JP2004020086A - Dehumidifying drying air conditioner - Google Patents

Dehumidifying drying air conditioner Download PDF

Info

Publication number
JP2004020086A
JP2004020086A JP2002176962A JP2002176962A JP2004020086A JP 2004020086 A JP2004020086 A JP 2004020086A JP 2002176962 A JP2002176962 A JP 2002176962A JP 2002176962 A JP2002176962 A JP 2002176962A JP 2004020086 A JP2004020086 A JP 2004020086A
Authority
JP
Japan
Prior art keywords
indoor
heat exchanger
dehumidifying
air
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002176962A
Other languages
Japanese (ja)
Inventor
Kazuo Nakatani
中谷 和生
Mitsuharu Matsuo
松尾 光晴
Tomoaki Ando
安藤 智朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002176962A priority Critical patent/JP2004020086A/en
Publication of JP2004020086A publication Critical patent/JP2004020086A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dehumidifying drying air conditioner for extremely reducing adverse influence on global warming even if a refrigerant leaks, realizing a refrigerating cycle suitable for dehumidifying operation at a high temperature such as drying bathroom clothes, and effective in shortening clothes drying time. <P>SOLUTION: Carbon dioxide is used as the refrigerant. Cooling circuit dehumidifying operation and heating circuit dehumidifying operation are operated in a switching system. Evaporation of moisture from the clothes is promoted by performing dehumidification while setting an indoor temperature to a high temperature at reheating dehumidifying operation time. Safe dehumidifying operation is performed without being overheated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、二酸化炭素を冷媒とする冷凍サイクルを用いたヒートポンプ式除湿乾燥空調装置に関する。
【0002】
【従来の技術】
図7は、従来の空調装置の構成を示す冷媒回路図であり、図7を参照しながら従来の技術を説明する。
【0003】
空調装置1は、室外機2、室内機3より構成されており、圧縮機4、室外熱交換器5、主絞り装置6、室内第1熱交換器7、副絞り装置8、室内第2熱交換器9を備えるヒートポンプ式の空調装置であり、圧縮機4からの冷媒が循環するように冷媒回路が構成されている。すなわち、圧縮機4の吐出側と吸込側とは、それぞれ四方弁10の1次ポートに接続されている。そして、四方弁10の2次ポートの一方から、室外ファン11を付設している室外熱交換器5、主絞り装置6、室内ファン12を付設している室内第1熱交換器7、副絞り装置8、室内第2熱交換器9をそれぞれ経由して四方弁10の他方の2次ポートへ至る冷媒回路が冷媒配管によって構成されている。なお、四方弁10からは、圧縮機4の吸込側に戻るようになっている。
【0004】
上記冷媒回路による空調運転には、冷房運転、暖房運転、室内第1熱交換器7を凝縮器、室内第2熱交換器9を蒸発器として除湿を行う運転(以下、再熱除湿運転と呼ぶ)等がある。
【0005】
冷房運転及び暖房運転の際には、副絞り装置8を全開状態とする一方で、主絞り装置6を所定の開度に調整し、さらに室外ファン11及び室内ファン12を所定の回転数で駆動する。
【0006】
冷房運転の場合は、圧縮機4からの吐出冷媒を実線矢印に示すように循環させることによって、室外熱交換器5を凝縮器として機能させると共に、室内第1熱交換器7、室内第2熱交換器9を蒸発器として機能させることで室内空気が冷却される。
【0007】
また、暖房運転の場合は、圧縮機4からの吐出冷媒を破線矢印に示すように循環させることによって、室内第1熱交換器7、室内第2熱交換器9を凝縮器として機能させると共に、室外熱交換器5を蒸発器として機能させることで室内空気が加熱される。
【0008】
一方、再熱除湿運転の際には、副絞り装置8を所定の開度に調整する一方で、主絞り装置6を全開状態とし、さらに室内ファン12を所定の回転数で駆動する一方で、室外ファン11を停止状態とする。そして、圧縮機4からの吐出冷媒を実線矢印に示すように冷房運転と同様の回路で循環させることによって、室内第1熱交換器7を凝縮器として機能させると共に、室内第2熱交換器9を蒸発器として機能させる。これによって、室内空気を蒸発器として機能する室内第2熱交換器9で冷却して除湿した後に、凝縮器として機能する室内第1熱交換器7で再び加熱して室内に戻す再熱除湿運転が行われる。
【0009】
【発明が解決しようとする課題】
上記のような従来技術においては、HCFC(ハイドロクロロフルオロカーボン)冷媒やオゾン層を破壊しないHFC(ハイドロフルオロカーボン)冷媒を用いた空調機の再熱除湿運転は提案されているものの、近年、冷媒の脱フロン対策の一つとして注目されている二酸化炭素を使用した冷凍サイクルにより除湿乾燥を行う空調機の具体的な提案はなされていない。
【0010】
また、上記のような従来の空調機の再熱除湿運転においては、いわゆる住宅のリビングルームなどの居住空間における比較的温度の低い状態での除湿運転を主体として考案されており、たとえば浴室衣類乾燥機のように、室内温度を高温にして除湿するような場合には、従来の技術である冷房運転回路の再熱除湿運転では、外気温度の低い冬期などにおいては、温度の高い冷媒が室外熱交換器を通過する間に外気に放熱するため、室内機での放熱量が不足し、室内温度が所望の高い温度に上がらないため、衣類の乾燥状態が十分ではなかった。
【0011】
本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、万一、冷凍サイクルを流れる冷媒が漏れたとしても、地球温暖化への悪影響が極めて小さく、また、浴室衣類乾燥のような高温での除湿運転時に高性能な冷凍サイクルを実現し、衣類乾燥時間の短縮等に有効な除湿乾燥空調装置を提供することを目的としている。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明のうちで請求項1に記載の発明は、室外機に圧縮機と四方弁と室外熱交換器とを設ける一方、室内機に室内第1熱交換器と室内第2熱交換器とを設け、前記圧縮機、四方弁、室外熱交換器、室内第1熱交換器、室内第2熱交換器を環状に接続して冷凍サイクルを構成し、前記四方弁の切換え動作によって、前記室外熱交換器を蒸発器として機能させる暖房回路運転と、前記室外熱交換器を放熱器として作用させる冷房回路運転とを切換え、冷房回路運転時に前記室内第1熱交換器を放熱器として作用させる一方、前記室内第2熱交換器を蒸発器として作用させて室内空気を除湿する再熱除湿運転を行い、前記冷凍サイクルを循環する冷媒として、二酸化炭素を用いたことを特徴とする。
【0013】
また、請求項2に記載の発明は、再熱除湿運転時に前記室内第1熱交換器の冷媒流れが室内空気流れと略対向流となるように構成したことを特徴とする。
【0014】
さらに、請求項3に記載の発明は、室外機に圧縮機と四方弁と室外熱交換器とを設ける一方、室内機に室内第1熱交換器と室内第2熱交換器とを設け、前記圧縮機、四方弁、室外熱交換器、室内第1熱交換器、室内第2熱交換器を環状に接続して冷凍サイクルを構成し、前記四方弁の切換え動作によって、前記室外熱交換器を蒸発器として機能させる暖房回路運転と、前記室外熱交換器を放熱器として作用させる冷房回路運転とを切換え、暖房回路運転時に前記室内第1熱交換器を蒸発器として作用させる一方、前記室内第2熱交換器を放熱器として作用させて室内空気を除湿する再熱除湿運転を行い、前記冷凍サイクルを循環する冷媒として、二酸化炭素を用いたことを特徴とする。
【0015】
また、請求項4に記載の発明は、再熱除湿運転時に前記室内第1熱交換器および前記室内第2熱交換器の冷媒流れが室内空気流れと略対向流となるように構成したことを特徴とする。
【0016】
また、請求項5に記載の発明は、室外機に圧縮機と四方弁と室外熱交換器とを設ける一方、室内機に室内第1熱交換器と室内第2熱交換器とを設け、前記圧縮機、四方弁、室外熱交換器、室内第1熱交換器、室内第2熱交換器を環状に接続して冷凍サイクルを構成し、前記四方弁の切換え動作によって、前記室外熱交換器と前記室内第1熱交換器を放熱器、前記室内第2熱交換器を蒸発器として作用させて室内空気を除湿する冷房回路除湿運転と、前記室外熱交換器と前記室内第1熱交換器を蒸発器、前記室内第2熱交換器を放熱器として作用させて室内空気を除湿する暖房回路除湿運転とを切換えて運転することを特徴とする。
【0017】
また、請求項6に記載の発明は、冷凍サイクルを循環する冷媒として、二酸化炭素を用いたことを特徴とする。
【0018】
また、請求項7に記載の発明は、室内空気温度を検知する温度センサを設け、該温度センサで検知した室内空気温度に応じて、四方弁を切換えることを特徴とする。
【0019】
また、請求項8に記載の発明は、前記室外熱交換器をバイパスするバイパス回路と、該バイパス回路に設けられた開閉弁と、室内空気温度を検知する温度センサとをさらに備え、前記温度センサで検知した室内空気温度に応じて前記開閉弁を開閉することを特徴とする。
【0020】
また、請求項9に記載の発明は、室外空気を室内に導入可能な換気装置を設けたことを特徴とする。
【0021】
また、請求項10に記載の発明は、室内に二酸化炭素濃度検知センサを設け、該二酸化炭素濃度検知センサの出力を受けて前記換気装置を作動させるようにしたことを特徴とする。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
実施の形態1.
図1は本発明の実施の形態1にかかる除湿乾燥空調装置の冷凍サイクルの構成図を示す。
【0023】
除湿乾燥空調装置21は、室外機22及び室内機23により構成されており、室外機22に、圧縮機24と室外熱交換器25と主絞り装置26とを設ける一方、室内機23に、室内第1熱交換器27と副絞り装置28と室内第2熱交換器29とを設けたヒートポンプ式の除湿乾燥空調装置であり、圧縮機24からの冷媒が循環するように、圧縮機24、室外熱交換器25、主絞り装置26、室内第1熱交換器27、副絞り装置28、室内第2熱交換器29を環状に接続することにより冷媒回路が構成されている。
【0024】
さらに詳述すると、圧縮機24の吐出側と吸込側とは、それぞれ四方弁30の1次ポートに接続されており、四方弁30の2次ポートの一方から、室外ファン31を付設している室外熱交換器25、主絞り装置26、室内ファン32を付設している室内第1熱交換器27、副絞り装置28、室内第2熱交換器29をそれぞれ経由して四方弁30の他方の2次ポートへ至る冷媒回路が冷媒配管によって構成されている。なお、四方弁30からは、圧縮機24の吸込側に戻るようになっている。
【0025】
また、開閉弁33を有するバイパス回路34が室外熱交換器25と並列に接続されており、開閉弁33を開放することにより、冷凍サイクル中の冷媒のほとんどが室外熱交換器25をバイパスして、バイパス回路34を流れるように構成されている。
【0026】
さらに、室内機23には、室内機23の吸込空気温度を検知する温度センサ35が設けられており、開閉弁33及び温度センサ35は共に制御装置36に電気的に接続されている。制御装置36は、設定手段(図示せず)により設定された設定温度と、温度センサ35により検知された吸込空気温度との差を演算して、開閉弁33を切換えるよう作用する。
【0027】
なお、冷媒は、地球温暖化への影響が極めて小さい二酸化炭素を用いている。上記冷媒回路による運転には、冷房運転、暖房運転、室内第1熱交換器27を凝縮器、室内第2熱交換器29を蒸発器として除湿を行う再熱除湿運転等がある。
【0028】
冷房運転及び暖房運転の際には、副絞り装置28を全開状態とする一方、主絞り装置26を所定の開度に調整し、さらに室外ファン31及び室内ファン32を所定の回転数で駆動する。
【0029】
冷房運転の場合は、圧縮機24からの吐出冷媒を実線矢印に示すように循環させることによって、室外熱交換器25を凝縮器として機能させると共に、室内第1熱交換器27及び室内第2熱交換器29を蒸発器として機能させることで室内空気が冷却される。
【0030】
また、暖房運転の場合は、圧縮機24からの吐出冷媒を破線矢印に示すように循環させることによって、室内第1熱交換器27及び室内第2熱交換器29を凝縮器として機能させると共に、室外熱交換器25を蒸発器として機能させることで室内空気が加熱される。
【0031】
一方、再熱除湿運転の際には、副絞り装置28を所定の開度に調整する一方、主絞り装置26を全開状態とし、さらに室内ファン32を所定の回転数で駆動する一方、室外ファン31を停止状態とする。そして、圧縮機24からの吐出冷媒を実線矢印に示すように冷房運転と同様の回路で循環させることによって、室内第1熱交換器27を凝縮器として機能させると共に、室内第2熱交換器29を蒸発器として機能させる。これによって、室内空気を蒸発器として機能する室内第2熱交換器29で冷却して除湿した後に、凝縮器として機能する室内第1熱交換器27で再び加熱して室内に戻す再熱除湿運転が行われる。
【0032】
この場合、たとえば、浴室衣類乾燥の場合など、浴室内温度が高温を必要とし、冬期のように外気温度が低い場合には、室外ファン31を停止していても、室外熱交換器25からの放熱により、室内第1熱交換器27の温度が低下し、除湿した後の室内機23の吹出し空気温度が十分に高くならない場合がある。
【0033】
このような場合には、温度センサ35により検知された室内機23の吸込み空気温度が制御装置36に入力されると、制御装置36は設定温度と吸込み空気温度との差を演算して、その差が所定値より大きい場合には、開閉弁33を開放する信号を送る。
【0034】
その結果、圧縮機24から吐出され、四方弁30を通過した吐出ガスは、バイパス回路34を通過し、主膨張弁26を介して室内第1熱交換器27に流入する。したがって、室外熱交換器25での放熱ロスはほとんどなく、高温の吐出ガスは直接、室内空気の加熱に利用されるので、室内の吹出し空気温度は上昇し、室内空気は設定温度に達する。
【0035】
一方、室内温度が上昇した場合には、温度センサ35により検知された室内機23の吸込み空気温度が制御装置36に入力されると、制御装置36は設定温度と吸込み空気温度との差を演算して、その差が所定値より小さい場合には、開閉弁33を閉止する信号を送る。
【0036】
その結果、圧縮機24から吐出され、四方弁30を通過した吐出ガスは、再び室外熱交換器25を通過し、主膨張弁26を介して室内第1熱交換器27に流入する。したがって、室外熱交換器25で放熱しながら、室内空気を適度に加熱できるので、室内の吹出し空気温度は適度に低下し、室内空気温度を設定温度に維持することができ、過熱のない安全な除湿運転ができる。
【0037】
ここで、室内第1熱交換器27は、図2に示したように除湿乾燥時の冷媒流れと室内空気流れが略対向流となる構成が望ましい。すなわち、図2において、室内第1熱交換器27は蛇行状の配管40で構成され、複数のフィン41が配管40と熱的に接触し、直交して設けられている。また、室内空気は矢印で示すように室内第2熱交換器29、室内第1熱交換器27の順に流れ、冷媒は室内第1熱交換器27の配管40を蛇行しながら室内空気の流れとは、略対向流に流れるようにする。
【0038】
冷媒として用いている二酸化炭素は、よく知られているように一般的に空調装置で用いられる高圧(圧縮機吐出圧)一定の状態では超臨界状態となっており、放熱器で放熱したとしても凝縮することはないため、一定の温度で放熱することはなく、流れ方向に沿って温度が低下する特性を持っている。
【0039】
一方、加熱される室内空気も徐々に温度が上昇していくため、冷媒流れと空気流れを略対向流で熱交換させることにより、冷媒と空気との温度差をほぼ一定に保ったまま熱交換するので、熱交換器の温度効率が向上し、加熱能力が向上する。したがって、より少ない冷媒循環量で空気を所望の温度まで加熱でき、圧縮機の所要動力が減少して再熱除湿時の成績係数が向上する。
【0040】
すなわち、除湿乾燥運転時に、室内第2熱交換器29で除湿され、やや冷却された空気が室内第1熱交換器27で加熱される際に、空気流れ(矢印)と蛇行状の配管40の冷媒流れが略対向流となるため、たとえば、浴室衣類乾燥のように、高温の除湿空気が必要な場合に、衣類乾燥時間の短縮などにその効果を発揮する。
【0041】
また、冷媒として地球温暖化係数の低い二酸化炭素を用いているため、万一、冷凍サイクルから大気中に漏れた場合にも、従来のHFC冷媒と比較し、環境への影響が極めて低くなる。
【0042】
なお、バイパス回路34に設けられた開閉弁33の温度センサ35による開閉制御は、後述する実施の形態2乃至4のいずれにも適用できるものである。
【0043】
実施の形態2.
図3は本発明の実施の形態2にかかる除湿乾燥空調装置の冷凍サイクルの構成図を示す。なお、基本的な構成は、実施の形態1の冷凍サイクルである図1と同様であり、同様の機能を有するものには同一の番号を付し、その説明は省略する。
【0044】
ここで、特に特徴のある再熱除湿運転時について説明する。
なお、冷媒は、地球温暖化への影響が極めて小さい二酸化炭素を用いている。再熱除湿運転の際には、四方弁30を図示の方向に切換え、副絞り装置28を所定の開度に調整する一方、主絞り装置26を全開状態とし、さらに室内ファン32、および室外ファン31を所定の回転数で駆動する。そして、圧縮機24からの吐出冷媒を実線矢印に示すように暖房運転と同様の回路で循環させることによって、室内第1熱交換器27を蒸発器として機能させると共に、室内第2熱交換器29を放熱器として機能させる。
【0045】
室内第1熱交換器27を出た冷媒は、主絞り装置26を通過して、室外熱交換器25で室外ファン31より送風された外気と熱交換して吸熱し、自らは蒸発して、四方弁30を通り、圧縮機24に帰還する。
【0046】
これによって、室内空気を蒸発器として機能する室内第1熱交換器27で冷却して除湿した後に、凝縮器として機能する室内第2熱交換器29で再び加熱して室内に戻す再熱除湿運転が行われる。
【0047】
この場合、圧縮機24の吐出ガスが直接、室内第2熱交換器29に導入されて放熱した後、副絞り装置28で減圧して、室内第1熱交換器27で蒸発する。したがって、冷媒は、室内第2熱交換器29に圧縮機24の吐出ガス温度に近い高温で流入するため、除湿後の空気を高温まで加熱することができ、たとえば、浴室衣類乾燥のように、高温の除湿空気が必要な場合に好適な構成となる。
【0048】
ここで、室内第1熱交換器27と室内第2熱交換器29は、図4に示したように暖房時および除湿乾燥時の冷媒流れと室内空気流れが略対向流となる構成が望ましい。すなわち、図4において、室内第1熱交換器27は蛇行状の配管40で、室内第2熱交換器29は蛇行状の配管50で構成され、それぞれに複数のフィン41,51が配管40,50と熱的に接触し、直交して設けられている。
【0049】
暖房時には、室内空気は矢印で示すように室内第1熱交換器27、室内第2熱交換器29の順に流れ、冷媒は室内第2熱交換器29の配管50を蛇行しながら室内空気の流れとは略対向流に流れ、さらに、暖房時には、全開となっている副絞り装置28を通過して室内第1熱交換器27内部の配管40を蛇行しながら室内空気の流れとは略対向流に流れて放熱する。
【0050】
また、除湿乾燥時にも、室内空気は矢印で示すように室内第1熱交換器27、室内第2熱交換器29の順に流れ、冷媒は室内第2熱交換器29の配管50を蛇行しながら室内空気の流れとは略対向流に流れて放熱する。
【0051】
冷媒として用いている二酸化炭素は、よく知られているように一般的に空調装置で用いられる高圧(圧縮機吐出圧)一定の状態では超臨界状態となっており、放熱器で放熱したとしても凝縮することはないため、一定の温度で放熱することはなく、流れ方向に沿って温度が低下する特性を持っている。
【0052】
一方、加熱される室内空気も徐々に温度が上昇していくため、冷媒流れと空気流れを略対向流で熱交換させることにより、冷媒と空気との温度差をほぼ一定に保ったまま熱交換するので、熱交換器の温度効率が向上し加熱能力が向上する。したがって、より少ない冷媒循環量で空気を所望の温度まで加熱でき、圧縮機の所要動力が減少して再熱除湿時の成績係数が向上する。
【0053】
すなわち、暖房運転時には、室内第2熱交換器29で高温の冷媒が放熱し、やや温度の低下した冷媒が室内第1熱交換器27に流れ、逆に室内空気は室内第1熱交換器27で加熱されて室内第2熱交換器29でさらに加熱されるため、空気流れ(矢印)と蛇行状の配管40,50の冷媒流れが略対向流となるので加熱能力が増大し、高温暖房時に、その効果を発揮する。
【0054】
また、除湿乾燥運転時に、室内第1熱交換器27で除湿され、やや冷却された空気が室内第2熱交換器29で加熱される際に、空気流れ(矢印)と蛇行状の配管50の冷媒流れが略対向流となるため、たとえば、浴室衣類乾燥のように、高温の除湿空気が必要な場合に、衣類乾燥時間の短縮などにその効果を発揮する。
【0055】
また、万一、冷媒が冷凍サイクルから大気中に漏れた場合にも、二酸化炭素の温暖化係数が低いため、従来のHFC冷媒等と比較し、環境への影響が極めて低くなる効果がある。
【0056】
実施の形態3.
図5は本発明の実施の形態3にかかる除湿乾燥空調装置の冷凍サイクルの構成図を示す。なお、基本的な構成は、実施の形態1の冷凍サイクルである図1と同様であり、同様の機能を有するものには同一の番号を付し、その説明は省略する。
【0057】
図5に示されるように、室内機23には、室内機23の吸込空気温度を検知する温度センサ35が設けられており、四方弁30及び温度センサ35は共に制御装置61に電気的に接続されている。制御装置61は、設定手段(図示せず)により設定された設定温度と、温度センサ35により検知された吸込空気温度との差を演算して、四方弁30を切換えるよう作用する。
【0058】
ここでは、特に特徴のある再熱除湿運転時について説明する。
なお、冷媒は、地球温暖化への影響が極めて小さい二酸化炭素を用いている。
【0059】
再熱除湿運転の際には、まず、四方弁30を図示の実線の方向に切換え、暖房回路とし、副絞り装置28を所定の開度に調整する一方、主絞り装置26を全開状態とし、さらに室内ファン32、および室外ファン31を所定の回転数で駆動する。そして、圧縮機24からの吐出冷媒を実線矢印に示すように暖房運転と同様の回路で循環させることによって、室内第1熱交換器27を蒸発器として機能させると共に、室内第2熱交換器29を放熱器として機能させる。
【0060】
室内第1熱交換器27を出た冷媒は、主絞り装置26を通過して、室外熱交換器25で室外ファン31より送風された外気と熱交換して吸熱し、自らは蒸発して、四方弁30を通り、圧縮機24に帰還する。
【0061】
これによって、室内空気を蒸発器として機能する室内第1熱交換器27で冷却して除湿した後に、凝縮器として機能する室内第2熱交換器29で再び加熱して室内に戻す再熱除湿運転が行われる。
【0062】
この場合、圧縮機24の吐出ガスが直接、室内第2熱交換器29に導入されて放熱した後、副絞り装置28で減圧して、室内第1熱交換器27で蒸発する。したがって、冷媒は、室内第2熱交換器29に圧縮機24の吐出ガス温度に近い高温で流入するため、除湿後の空気を高温まで加熱することができ、室内温度を上昇させながら除湿運転を行う。
【0063】
次に、温度センサ35で検知した室内温度と、所定の設定温度とを制御装置61で比較し、室内温度が設定温度より低ければ、上記運転を続ける。
【0064】
一方、温度センサ35で検知した室内温度と所定の設定温度とを制御装置61で比較し、室内温度が設定温度より高い場合には、制御装置61が四方弁30を図示の破線の方向に切換えて、冷房回路とし、副絞り装置28を所定の開度に調整する一方、主絞り装置26を全開状態とし、さらに室内ファン32、および室外ファン31を所定の回転数で駆動する。そして、圧縮機24からの吐出冷媒を破線矢印に示すように冷房運転と同様の回路で循環させることによって、室内第1熱交換器27を放熱器として機能させると共に、室内第2熱交換器29を蒸発器として機能させる。
【0065】
これによって、室内空気を放熱器として機能する室内第1熱交換器27で加熱した後に、蒸発器として機能する室内第2熱交換器29で冷却、除湿して室内に戻す再熱除湿運転が行われる。
【0066】
この場合、圧縮機24の吐出ガスが、一旦、室外熱交換器25で放熱して冷却された後、室内第1熱交換器27に導入されるので、室内機での放熱量は大きくなく、室内第2熱交換器29での冷却および除湿熱量が放熱量より大きくなる。したがって、室内機の吹出し空気温度は、吸い込み空気温度よりも低くなり、室内空気温度は徐々に低下する。
【0067】
次に、温度センサ35で検知した室内温度と、所定の設定温度とを制御装置61で比較し、室内温度が設定温度より高ければ、上記運転を続ける。
【0068】
一方、温度センサ35で検知した室内温度と所定の設定温度とを制御装置61で比較し、室内温度が設定温度より低い場合には、再び、四方弁30を図示の実線の方向に切換えて運転を行う。
【0069】
その結果、室内空気を設定した温度にほぼ維持しながら、除湿は連続して行なわれるので除湿性能を高く保つことができ、たとえば、浴室衣類乾燥のように、衣類を高温に保ったまま除湿することにより衣類乾燥の時間を大幅に短縮することができる。
【0070】
また、万一、冷媒が冷凍サイクルから大気中に漏れた場合にも、冷媒として二酸化炭素を用いているため、温暖化係数が低く、従来のHFC冷媒等と比較し、環境への影響が極めて低くなる効果がある。
【0071】
なお、上述した温度センサ35により検知された吸込空気温度に応じて四方弁30を切換える制御は、上述した実施の形態1及び2及び後述する実施の形態4のいずれにも適用できるものである。
【0072】
実施の形態4.
図6は本発明の実施の形態4にかかる除湿乾燥空調装置の冷凍サイクルの構成図を示す。なお、基本的な構成は、実施の形態2の冷凍サイクルである図3と同様であり、同様の機能を有するものには同一の番号を付し、その説明は省略する。
【0073】
ここでは、室内機23を設置してある浴室70に、浴室内の空気温度を検知する温度センサ35と、外部空気を取り入れる吸気口71と、浴室70内の空気を外部へ排気する排気口72と、吸排気の換気空気74を流す換気ファン(換気装置)73とを設けるとともに、温度センサ35及び換気ファン73は共に制御装置76に電気的に接続されている。制御装置76は、設定手段(図示せず)により設定された設定温度と温度センサ35により検知された空気温度との差を演算して、換気ファン73の運転を切換えるよう作用する。
【0074】
ここでは、特徴のある再熱除湿運転時について、その動作を説明する。
なお、冷媒は、地球温暖化への影響が極めて小さい二酸化炭素を用いている。
【0075】
再熱除湿運転の際には、四方弁30を図示の方向に切換え、副絞り装置28を所定の開度に調整する一方、主絞り装置26を全開状態とし、さらに室内ファン32、および室外ファン31を所定の回転数で駆動する。そして、圧縮機24からの吐出冷媒を実線矢印に示すように暖房運転と同様の回路で循環させることによって、室内第1熱交換器27を蒸発器として機能させると共に、室内第2熱交換器29を放熱器として機能させる。
【0076】
室内第1熱交換器27を出た冷媒は、主絞り装置26を通過して、室外熱交換器25で室外ファン31より送風された外気と熱交換して吸熱し、自らは蒸発して、四方弁30を通り、圧縮機24に帰還する。
【0077】
これによって、室内空気を蒸発器として機能する室内第1熱交換器27で冷却して除湿した後に、凝縮器として機能する室内第2熱交換器29で再び加熱して室内に戻す再熱除湿運転が行われる。
【0078】
この場合、圧縮機24の吐出ガスが直接、室内第2熱交換器29に導入されて放熱した後、副絞り装置28で減圧して、室内第1熱交換器27で蒸発する。したがって、冷媒は室内第2熱交換器に圧縮機24の吐出ガス温度に近い高温で流入するため、除湿後の空気を高温まで加熱することができ、たとえば、浴室衣類乾燥のように、高温の除湿空気が必要な場合に好適な構成となる。
【0079】
ここで、温度センサ35により検知された浴室70内の空気温度と、あらかじめ設定した温度は制御装置76で比較され、空気温度が設定値以下の場合には、換気ファン73は運転されない。
【0080】
一方、再熱除湿運転において、圧縮機24の吐出ガスが直接、室内第2熱交換器29に導入されて放熱するため、浴室70内の空気温度は徐々に上昇していき、温度センサ35で検知した温度が設定値以上になった場合には、制御装置76より換気ファン73の運転信号が出力され、換気ファン73が運転される。
【0081】
その結果、浴室70外の比較的温度の低い空気が吸気口71を通って浴室70内に導入され、浴室70内の高温の空気は換気ファン73により排気口72を通って外部に排出される。したがって、浴室70内の空気温度は徐々に低下するので、圧縮機24の運転を停止することなく、除湿乾燥運転を継続でき、たとえば、衣類乾燥時間の短縮などに効果を発揮する。
【0082】
また、万一、冷媒が大気中に漏れた場合でも、二酸化炭素の温暖化係数が低いため、従来のHFC冷媒等と比較し、環境への影響を極めて低くできる。
【0083】
さらに、上記構成において、二酸化炭素濃度を検知できるセンサを浴室70内に設け、換気ファン73と連動させるようにしてもよい。この場合、万一、冷媒が冷凍サイクルから浴室70内に漏れたとしても、二酸化炭素濃度検知センサからの出力を受けて換気ファン73が作動するので、浴室内の二酸化炭素濃度を低く抑えることができる。
【0084】
なお、換気装置としての換気ファン73の温度センサ35による制御は、上述した実施の形態1乃至3のいずれにも適用することもできる。
【0085】
【発明の効果】
本発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。
本発明のうちで請求項1に記載の発明によれば、冷房回路運転時に室内第1熱交換器を放熱器として作用させる一方、室内第2熱交換器を蒸発器として機能させて室内空気を除湿するようにしたので、再熱除湿運転時に、室外ファンの運転により室外熱交換器での放熱量を制御できるので、室内第1熱交換器での室内への放熱量を抑制でき、たとえば浴室衣類乾燥に用いる場合、夏期等の運転時のように浴室内温度が上昇しすぎた場合にも、冷却を行いながら安全に除湿することが可能となる。
【0086】
また、冷凍サイクルを循環する冷媒として二酸化炭素を用いたので、万一、冷媒が冷凍サイクルから大気中に漏れた場合にも、二酸化炭素の温暖化係数が低いため、従来のHFC冷媒等と比較し、環境への影響が極めて低くなる。
【0087】
また、請求項2に記載の発明によれば、再熱除湿運転時に室内第1熱交換器の冷媒流れが室内空気流れと略対向流となるように構成したので、放熱器での二酸化炭素と空気側の温度差を略均一にすることができ、蒸発器となる室内第1熱交換器で冷却除湿後の空気を加熱する場合の熱交換器温度効率が向上し、より少ない冷媒循環量で空気を加熱でき、圧縮機の所要動力が減少して、再熱除湿時の成績係数が向上する。
【0088】
さらに、請求項3に記載の発明によれば、暖房回路運転時には室内第1熱交換器を蒸発器として作用させる一方、室内第2熱交換器を放熱器として機能させて室内空気を除湿するようにしたので、再熱除湿運転時に、圧縮機からの高温の吐出ガスが、直接、室内第2熱交換器に導入されて放熱した後、減圧して室内第1熱交換器で蒸発するため、室内を高温にした状態での除湿が可能となる。したがって、たとえば浴室衣類乾燥のように、冬期に室内温度を高温にして除湿が必要な場合でも、十分な暖房能力で室内を高温に保つことができ、衣類からの水分蒸発を促進できるため、乾燥時間の短縮などに好適な性能を発揮する。
【0089】
また、冷凍サイクルを循環する冷媒として二酸化炭素を用いたので、万一、冷媒が冷凍サイクルから大気中に漏れた場合でも、環境への影響が極めて低い。
【0090】
また、請求項4に記載の発明によれば、再熱除湿運転時に室内第2熱交換器の冷媒流れが室内空気流れと略対向流となるように構成したので、放熱器での二酸化炭素と空気側の温度差を略均一にすることができ、蒸発器となる室内第1熱交換器で冷却除湿後の空気を加熱する場合の熱交換器温度効率が向上し、より少ない冷媒循環量で空気を加熱でき、圧縮機の所要動力が減少して、再熱除湿時の成績係数が向上する。
【0091】
また、請求項5に記載の発明によれば、冷房回路除湿運転と暖房回路除湿運転とを切換えて運転するようにしたので、たとえば浴室衣類乾燥のように再熱除湿運転時に室内温度を高温にしながら除湿を行うことにより衣類からの水分の蒸発を促進させる暖房回路除湿運転と、室温が上昇しすぎた場合に、室温をやや低下させながら除湿を続ける冷房除湿回路運転とに切換えることができ、常に、衣類からの水分蒸発を促進させながら、室内が過熱されることなく安全に除湿運転を行うことができる。
【0092】
また、請求項6に記載の発明によれば、冷凍サイクルを循環する冷媒として二酸化炭素を用いたので、万一、冷媒が冷凍サイクルから大気中に漏れた場合でも、環境への影響が極めて低い。
【0093】
また、請求項7に記載の発明によれば、室内空気温度を検知する温度センサを設け、温度センサで検知した室内空気温度に応じて四方弁を切換えるようにしたので、室温の上昇を確実に検知して四方弁の切換えを行うことができ、室温の過熱防止にさらに有効となる。
【0094】
また、請求項8に記載の発明によれば、室外熱交換器をバイパスするバイパス回路を設け、温度センサで検知した室内空気温度に応じてバイパス回路に設けられた開閉弁を開閉するようにしたので、再熱除湿運転時に室外熱交換器の放熱あるいは吸熱量をより広く制御でき、室温制御がさらに容易となる。
【0095】
また、請求項9に記載の発明によれば、室外空気を室内に導入可能な換気装置を設けたので、再熱除湿時に室温が上昇しすぎた場合等においては、換気装置によって室外の温度の低い空気を室内に導入でき、より安全に除湿運転が可能となる。
【0096】
また、請求項10に記載の発明によれば、室内に設けられた二酸化炭素濃度検知センサの出力を受けて換気装置を作動させるようにしたので、万一、室内に冷媒が漏れた場合でも、換気装置により室内の冷媒濃度が上昇する危険性が少なくなり、安全な運転が可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態1にかかる除湿乾燥空調装置の冷凍サイクル構成図。
【図2】図1の除湿乾燥空調装置に設けられた室内第1熱交換器の構成図。
【図3】本発明の実施の形態1にかかる除湿乾燥空調装置の冷凍サイクルの構成図。
【図4】図3の除湿乾燥空調装置に設けられた室内第1熱交換器および室内第2熱交換器の構成図。
【図5】本発明の実施の形態3にかかる除湿乾燥空調装置の冷凍サイクルの構成図。
【図6】本発明の実施の形態4にかかる除湿乾燥空調装置の冷凍サイクル構成図。
【図7】従来の空調装置の冷凍サイクル構成図。
【符号の説明】
21 除湿乾燥空調装置、 22 室外機、 23 室内機、
24 圧縮機、 25 室外熱交換器、 26 主絞り装置、
27 室内第1熱交換器、 28 副絞り装置、 29 室内第2熱交換器、
30 四方弁、 31 室外ファン、 32 室内ファン、 33 開閉弁、
34 バイパス回路、 35 温度センサ、 36,61,76 制御装置、
40,50 配管、 41,51 フィン、 70 浴室、 71 吸気口、
72 排気口、 73 換気ファン。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat pump type dehumidifying / drying air conditioner using a refrigeration cycle using carbon dioxide as a refrigerant.
[0002]
[Prior art]
FIG. 7 is a refrigerant circuit diagram showing a configuration of a conventional air conditioner, and a conventional technique will be described with reference to FIG.
[0003]
The air conditioner 1 includes an outdoor unit 2 and an indoor unit 3, and includes a compressor 4, an outdoor heat exchanger 5, a main expansion device 6, an indoor first heat exchanger 7, an auxiliary expansion device 8, and an indoor second heat device. This is a heat pump type air conditioner provided with an exchanger 9, and has a refrigerant circuit configured to circulate the refrigerant from the compressor 4. That is, the discharge side and the suction side of the compressor 4 are connected to the primary port of the four-way valve 10, respectively. Then, from one of the secondary ports of the four-way valve 10, the outdoor heat exchanger 5 provided with the outdoor fan 11, the main throttle device 6, the first indoor heat exchanger 7 provided with the indoor fan 12, and the secondary throttle A refrigerant circuit that reaches the other secondary port of the four-way valve 10 via the device 8 and the indoor second heat exchanger 9 is configured by refrigerant piping. The four-way valve 10 returns to the suction side of the compressor 4.
[0004]
The air conditioning operation by the refrigerant circuit includes a cooling operation, a heating operation, and an operation of performing dehumidification using the indoor first heat exchanger 7 as a condenser and the indoor second heat exchanger 9 as an evaporator (hereinafter, referred to as a reheat dehumidification operation). ).
[0005]
During the cooling operation and the heating operation, the auxiliary expansion device 8 is fully opened, the main expansion device 6 is adjusted to a predetermined opening, and the outdoor fan 11 and the indoor fan 12 are driven at a predetermined rotation speed. I do.
[0006]
In the case of the cooling operation, the refrigerant discharged from the compressor 4 is circulated as shown by a solid line arrow, thereby making the outdoor heat exchanger 5 function as a condenser, and the indoor first heat exchanger 7 and the indoor second heat The indoor air is cooled by making the exchanger 9 function as an evaporator.
[0007]
In the case of the heating operation, the refrigerant discharged from the compressor 4 is circulated as shown by the dashed arrow, so that the indoor first heat exchanger 7 and the indoor second heat exchanger 9 function as condensers. The indoor air is heated by causing the outdoor heat exchanger 5 to function as an evaporator.
[0008]
On the other hand, during the reheat dehumidifying operation, while adjusting the sub-throttle device 8 to a predetermined opening degree, the main throttle device 6 is fully opened, and the indoor fan 12 is driven at a predetermined rotation speed, The outdoor fan 11 is stopped. Then, by circulating the refrigerant discharged from the compressor 4 in the same circuit as in the cooling operation as shown by the solid line arrow, the indoor first heat exchanger 7 functions as a condenser and the indoor second heat exchanger 9 Function as an evaporator. Thereby, after the indoor air is cooled and dehumidified by the indoor second heat exchanger 9 functioning as an evaporator, it is heated again by the indoor first heat exchanger 7 functioning as a condenser and returned to the room to return to the room. Is performed.
[0009]
[Problems to be solved by the invention]
In the prior art as described above, a reheat dehumidifying operation of an air conditioner using an HCFC (hydrochlorofluorocarbon) refrigerant or an HFC (hydrofluorocarbon) refrigerant that does not destroy the ozone layer has been proposed. There is no specific proposal for an air conditioner that performs dehumidification and drying using a refrigeration cycle using carbon dioxide, which is attracting attention as one of measures against CFCs.
[0010]
Further, in the conventional reheating and dehumidifying operation of an air conditioner as described above, a dehumidifying operation in a relatively low temperature state in a living space such as a so-called living room of a house is mainly devised. For example, in a case where the indoor temperature is high and dehumidification is performed, as in the case of an air conditioner, in the reheating dehumidification operation of the cooling operation circuit, which is a conventional technology, in the winter time when the outside air temperature is low, the high-temperature refrigerant is cooled by the outdoor heat. Since the heat is radiated to the outside air while passing through the exchanger, the amount of heat radiated in the indoor unit is insufficient, and the indoor temperature does not rise to a desired high temperature, so that the clothes are not sufficiently dried.
[0011]
The present invention has been made in view of such problems of the prior art, and even if a refrigerant flowing through a refrigeration cycle leaks, the adverse effect on global warming is extremely small. It is an object of the present invention to provide a dehumidifying / drying air conditioner that realizes a high-performance refrigeration cycle during a dehumidifying operation at a high temperature such as drying, and is effective for shortening clothes drying time and the like.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 of the present invention provides a compressor, a four-way valve, and an outdoor heat exchanger in an outdoor unit, and an indoor first heat exchanger in an indoor unit. An indoor second heat exchanger, wherein the compressor, the four-way valve, the outdoor heat exchanger, the indoor first heat exchanger, and the indoor second heat exchanger are connected in a ring to form a refrigeration cycle; Switching operation between a heating circuit operation in which the outdoor heat exchanger functions as an evaporator and a cooling circuit operation in which the outdoor heat exchanger functions as a radiator, and the indoor first heat exchanger during the cooling circuit operation. While acting as a radiator, performing a reheat dehumidifying operation of dehumidifying indoor air by causing the indoor second heat exchanger to act as an evaporator, and using carbon dioxide as a refrigerant circulating in the refrigeration cycle. Features.
[0013]
Further, the invention according to claim 2 is characterized in that the refrigerant flow in the indoor first heat exchanger is substantially countercurrent to the indoor air flow during the reheat dehumidifying operation.
[0014]
Further, in the invention according to claim 3, the outdoor unit is provided with a compressor, a four-way valve, and an outdoor heat exchanger, while the indoor unit is provided with an indoor first heat exchanger and an indoor second heat exchanger, A compressor, a four-way valve, an outdoor heat exchanger, an indoor first heat exchanger, and an indoor second heat exchanger are connected in a ring to form a refrigeration cycle, and the switching operation of the four-way valve causes the outdoor heat exchanger to operate. Switching between a heating circuit operation to function as an evaporator and a cooling circuit operation to operate the outdoor heat exchanger as a radiator, while the indoor first heat exchanger functions as an evaporator during the heating circuit operation, (2) A reheat dehumidification operation for dehumidifying indoor air by operating the heat exchanger as a radiator, and using carbon dioxide as a refrigerant circulating in the refrigeration cycle.
[0015]
Further, the invention according to claim 4 is configured such that the refrigerant flow of the indoor first heat exchanger and the indoor second heat exchanger is substantially countercurrent to the indoor air flow during the reheat dehumidifying operation. Features.
[0016]
The invention according to claim 5 provides the outdoor unit with a compressor, a four-way valve, and an outdoor heat exchanger, while the indoor unit includes an indoor first heat exchanger and an indoor second heat exchanger, A compressor, a four-way valve, an outdoor heat exchanger, an indoor first heat exchanger, and an indoor second heat exchanger are connected in a ring to form a refrigeration cycle, and the switching operation of the four-way valve allows the outdoor heat exchanger to be connected to the outdoor heat exchanger. A cooling circuit dehumidifying operation in which the indoor first heat exchanger acts as a radiator and the indoor second heat exchanger acts as an evaporator to dehumidify indoor air; and the outdoor heat exchanger and the indoor first heat exchanger The evaporator and the indoor second heat exchanger are operated as a radiator to switch the operation to a heating circuit dehumidifying operation for dehumidifying indoor air.
[0017]
The invention according to claim 6 is characterized in that carbon dioxide is used as a refrigerant circulating in a refrigeration cycle.
[0018]
The invention according to claim 7 is characterized in that a temperature sensor for detecting the indoor air temperature is provided, and the four-way valve is switched according to the indoor air temperature detected by the temperature sensor.
[0019]
The invention according to claim 8 further includes a bypass circuit that bypasses the outdoor heat exchanger, an on-off valve provided in the bypass circuit, and a temperature sensor that detects indoor air temperature, Opening and closing the on-off valve in accordance with the room air temperature detected in step (1).
[0020]
According to a ninth aspect of the present invention, a ventilator capable of introducing outdoor air into a room is provided.
[0021]
The invention according to claim 10 is characterized in that a carbon dioxide concentration detection sensor is provided in a room, and the ventilator is operated in response to an output of the carbon dioxide concentration detection sensor.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 shows a configuration diagram of a refrigeration cycle of the dehumidifying / drying air conditioner according to the first embodiment of the present invention.
[0023]
The dehumidifying / drying air conditioner 21 includes an outdoor unit 22 and an indoor unit 23. The outdoor unit 22 includes a compressor 24, an outdoor heat exchanger 25, and a main throttle device 26, while the indoor unit 23 includes an indoor unit 23. This is a heat pump type dehumidifying / drying air conditioner provided with a first heat exchanger 27, a sub-throttle device 28, and an indoor second heat exchanger 29, and the compressor 24 and the outdoor unit are arranged so that the refrigerant from the compressor 24 circulates. A refrigerant circuit is configured by connecting the heat exchanger 25, the main expansion device 26, the indoor first heat exchanger 27, the auxiliary expansion device 28, and the indoor second heat exchanger 29 in a ring shape.
[0024]
More specifically, the discharge side and the suction side of the compressor 24 are respectively connected to the primary port of the four-way valve 30, and an outdoor fan 31 is attached from one of the secondary ports of the four-way valve 30. The other of the four-way valve 30 is passed through the outdoor heat exchanger 25, the main throttle device 26, the indoor first heat exchanger 27 provided with the indoor fan 32, the sub-throttle device 28, and the indoor second heat exchanger 29, respectively. The refrigerant circuit leading to the secondary port is constituted by a refrigerant pipe. The four-way valve 30 returns to the suction side of the compressor 24.
[0025]
Further, a bypass circuit 34 having an on-off valve 33 is connected in parallel with the outdoor heat exchanger 25, and by opening the on-off valve 33, most of the refrigerant in the refrigeration cycle bypasses the outdoor heat exchanger 25. , Through the bypass circuit 34.
[0026]
Further, the indoor unit 23 is provided with a temperature sensor 35 for detecting the temperature of the intake air of the indoor unit 23, and both the on-off valve 33 and the temperature sensor 35 are electrically connected to the control device 36. The control device 36 operates to calculate the difference between the set temperature set by the setting means (not shown) and the intake air temperature detected by the temperature sensor 35 to switch the on-off valve 33.
[0027]
As the refrigerant, carbon dioxide having a very small effect on global warming is used. The operation by the refrigerant circuit includes a cooling operation, a heating operation, a reheat dehumidification operation for performing dehumidification using the indoor first heat exchanger 27 as a condenser and the indoor second heat exchanger 29 as an evaporator, and the like.
[0028]
During the cooling operation and the heating operation, the auxiliary expansion device 28 is fully opened, the main expansion device 26 is adjusted to a predetermined opening degree, and the outdoor fan 31 and the indoor fan 32 are driven at a predetermined rotation speed. .
[0029]
In the case of the cooling operation, the refrigerant discharged from the compressor 24 is circulated as shown by a solid line arrow, thereby making the outdoor heat exchanger 25 function as a condenser, and the first indoor heat exchanger 27 and the second indoor heat exchanger. The indoor air is cooled by making the exchanger 29 function as an evaporator.
[0030]
Also, in the case of the heating operation, the refrigerant discharged from the compressor 24 is circulated as indicated by the dashed arrow, so that the indoor first heat exchanger 27 and the indoor second heat exchanger 29 function as condensers, The indoor air is heated by making the outdoor heat exchanger 25 function as an evaporator.
[0031]
On the other hand, at the time of the reheat dehumidifying operation, the auxiliary expansion device 28 is adjusted to a predetermined opening degree, the main expansion device 26 is fully opened, and the indoor fan 32 is driven at a predetermined rotation speed. 31 is stopped. Then, by circulating the refrigerant discharged from the compressor 24 in the same circuit as in the cooling operation as shown by the solid line arrow, the indoor first heat exchanger 27 functions as a condenser, and the indoor second heat exchanger 29 Function as an evaporator. Thereby, after the indoor air is cooled and dehumidified by the indoor second heat exchanger 29 functioning as an evaporator, the indoor air is heated again by the indoor first heat exchanger 27 functioning as a condenser and returned to the room, and the reheat dehumidifying operation is performed. Is performed.
[0032]
In this case, for example, when the temperature of the bathroom needs to be high, such as when drying clothes in the bathroom, and the outside air temperature is low as in winter, even if the outdoor fan 31 is stopped, the temperature from the outdoor heat exchanger 25 is low. Due to the heat radiation, the temperature of the indoor first heat exchanger 27 may decrease, and the temperature of the blown air of the indoor unit 23 after dehumidification may not be sufficiently high.
[0033]
In such a case, when the suction air temperature of the indoor unit 23 detected by the temperature sensor 35 is input to the control device 36, the control device 36 calculates the difference between the set temperature and the suction air temperature, and calculates the difference. If the difference is larger than the predetermined value, a signal for opening the on-off valve 33 is sent.
[0034]
As a result, the discharged gas discharged from the compressor 24 and passed through the four-way valve 30 passes through the bypass circuit 34 and flows into the first indoor heat exchanger 27 via the main expansion valve 26. Therefore, there is almost no heat dissipation loss in the outdoor heat exchanger 25, and the high-temperature discharge gas is directly used for heating the room air, so that the temperature of the blown air in the room rises and the room air reaches the set temperature.
[0035]
On the other hand, when the indoor temperature rises, when the suction air temperature of the indoor unit 23 detected by the temperature sensor 35 is input to the control device 36, the control device 36 calculates the difference between the set temperature and the suction air temperature. If the difference is smaller than the predetermined value, a signal for closing the on-off valve 33 is sent.
[0036]
As a result, the discharge gas discharged from the compressor 24 and passed through the four-way valve 30 passes through the outdoor heat exchanger 25 again, and flows into the first indoor heat exchanger 27 via the main expansion valve 26. Therefore, the indoor air can be appropriately heated while radiating heat in the outdoor heat exchanger 25, so that the temperature of the indoor blown air can be appropriately reduced, and the indoor air temperature can be maintained at the set temperature. Dehumidification operation is possible.
[0037]
Here, the indoor first heat exchanger 27 preferably has a configuration in which the refrigerant flow during dehumidification and drying and the indoor air flow are substantially countercurrent as shown in FIG. That is, in FIG. 2, the indoor first heat exchanger 27 is constituted by a meandering pipe 40, and a plurality of fins 41 are in thermal contact with the pipe 40 and are provided orthogonally. In addition, the indoor air flows in the order of the indoor second heat exchanger 29 and the indoor first heat exchanger 27 as shown by arrows, and the refrigerant meanders through the pipe 40 of the indoor first heat exchanger 27 and flows with the indoor air. Is caused to flow in a substantially countercurrent flow.
[0038]
As is well known, carbon dioxide used as a refrigerant is in a supercritical state under a high pressure (compressor discharge pressure) constant state generally used in an air conditioner. Since it does not condense, it does not radiate heat at a constant temperature, and has the characteristic that the temperature decreases along the flow direction.
[0039]
On the other hand, since the temperature of the room air to be heated also gradually increases, the heat exchange is performed while maintaining a substantially constant temperature difference between the refrigerant and the air by exchanging heat between the refrigerant flow and the air flow in substantially opposite flows. Therefore, the temperature efficiency of the heat exchanger is improved, and the heating capacity is improved. Therefore, the air can be heated to a desired temperature with a smaller amount of the circulating refrigerant, the required power of the compressor is reduced, and the coefficient of performance during reheat dehumidification is improved.
[0040]
That is, when the dehumidified and slightly cooled air is heated in the indoor first heat exchanger 27 during the dehumidifying and drying operation, the air flow (arrow) and the meandering pipe 40 Since the flow of the refrigerant is substantially countercurrent, for example, when high-temperature dehumidified air is required, as in the case of drying clothes in a bathroom, the effect is exhibited in shortening the drying time of clothes.
[0041]
Further, since carbon dioxide having a low global warming potential is used as a refrigerant, even if it leaks from the refrigeration cycle into the atmosphere, the effect on the environment is extremely low as compared with the conventional HFC refrigerant.
[0042]
The opening / closing control of the opening / closing valve 33 provided in the bypass circuit 34 by the temperature sensor 35 can be applied to any of Embodiments 2 to 4 described later.
[0043]
Embodiment 2 FIG.
FIG. 3 shows a configuration diagram of a refrigeration cycle of the dehumidifying / drying air conditioner according to the second embodiment of the present invention. The basic configuration is the same as that of the refrigeration cycle of the first embodiment shown in FIG. 1, and the components having the same functions are denoted by the same reference numerals and the description thereof will be omitted.
[0044]
Here, a description will be given of a reheat dehumidifying operation, which is particularly characteristic.
As the refrigerant, carbon dioxide having a very small effect on global warming is used. At the time of the reheat dehumidifying operation, the four-way valve 30 is switched to the direction shown in the drawing to adjust the sub-throttle device 28 to a predetermined opening degree, the main throttle device 26 is fully opened, and the indoor fan 32 and the outdoor fan 31 is driven at a predetermined rotation speed. Then, by circulating the refrigerant discharged from the compressor 24 in the same circuit as in the heating operation as shown by the solid line arrow, the indoor first heat exchanger 27 functions as an evaporator and the indoor second heat exchanger 29 Function as a radiator.
[0045]
The refrigerant that has exited the indoor first heat exchanger 27 passes through the main expansion device 26, exchanges heat with the outside air blown by the outdoor fan 31 in the outdoor heat exchanger 25, absorbs heat, and evaporates itself. It returns to the compressor 24 through the four-way valve 30.
[0046]
Thereby, after the indoor air is cooled and dehumidified by the indoor first heat exchanger 27 functioning as an evaporator, it is heated again by the indoor second heat exchanger 29 functioning as a condenser and returned to the room, and the reheat dehumidifying operation is performed. Is performed.
[0047]
In this case, the gas discharged from the compressor 24 is directly introduced into the indoor second heat exchanger 29 to radiate heat, and then decompressed by the sub-throttle device 28 and evaporated by the indoor first heat exchanger 27. Therefore, since the refrigerant flows into the indoor second heat exchanger 29 at a high temperature close to the discharge gas temperature of the compressor 24, the air after dehumidification can be heated to a high temperature. For example, as in the case of drying clothes in a bathroom, This configuration is suitable when high-temperature dehumidified air is required.
[0048]
Here, it is desirable that the indoor first heat exchanger 27 and the indoor second heat exchanger 29 have a configuration in which the refrigerant flow and the indoor air flow during heating and dehumidification and drying are substantially opposite as shown in FIG. That is, in FIG. 4, the indoor first heat exchanger 27 is formed by a meandering pipe 40, and the indoor second heat exchanger 29 is formed by a meandering pipe 50, and a plurality of fins 41 and 51 are respectively provided on the pipe 40 and the pipe 40. It is in thermal contact with 50 and is provided orthogonally.
[0049]
At the time of heating, the indoor air flows in the order of the indoor first heat exchanger 27 and the indoor second heat exchanger 29 as shown by arrows, and the refrigerant flows in the indoor air while meandering through the pipe 50 of the indoor second heat exchanger 29. Flows through the sub-throttle device 28 which is fully open, and meanders through the pipe 40 inside the first indoor heat exchanger 27 during heating. And radiate heat.
[0050]
Also, at the time of dehumidifying and drying, the indoor air flows in the order of the indoor first heat exchanger 27 and the indoor second heat exchanger 29 as shown by arrows, and the refrigerant meanders through the pipe 50 of the indoor second heat exchanger 29. The air flows in a substantially opposite flow to the flow of the indoor air and dissipates heat.
[0051]
As is well known, carbon dioxide used as a refrigerant is in a supercritical state under a high pressure (compressor discharge pressure) constant state generally used in an air conditioner. Since it does not condense, it does not radiate heat at a constant temperature, and has the characteristic that the temperature decreases along the flow direction.
[0052]
On the other hand, since the temperature of the room air to be heated also gradually rises, heat exchange is performed while maintaining a substantially constant temperature difference between the refrigerant and the air by exchanging heat between the refrigerant flow and the air flow in substantially opposite flows. Therefore, the temperature efficiency of the heat exchanger is improved and the heating capacity is improved. Therefore, air can be heated to a desired temperature with a smaller amount of circulating refrigerant, the required power of the compressor is reduced, and the coefficient of performance during reheat dehumidification is improved.
[0053]
That is, during the heating operation, the high-temperature refrigerant dissipates heat in the indoor second heat exchanger 29, and the slightly cooled refrigerant flows to the indoor first heat exchanger 27. On the contrary, the indoor air is discharged to the indoor first heat exchanger 27. And the air is further heated in the indoor second heat exchanger 29, so that the air flow (arrow) and the refrigerant flow in the meandering pipes 40 and 50 are substantially countercurrent, so that the heating capacity is increased, and high-temperature heating is performed. , Demonstrate its effect.
[0054]
Further, during the dehumidifying and drying operation, when the air that has been dehumidified and slightly cooled in the indoor first heat exchanger 27 is heated in the indoor second heat exchanger 29, the air flow (arrow) and the meandering piping 50 Since the flow of the refrigerant is substantially countercurrent, for example, when high-temperature dehumidified air is required, as in the case of drying clothes in a bathroom, the effect is exhibited in shortening the drying time of clothes.
[0055]
Also, in the event that the refrigerant leaks from the refrigeration cycle into the atmosphere, the carbon dioxide has a low global warming potential, and therefore has the effect of significantly reducing the effect on the environment as compared with conventional HFC refrigerants and the like.
[0056]
Embodiment 3 FIG.
FIG. 5 shows a configuration diagram of a refrigeration cycle of the dehumidifying / drying air conditioner according to the third embodiment of the present invention. The basic configuration is the same as that of the refrigeration cycle of the first embodiment shown in FIG. 1, and the components having the same functions are denoted by the same reference numerals and the description thereof will be omitted.
[0057]
As shown in FIG. 5, the indoor unit 23 is provided with a temperature sensor 35 for detecting the temperature of the intake air of the indoor unit 23, and the four-way valve 30 and the temperature sensor 35 are both electrically connected to the control device 61. Have been. The control device 61 operates to calculate the difference between the set temperature set by the setting means (not shown) and the intake air temperature detected by the temperature sensor 35 to switch the four-way valve 30.
[0058]
Here, a description will be given of a reheat dehumidifying operation that is particularly characteristic.
As the refrigerant, carbon dioxide having a very small effect on global warming is used.
[0059]
At the time of the reheat dehumidifying operation, first, the four-way valve 30 is switched in the direction of the solid line in the drawing to form a heating circuit, and the sub-throttle device 28 is adjusted to a predetermined opening degree, while the main throttle device 26 is fully opened. Further, the indoor fan 32 and the outdoor fan 31 are driven at a predetermined rotation speed. Then, by circulating the refrigerant discharged from the compressor 24 in the same circuit as in the heating operation as shown by the solid line arrow, the indoor first heat exchanger 27 functions as an evaporator and the indoor second heat exchanger 29 Function as a radiator.
[0060]
The refrigerant that has exited the indoor first heat exchanger 27 passes through the main expansion device 26, exchanges heat with the outside air blown by the outdoor fan 31 in the outdoor heat exchanger 25, absorbs heat, and evaporates itself. It returns to the compressor 24 through the four-way valve 30.
[0061]
Thereby, after the indoor air is cooled and dehumidified by the indoor first heat exchanger 27 functioning as an evaporator, it is heated again by the indoor second heat exchanger 29 functioning as a condenser and returned to the room, and the reheat dehumidifying operation is performed. Is performed.
[0062]
In this case, the gas discharged from the compressor 24 is directly introduced into the indoor second heat exchanger 29 to radiate heat, and then decompressed by the sub-throttle device 28 and evaporated by the indoor first heat exchanger 27. Therefore, since the refrigerant flows into the indoor second heat exchanger 29 at a high temperature close to the discharge gas temperature of the compressor 24, the air after dehumidification can be heated to a high temperature, and the dehumidification operation is performed while increasing the indoor temperature. Do.
[0063]
Next, the controller 61 compares the room temperature detected by the temperature sensor 35 with a predetermined set temperature. If the room temperature is lower than the set temperature, the above operation is continued.
[0064]
On the other hand, the control device 61 compares the room temperature detected by the temperature sensor 35 with a predetermined set temperature, and when the room temperature is higher than the set temperature, the control device 61 switches the four-way valve 30 in the direction of the broken line in the figure. Then, the sub-throttle device 28 is adjusted to a predetermined opening degree, the main throttle device 26 is fully opened, and the indoor fan 32 and the outdoor fan 31 are driven at a predetermined rotation speed. Then, the refrigerant discharged from the compressor 24 is circulated in the same circuit as in the cooling operation as shown by the dashed arrow, so that the indoor first heat exchanger 27 functions as a radiator and the indoor second heat exchanger 29 Function as an evaporator.
[0065]
Thus, after the indoor air is heated by the indoor first heat exchanger 27 functioning as a radiator, the indoor second heat exchanger 29 functioning as an evaporator is cooled, dehumidified, and returned to the room to perform a reheat dehumidifying operation. Is
[0066]
In this case, the discharge gas of the compressor 24 is once radiated and cooled by the outdoor heat exchanger 25 and then introduced into the indoor first heat exchanger 27. Therefore, the amount of heat radiated by the indoor unit is not large. The amount of heat for cooling and dehumidification in the indoor second heat exchanger 29 becomes larger than the amount of heat radiation. Therefore, the temperature of the blown air of the indoor unit becomes lower than the temperature of the intake air, and the temperature of the indoor air gradually decreases.
[0067]
Next, the controller 61 compares the room temperature detected by the temperature sensor 35 with a predetermined set temperature, and if the room temperature is higher than the set temperature, the above operation is continued.
[0068]
On the other hand, the room temperature detected by the temperature sensor 35 is compared with a predetermined set temperature by the control device 61. When the room temperature is lower than the set temperature, the four-way valve 30 is switched again to the direction of the solid line shown in FIG. I do.
[0069]
As a result, the dehumidification is performed continuously while the indoor air is almost maintained at the set temperature, so that the dehumidification performance can be kept high. For example, as in the case of drying clothes in a bathroom, dehumidification is performed while keeping the clothes at a high temperature. As a result, the time for drying the clothes can be significantly reduced.
[0070]
Also, should the refrigerant leak from the refrigeration cycle into the atmosphere, the use of carbon dioxide as the refrigerant has a lower global warming potential, and has a significantly lower environmental impact than conventional HFC refrigerants. It has the effect of lowering.
[0071]
The control for switching the four-way valve 30 according to the intake air temperature detected by the temperature sensor 35 described above can be applied to any of the first and second embodiments and the fourth embodiment described below.
[0072]
Embodiment 4 FIG.
FIG. 6 shows a configuration diagram of a refrigeration cycle of the dehumidifying / drying air conditioner according to the fourth embodiment of the present invention. The basic configuration is the same as that of the refrigeration cycle of the second embodiment shown in FIG. 3, and the components having the same functions are denoted by the same reference numerals and description thereof will be omitted.
[0073]
Here, in a bathroom 70 in which the indoor unit 23 is installed, a temperature sensor 35 for detecting an air temperature in the bathroom, an intake port 71 for taking in external air, and an exhaust port 72 for exhausting air in the bathroom 70 to the outside. And a ventilation fan (ventilation device) 73 for flowing ventilation air 74 for intake and exhaust, and the temperature sensor 35 and the ventilation fan 73 are both electrically connected to a control device 76. The control device 76 operates to switch the operation of the ventilation fan 73 by calculating the difference between the set temperature set by the setting means (not shown) and the air temperature detected by the temperature sensor 35.
[0074]
Here, the operation at the time of the characteristic reheat dehumidifying operation will be described.
As the refrigerant, carbon dioxide having a very small effect on global warming is used.
[0075]
At the time of the reheat dehumidifying operation, the four-way valve 30 is switched to the direction shown in the drawing to adjust the sub-throttle device 28 to a predetermined opening degree, the main throttle device 26 is fully opened, and the indoor fan 32 and the outdoor fan 31 is driven at a predetermined rotation speed. Then, by circulating the refrigerant discharged from the compressor 24 in the same circuit as in the heating operation as shown by the solid line arrow, the indoor first heat exchanger 27 functions as an evaporator and the indoor second heat exchanger 29 Function as a radiator.
[0076]
The refrigerant that has exited the indoor first heat exchanger 27 passes through the main expansion device 26, exchanges heat with the outside air blown by the outdoor fan 31 in the outdoor heat exchanger 25, absorbs heat, and evaporates itself. It returns to the compressor 24 through the four-way valve 30.
[0077]
Thereby, after the indoor air is cooled and dehumidified by the indoor first heat exchanger 27 functioning as an evaporator, it is heated again by the indoor second heat exchanger 29 functioning as a condenser and returned to the room, and the reheat dehumidifying operation is performed. Is performed.
[0078]
In this case, the gas discharged from the compressor 24 is directly introduced into the indoor second heat exchanger 29 to radiate heat, and then decompressed by the sub-throttle device 28 and evaporated by the indoor first heat exchanger 27. Therefore, since the refrigerant flows into the indoor second heat exchanger at a high temperature close to the discharge gas temperature of the compressor 24, it is possible to heat the dehumidified air to a high temperature. This configuration is suitable when dehumidified air is required.
[0079]
Here, the air temperature in the bathroom 70 detected by the temperature sensor 35 and the preset temperature are compared by the control device 76, and when the air temperature is equal to or lower than the set value, the ventilation fan 73 is not operated.
[0080]
On the other hand, in the reheat dehumidifying operation, the gas discharged from the compressor 24 is directly introduced into the indoor second heat exchanger 29 to radiate heat, so that the air temperature in the bathroom 70 gradually increases. When the detected temperature is equal to or higher than the set value, the operation signal of the ventilation fan 73 is output from the control device 76, and the ventilation fan 73 is operated.
[0081]
As a result, relatively low-temperature air outside the bathroom 70 is introduced into the bathroom 70 through the air inlet 71, and high-temperature air in the bathroom 70 is exhausted outside through the exhaust port 72 by the ventilation fan 73. . Therefore, since the air temperature in the bathroom 70 gradually decreases, the dehumidifying / drying operation can be continued without stopping the operation of the compressor 24, which is effective for, for example, shortening the clothes drying time.
[0082]
Also, even if the refrigerant leaks into the atmosphere, the carbon dioxide has a low global warming potential, so that the effect on the environment can be extremely reduced as compared with conventional HFC refrigerants and the like.
[0083]
Further, in the above configuration, a sensor capable of detecting the carbon dioxide concentration may be provided in the bathroom 70 and may be linked with the ventilation fan 73. In this case, even if the refrigerant leaks from the refrigerating cycle into the bathroom 70, the ventilation fan 73 operates in response to the output from the carbon dioxide concentration detection sensor, so that the carbon dioxide concentration in the bathroom can be kept low. it can.
[0084]
The control by the temperature sensor 35 of the ventilation fan 73 as a ventilation device can be applied to any of the first to third embodiments.
[0085]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
According to the first aspect of the present invention, the indoor first heat exchanger functions as a radiator during the cooling circuit operation, while the indoor second heat exchanger functions as an evaporator to remove indoor air. Since the air is dehumidified, the amount of heat radiation in the outdoor heat exchanger can be controlled by the operation of the outdoor fan during the reheat dehumidification operation, so that the amount of heat radiation to the room in the indoor first heat exchanger can be suppressed. When used for drying clothes, it is possible to safely dehumidify while cooling even when the temperature in the bathroom rises too much, such as during operation in summer or the like.
[0086]
In addition, since carbon dioxide is used as the refrigerant circulating in the refrigeration cycle, even if the refrigerant leaks from the refrigeration cycle into the atmosphere, the carbon dioxide has a low global warming potential. And the impact on the environment is extremely low.
[0087]
According to the second aspect of the present invention, the refrigerant flow in the indoor first heat exchanger is configured to be substantially countercurrent to the indoor air flow during the reheat dehumidifying operation. The temperature difference on the air side can be made substantially uniform, the temperature efficiency of the heat exchanger when the air after cooling and dehumidification is heated by the indoor first heat exchanger serving as an evaporator is improved, and the refrigerant circulation amount is reduced. The air can be heated, the required power of the compressor is reduced, and the coefficient of performance during reheat dehumidification is improved.
[0088]
Further, according to the third aspect of the invention, the indoor first heat exchanger functions as an evaporator during the heating circuit operation, and the indoor second heat exchanger functions as a radiator to dehumidify the indoor air. Therefore, at the time of the reheat dehumidification operation, the high-temperature discharge gas from the compressor is directly introduced into the indoor second heat exchanger to radiate heat, and then decompresses and evaporates in the indoor first heat exchanger. Dehumidification in a state where the room is at a high temperature becomes possible. Therefore, even when the indoor temperature is high and dehumidification is required in winter, such as when drying clothes in a bathroom, the room can be kept at a high temperature with a sufficient heating capacity, and the evaporation of moisture from clothes can be promoted. Demonstrates performance suitable for reducing time.
[0089]
Further, since carbon dioxide is used as the refrigerant circulating in the refrigeration cycle, even if the refrigerant leaks from the refrigeration cycle into the atmosphere, the effect on the environment is extremely low.
[0090]
Further, according to the invention described in claim 4, since the refrigerant flow in the indoor second heat exchanger is substantially countercurrent to the indoor air flow during the reheat dehumidifying operation, the carbon dioxide in the radiator is reduced. The temperature difference on the air side can be made substantially uniform, the temperature efficiency of the heat exchanger when the air after cooling and dehumidification is heated by the indoor first heat exchanger serving as an evaporator is improved, and the refrigerant circulation amount is reduced. The air can be heated, the required power of the compressor is reduced, and the coefficient of performance during reheat dehumidification is improved.
[0091]
According to the fifth aspect of the present invention, since the operation is performed by switching between the cooling circuit dehumidifying operation and the heating circuit dehumidifying operation, the room temperature is raised during the reheating dehumidifying operation, for example, drying clothes in a bathroom. It is possible to switch between a heating circuit dehumidification operation that promotes evaporation of moisture from clothing by performing dehumidification while performing and a cooling dehumidification circuit operation that continues dehumidification while slightly lowering the room temperature when the room temperature rises too much, The dehumidifying operation can be performed safely without overheating the room while always promoting the evaporation of water from the clothes.
[0092]
According to the invention of claim 6, since carbon dioxide is used as the refrigerant circulating in the refrigeration cycle, even if the refrigerant leaks from the refrigeration cycle into the atmosphere, the effect on the environment is extremely low. .
[0093]
According to the seventh aspect of the present invention, the temperature sensor for detecting the indoor air temperature is provided, and the four-way valve is switched in accordance with the indoor air temperature detected by the temperature sensor. The four-way valve can be switched upon detection, which is more effective in preventing overheating at room temperature.
[0094]
According to the invention of claim 8, a bypass circuit for bypassing the outdoor heat exchanger is provided, and the on-off valve provided in the bypass circuit is opened and closed according to the indoor air temperature detected by the temperature sensor. Therefore, the amount of heat radiation or heat absorption of the outdoor heat exchanger can be controlled more widely during the reheat dehumidification operation, and the control of the room temperature becomes easier.
[0095]
According to the ninth aspect of the present invention, since the ventilation device capable of introducing the outdoor air into the room is provided, in a case where the room temperature rises excessively during the reheating and dehumidification, the ventilation device reduces the outdoor temperature. Low air can be introduced into the room, and the dehumidifying operation can be performed more safely.
[0096]
According to the tenth aspect of the present invention, since the ventilation device is operated by receiving the output of the carbon dioxide concentration detection sensor provided in the room, even if the refrigerant leaks into the room, The danger that the concentration of the refrigerant in the room increases due to the ventilation device is reduced, and safe operation becomes possible.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a refrigeration cycle of a dehumidifying / drying air conditioner according to a first embodiment of the present invention.
FIG. 2 is a configuration diagram of an indoor first heat exchanger provided in the dehumidifying / drying air conditioner of FIG. 1;
FIG. 3 is a configuration diagram of a refrigeration cycle of the dehumidifying / drying air conditioner according to the first embodiment of the present invention.
FIG. 4 is a configuration diagram of a first indoor heat exchanger and a second indoor heat exchanger provided in the dehumidifying / drying air conditioner of FIG. 3;
FIG. 5 is a configuration diagram of a refrigeration cycle of the dehumidifying / drying air conditioner according to the third embodiment of the present invention.
FIG. 6 is a configuration diagram of a refrigeration cycle of a dehumidifying / drying air conditioner according to a fourth embodiment of the present invention.
FIG. 7 is a configuration diagram of a refrigeration cycle of a conventional air conditioner.
[Explanation of symbols]
21 dehumidifying / drying air conditioner, 22 outdoor unit, 23 indoor unit,
24 compressor, 25 outdoor heat exchanger, 26 main throttle device,
27 indoor first heat exchanger, 28 sub-throttle device, 29 indoor second heat exchanger,
30 four-way valve, 31 outdoor fan, 32 indoor fan, 33 on-off valve,
34 bypass circuit, 35 temperature sensor, 36,61,76 control device,
40,50 plumbing, 41,51 fins, 70 bathroom, 71 inlet,
72 Exhaust vent, 73 Ventilation fan.

Claims (10)

室外機に圧縮機と四方弁と室外熱交換器とを設ける一方、室内機に室内第1熱交換器と室内第2熱交換器とを設け、前記圧縮機、四方弁、室外熱交換器、室内第1熱交換器、室内第2熱交換器を環状に接続して冷凍サイクルを構成し、前記四方弁の切換え動作によって、前記室外熱交換器を蒸発器として機能させる暖房回路運転と、前記室外熱交換器を放熱器として作用させる冷房回路運転とを切換え、冷房回路運転時に前記室内第1熱交換器を放熱器として作用させる一方、前記室内第2熱交換器を蒸発器として作用させて室内空気を除湿する再熱除湿運転を行い、前記冷凍サイクルを循環する冷媒として、二酸化炭素を用いたことを特徴とする除湿乾燥空調装置。An outdoor unit is provided with a compressor, a four-way valve and an outdoor heat exchanger, while an indoor unit is provided with an indoor first heat exchanger and an indoor second heat exchanger, and the compressor, the four-way valve, the outdoor heat exchanger, A heating circuit operation in which the indoor first heat exchanger and the indoor second heat exchanger are connected in a ring to form a refrigeration cycle, and the outdoor heat exchanger functions as an evaporator by switching the four-way valve; Switching between a cooling circuit operation in which the outdoor heat exchanger functions as a radiator and switching the indoor first heat exchanger as a radiator during the cooling circuit operation, while causing the indoor second heat exchanger to function as an evaporator. A dehumidifying / drying air conditioner, which performs a reheat dehumidifying operation for dehumidifying indoor air and uses carbon dioxide as a refrigerant circulating in the refrigeration cycle. 再熱除湿運転時に前記室内第1熱交換器の冷媒流れが室内空気流れと略対向流となるように構成したことを特徴とする請求項1に記載の除湿乾燥空調装置。2. The dehumidifying / drying air-conditioning apparatus according to claim 1, wherein a refrigerant flow in the first indoor heat exchanger is substantially countercurrent to an indoor air flow during the reheat dehumidifying operation. 室外機に圧縮機と四方弁と室外熱交換器とを設ける一方、室内機に室内第1熱交換器と室内第2熱交換器とを設け、前記圧縮機、四方弁、室外熱交換器、室内第1熱交換器、室内第2熱交換器を環状に接続して冷凍サイクルを構成し、前記四方弁の切換え動作によって、前記室外熱交換器を蒸発器として機能させる暖房回路運転と、前記室外熱交換器を放熱器として作用させる冷房回路運転とを切換え、暖房回路運転時に前記室内第1熱交換器を蒸発器として作用させる一方、前記室内第2熱交換器を放熱器として作用させて室内空気を除湿する再熱除湿運転を行い、前記冷凍サイクルを循環する冷媒として、二酸化炭素を用いたことを特徴とする除湿乾燥空調装置。An outdoor unit is provided with a compressor, a four-way valve and an outdoor heat exchanger, while an indoor unit is provided with an indoor first heat exchanger and an indoor second heat exchanger, and the compressor, the four-way valve, the outdoor heat exchanger, A heating circuit operation in which the indoor first heat exchanger and the indoor second heat exchanger are connected in a ring to form a refrigeration cycle, and the outdoor heat exchanger functions as an evaporator by switching the four-way valve; Switching between the cooling circuit operation in which the outdoor heat exchanger acts as a radiator and the indoor first heat exchanger as an evaporator during the heating circuit operation, while the indoor second heat exchanger acts as a radiator. A dehumidifying / drying air conditioner, which performs a reheat dehumidifying operation for dehumidifying indoor air and uses carbon dioxide as a refrigerant circulating in the refrigeration cycle. 再熱除湿運転時に前記室内第1熱交換器および前記室内第2熱交換器の冷媒流れが室内空気流れと略対向流となるように構成したことを特徴とする請求項3に記載の除湿乾燥空調装置。4. The dehumidifying and drying apparatus according to claim 3, wherein a refrigerant flow in the indoor first heat exchanger and the indoor second heat exchanger is substantially countercurrent to an indoor air flow during the reheat dehumidifying operation. Air conditioner. 室外機に圧縮機と四方弁と室外熱交換器とを設ける一方、室内機に室内第1熱交換器と室内第2熱交換器とを設け、前記圧縮機、四方弁、室外熱交換器、室内第1熱交換器、室内第2熱交換器を環状に接続して冷凍サイクルを構成し、前記四方弁の切換え動作によって、前記室外熱交換器と前記室内第1熱交換器を放熱器、前記室内第2熱交換器を蒸発器として作用させて室内空気を除湿する冷房回路除湿運転と、前記室外熱交換器と前記室内第1熱交換器を蒸発器、前記室内第2熱交換器を放熱器として作用させて室内空気を除湿する暖房回路除湿運転とを切換えて運転することを特徴とする除湿乾燥空調装置。An outdoor unit is provided with a compressor, a four-way valve and an outdoor heat exchanger, while an indoor unit is provided with an indoor first heat exchanger and an indoor second heat exchanger, and the compressor, the four-way valve, the outdoor heat exchanger, The indoor first heat exchanger and the indoor second heat exchanger are connected in a ring to form a refrigeration cycle, and the outdoor heat exchanger and the indoor first heat exchanger are radiated by the switching operation of the four-way valve. A cooling circuit dehumidifying operation for dehumidifying indoor air by causing the indoor second heat exchanger to act as an evaporator; an evaporator for the outdoor heat exchanger and the indoor first heat exchanger; and an indoor second heat exchanger. A dehumidifying / drying air conditioner, which operates by switching between a heating circuit and a dehumidifying operation for dehumidifying indoor air by acting as a radiator. 冷凍サイクルを循環する冷媒として、二酸化炭素を用いたことを特徴とする請求項5に記載の除湿乾燥空調装置。The dehumidifying / drying air conditioner according to claim 5, wherein carbon dioxide is used as a refrigerant circulating in the refrigeration cycle. 室内空気温度を検知する温度センサを設け、該温度センサで検知した室内空気温度に応じて、四方弁を切換えることを特徴とする請求項1乃至6のいずれか1項に記載の除湿乾燥空調装置。The dehumidifying / drying air-conditioning apparatus according to any one of claims 1 to 6, wherein a temperature sensor for detecting indoor air temperature is provided, and the four-way valve is switched according to the indoor air temperature detected by the temperature sensor. . 前記室外熱交換器をバイパスするバイパス回路と、該バイパス回路に設けられた開閉弁と、室内空気温度を検知する温度センサとをさらに備え、前記温度センサで検知した室内空気温度に応じて前記開閉弁を開閉することを特徴とする請求項1乃至6のいずれか1項に記載の除湿乾燥空調装置。A bypass circuit for bypassing the outdoor heat exchanger; an on-off valve provided in the bypass circuit; and a temperature sensor for detecting indoor air temperature, wherein the open / close operation is performed according to the indoor air temperature detected by the temperature sensor. The dehumidifying / drying air conditioner according to any one of claims 1 to 6, wherein the valve is opened and closed. 室外空気を室内に導入可能な換気装置を設けたことを特徴とする請求項1乃至8のいずれか1項に記載の除湿乾燥空調装置。The dehumidifying / drying air conditioner according to any one of claims 1 to 8, further comprising a ventilation device capable of introducing outdoor air into the room. 室内に二酸化炭素濃度検知センサを設け、該二酸化炭素濃度検知センサの出力を受けて前記換気装置を作動させるようにしたことを特徴とする請求項9に記載の除湿乾燥空調装置。The dehumidifying / drying air conditioner according to claim 9, wherein a carbon dioxide concentration detection sensor is provided in the room, and the ventilator is operated in response to an output of the carbon dioxide concentration detection sensor.
JP2002176962A 2002-06-18 2002-06-18 Dehumidifying drying air conditioner Pending JP2004020086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002176962A JP2004020086A (en) 2002-06-18 2002-06-18 Dehumidifying drying air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002176962A JP2004020086A (en) 2002-06-18 2002-06-18 Dehumidifying drying air conditioner

Publications (1)

Publication Number Publication Date
JP2004020086A true JP2004020086A (en) 2004-01-22

Family

ID=31175122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002176962A Pending JP2004020086A (en) 2002-06-18 2002-06-18 Dehumidifying drying air conditioner

Country Status (1)

Country Link
JP (1) JP2004020086A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037108A (en) * 2010-08-05 2012-02-23 Toyo Eng Works Ltd Direct expansion type air conditioner
CN102506480A (en) * 2011-11-11 2012-06-20 广东美的电器股份有限公司 Air-conditioning heat pump system of multi-split air conditioner
JP5062177B2 (en) * 2006-09-29 2012-10-31 ダイキン工業株式会社 Air conditioner indoor unit
KR101344519B1 (en) 2007-05-08 2013-12-24 한라비스테온공조 주식회사 CO2 Air-Conditioning System
CN103822391A (en) * 2013-12-02 2014-05-28 广东志高空调有限公司 Temperature and power variable dehumidification system and control method thereof
CN104864495A (en) * 2014-02-21 2015-08-26 大金工业株式会社 Air conditioner device
CN107504629A (en) * 2017-08-02 2017-12-22 青岛海尔空调器有限总公司 A kind of multiple air-conditioned clothes dryer and its control method
CN108800772A (en) * 2018-07-06 2018-11-13 中山市碧朗节能设备有限公司 A kind of cold and hot double-purpose baking room
CN111435007A (en) * 2019-01-14 2020-07-21 青岛经济技术开发区海尔热水器有限公司 Heat pump hot air heating unit with dehumidification function and control method thereof
CN112228977A (en) * 2020-11-18 2021-01-15 珠海格力电器股份有限公司 Heat pump system, control method and device thereof, air conditioning equipment and storage medium
CN112710101A (en) * 2019-10-24 2021-04-27 广东美的制冷设备有限公司 Air conditioner and control method thereof
US20210302073A1 (en) * 2020-03-31 2021-09-30 Goodman Global Group, Inc. Heating, Ventilation, and Air-Conditioning System with Reheat
US20220026082A1 (en) * 2019-05-31 2022-01-27 Rheem Manufacturing Company Sequential Hot Gas Reheat System In An Air Conditioning Unit

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5062177B2 (en) * 2006-09-29 2012-10-31 ダイキン工業株式会社 Air conditioner indoor unit
KR101344519B1 (en) 2007-05-08 2013-12-24 한라비스테온공조 주식회사 CO2 Air-Conditioning System
JP2012037108A (en) * 2010-08-05 2012-02-23 Toyo Eng Works Ltd Direct expansion type air conditioner
CN102506480A (en) * 2011-11-11 2012-06-20 广东美的电器股份有限公司 Air-conditioning heat pump system of multi-split air conditioner
CN103822391A (en) * 2013-12-02 2014-05-28 广东志高空调有限公司 Temperature and power variable dehumidification system and control method thereof
CN104864495B (en) * 2014-02-21 2018-12-04 大金工业株式会社 Air-conditioning device
CN104864495A (en) * 2014-02-21 2015-08-26 大金工业株式会社 Air conditioner device
CN107504629A (en) * 2017-08-02 2017-12-22 青岛海尔空调器有限总公司 A kind of multiple air-conditioned clothes dryer and its control method
CN107504629B (en) * 2017-08-02 2021-09-21 青岛海尔空调器有限总公司 Multi-connected air conditioner clothes dryer and control method thereof
CN108800772A (en) * 2018-07-06 2018-11-13 中山市碧朗节能设备有限公司 A kind of cold and hot double-purpose baking room
CN111435007A (en) * 2019-01-14 2020-07-21 青岛经济技术开发区海尔热水器有限公司 Heat pump hot air heating unit with dehumidification function and control method thereof
US20220026082A1 (en) * 2019-05-31 2022-01-27 Rheem Manufacturing Company Sequential Hot Gas Reheat System In An Air Conditioning Unit
CN112710101A (en) * 2019-10-24 2021-04-27 广东美的制冷设备有限公司 Air conditioner and control method thereof
US20210302073A1 (en) * 2020-03-31 2021-09-30 Goodman Global Group, Inc. Heating, Ventilation, and Air-Conditioning System with Reheat
CN112228977A (en) * 2020-11-18 2021-01-15 珠海格力电器股份有限公司 Heat pump system, control method and device thereof, air conditioning equipment and storage medium
CN112228977B (en) * 2020-11-18 2024-04-30 珠海格力电器股份有限公司 Heat pump system, control method and device thereof, air conditioning equipment and storage medium

Similar Documents

Publication Publication Date Title
JP3485379B2 (en) Vehicle air conditioner
US7975502B2 (en) Heat pump apparatus and operating method thereof
EP1664647B1 (en) Heat pump type drying apparatus drying apparatus and drying method
KR101387541B1 (en) Air conditioner and Defrosting driving method of the same
JP4840207B2 (en) Ventilation air conditioner
JP5983451B2 (en) Heating system
JP2007082586A (en) Clothes dryer
KR20010102808A (en) Heat pump type air conditioning apparatus
WO2005106341A1 (en) Air conditioner system
JP2004020086A (en) Dehumidifying drying air conditioner
KR20070074301A (en) Air-conditioner
JP3370016B2 (en) Heating equipment
JP2004313765A (en) Drier and method of operating the same
JP2004020085A (en) Hot water supply/air conditioner
KR20090006334U (en) Air handling unit
JP2005265402A (en) Heat pump device and its operating method
JP2002364939A (en) Refrigeration unit
JP7126611B2 (en) air conditioner
KR100389272B1 (en) Heat pump type air conditioning apparatus
JP3488763B2 (en) Air conditioner
JPH09222244A (en) Humidify control air conditioner
JP2822769B2 (en) Heat pump system
KR101127463B1 (en) The air-conditioning and heating cycle for the vehicle
JP4402235B2 (en) Reheat dry operation start control method and reheat type air conditioner for reheat type air conditioner
KR200405714Y1 (en) Heat-pump type heating apparatus