en) Building air conditioner
JPH11248232A (en) Floor-heating air-conditioning system
JPH08303840A (en) Cooling/heating system having dehumidifier with room temperature adjusting function
JPH0972597A (en) Air conditioner
JPS6317324A (en) Ceiling embedded radiation type air conditioner
JP2008064376A (en) Ventilation air conditioner
JPH09105536A (en) Cooling and heating system
JP2017146037A (en) Radiant heating and cooling system and radiant heating and cooling method
JP4767878B2 (en) Temperature and humidity chamber
KR20110091044A (en) Circulation fan and circulation pump speed control of air condition system
KR100825427B1 (en) Air-conditioner