JPH11280525A - Air/fuel ratio control method for diesel engine - Google Patents

Air/fuel ratio control method for diesel engine

Info

Publication number
JPH11280525A
JPH11280525A JP10083776A JP8377698A JPH11280525A JP H11280525 A JPH11280525 A JP H11280525A JP 10083776 A JP10083776 A JP 10083776A JP 8377698 A JP8377698 A JP 8377698A JP H11280525 A JPH11280525 A JP H11280525A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
opening
egr
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10083776A
Other languages
Japanese (ja)
Inventor
Isamu Goto
勇 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10083776A priority Critical patent/JPH11280525A/en
Publication of JPH11280525A publication Critical patent/JPH11280525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress deterioration of exhaust emission due to a response delay, by quickening response of air/fuel ratio control when an opening of an EGR (exhaust gas recirculation) valve or an intake throttle valve is large. SOLUTION: In an air/fuel ratio control method for a diesel engine having an EGR valve 42 provided in an EGR passage 41 recirculating part of exhaust gas to the diesel engine 11 by connecting its intake/exhaust passages 16, 24 and an intake throttle valve 25 provided in the intake passage 16 to control air/fuel ratio in the target air/fuel ratio in accordance with an operating condition of the engine, a deviation amount of air/fuel ratio relating to the target air/fuel ratio is corrected by variably changing an opening of the EGR valve 42 when the EGR valve opening is decided less than a prescribed opening, by deciding whether the opening of the EGR valve 42 exceeds the prescribed opening or not. When the EGR valve opening is decided to exceed the prescribed opening, a deviation amount of air/fuel ratio relating to the target air/fuel ratio is corrected by variably changing an opening of the intake throttle valve 25.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はディーゼル機関の空
燃比制御方法に関し、特に、EGR弁と吸気絞り弁とを
備えたディーゼル機関の空燃比制御方法に関する。
The present invention relates to an air-fuel ratio control method for a diesel engine, and more particularly to an air-fuel ratio control method for a diesel engine having an EGR valve and an intake throttle valve.

【0002】[0002]

【従来の技術】従来技術によるディーゼル機関(以下、
機関と記す)のEGR(排気ガス再循環)制御方法に
は、機関の吸気通路と排気通路とを連通して機関に排気
ガスの一部を再循環させるEGR通路に設けられたEG
R弁と機関の吸気通路に設けられた吸気絞り弁とを備
え、EGR弁や吸気絞り弁の開度を可変することにより
EGR量や吸入空気量を可変して機関の排気空燃比を機
関の運転状態に応じた目標空燃比に制御するものがあ
る。
2. Description of the Related Art A conventional diesel engine (hereinafter referred to as a diesel engine)
An EGR (exhaust gas recirculation) control method of an engine includes an EGR passage provided in an EGR passage that communicates an intake passage and an exhaust passage of the engine and recirculates a part of exhaust gas to the engine.
An EGR valve and an intake throttle valve provided in an intake passage of the engine are provided, and the EGR amount and the intake air amount are varied by varying the opening degree of the EGR valve and the intake throttle valve to change the exhaust air-fuel ratio of the engine. Some control the target air-fuel ratio according to the operating state.

【0003】しかしながら、このような制御方法は、機
関が過渡運転状態のとき、EGR弁や吸気絞り弁の応答
が遅れるためスモークが発生しNOx が増大するという
問題を生じる。この問題を解決するため、本願出願人が
提案したEGR制御付きエンジンの吸気絞り弁制御装置
と題する特願平9−170562は、機関の運転状態に
応じてEGR弁および吸気絞り弁のそれぞれの開度をそ
れぞれの目標開度に協調制御することによりEGR量を
目標量に制御するもの、すなわちEGR弁または吸気絞
り弁の内一方の実際の開度と当該目標開度との偏差が所
定値以上のとき、EGR弁または吸気絞り弁の内他方の
開度を機関の運転状態に応じた異なる目標開度に制御す
るものである。
However, such a control method has a problem that when the engine is in a transient operation state, the response of the EGR valve and the intake throttle valve is delayed, so that smoke is generated and NOx increases. To solve this problem, Japanese Patent Application No. Hei 9-170562, entitled "Intake throttle valve control device for an engine with EGR control" proposed by the applicant of the present invention, discloses a method of opening an EGR valve and an intake throttle valve in accordance with the operating state of the engine. Controlling the EGR amount to the target amount by cooperatively controlling the degree to the respective target opening degree, that is, the deviation between the actual opening degree of one of the EGR valve and the intake throttle valve and the target opening degree is a predetermined value or more. In this case, the other opening of the EGR valve or the intake throttle valve is controlled to a different target opening according to the operating state of the engine.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記特
願平9−170562に提案したEGR制御付きエンジ
ンの吸気絞り弁制御装置は、EGR弁または吸気絞り弁
の開度を可変することにより機関の排気空燃比を機関の
運転状態に応じた目標空燃比にする空燃比制御を行って
いるが、EGR弁および吸気絞り弁は共に開度が大きく
なると、開度の変化に対しEGR通路および吸気通路の
開口面積の変化が少なくなり、空燃比制御の応答が遅
れ、この応答遅れの間、排気エミッションが悪化すると
いう問題を生じる。
However, the intake throttle valve control apparatus for an engine with EGR control proposed in Japanese Patent Application No. 9-170562 is designed to change the degree of opening of the EGR valve or the intake throttle valve to thereby reduce the exhaust of the engine. Although the air-fuel ratio control is performed to set the air-fuel ratio to a target air-fuel ratio in accordance with the operating state of the engine, when the opening of both the EGR valve and the intake throttle valve increases, the EGR passage and the intake passage change with respect to a change in the opening. The change in the opening area is reduced, and the response of the air-fuel ratio control is delayed. During this response delay, there is a problem that the exhaust emission deteriorates.

【0005】それゆえ、本発明は上記問題を解決し、E
GR弁および吸気絞り弁の開度が共に大きくなることを
回避し空燃比制御における応答速度を早め、応答遅れに
よる排気エミッションの悪化を抑制するディーゼル機関
の空燃比制御方法を提供することを目的とする。
Therefore, the present invention solves the above-mentioned problems, and
An object of the present invention is to provide an air-fuel ratio control method for a diesel engine that avoids both the opening of the GR valve and the intake throttle valve from becoming large, increases the response speed in the air-fuel ratio control, and suppresses the deterioration of exhaust emissions due to a response delay. I do.

【0006】[0006]

【課題を解決するための手段】上記問題を解決する本発
明によるディーゼル機関の空燃比制御方法は、ディーゼ
ル機関の吸気通路と排気通路とを連通して該機関に排気
ガスの一部を再循環させるEGR通路に設けられたEG
R弁と該機関の該吸気通路に設けられた吸気絞り弁とを
備え、該機関の運転状態に応じて空燃比を目標空燃比に
制御するディーゼル機関の空燃比制御方法において、前
記EGR弁の開度が所定開度を超えたか否かを判定し、
前記EGR弁の開度が所定開度未満であると判定された
とき、該EGR弁の開度を可変することにより前記空燃
比の前記目標空燃比に対するずれ量を補正し、前記EG
R弁の開度が所定開度を超えたと判定されたとき、前記
吸気絞り弁の開度を可変することにより前記空燃比の前
記目標空燃比に対するずれ量を補正することを特徴とす
る。
An air-fuel ratio control method for a diesel engine according to the present invention, which solves the above-mentioned problems, communicates an intake passage and an exhaust passage of a diesel engine to recirculate a part of exhaust gas to the engine. EG provided in the EGR passage
An air-fuel ratio control method for a diesel engine, comprising: an R valve and an intake throttle valve provided in the intake passage of the engine, wherein the air-fuel ratio is controlled to a target air-fuel ratio in accordance with an operation state of the engine. Determine whether the opening exceeds a predetermined opening,
When it is determined that the opening of the EGR valve is less than a predetermined opening, the amount of deviation of the air-fuel ratio from the target air-fuel ratio is corrected by varying the opening of the EGR valve, and
When it is determined that the opening of the R valve exceeds a predetermined opening, the amount of deviation of the air-fuel ratio from the target air-fuel ratio is corrected by varying the opening of the intake throttle valve.

【0007】上記構成により、EGR弁の開度が所定開
度未満であると判定されたときは、EGR弁開度を可変
することによる機関の実排気空燃比λR を機関の運転状
態に応じた目標排気空燃比λT に制御する空燃比制御の
応答性が良いので、EGR弁の開度を可変することによ
り、実排気空燃比の目標空燃比に対するずれ量を補正
し、EGR弁の開度が所定開度を超えたと判定されたと
きは、EGR弁開度を可変することによる上記空燃比制
御の応答性が悪いので、EGR弁開度の可変する代わり
に、吸気絞り弁の開度を可変することにより、実排気空
燃比の目標空燃比に対するずれ量を補正する。これによ
り実排気空燃比λR を目標排気空燃比λTに制御する空
燃比制御の応答性が良くなり、応答遅れによる排気エミ
ッションの悪化を抑制できる。
With the above configuration, when it is determined that the opening of the EGR valve is less than the predetermined opening, the actual exhaust air-fuel ratio λ R of the engine by varying the opening of the EGR valve is changed according to the operating state of the engine. since the target air-fuel ratio of exhaust gas lambda T good responsiveness of the air-fuel ratio control for controlling the, by varying the opening degree of the EGR valve, and corrects a shift amount with respect to the target air-fuel ratio of the actual exhaust air-fuel ratio, the opening of the EGR valve When it is determined that the degree exceeds the predetermined opening degree, the response of the air-fuel ratio control by varying the EGR valve opening degree is poor. Therefore, instead of varying the EGR valve opening degree, the opening degree of the intake throttle valve is changed. , The deviation of the actual exhaust air-fuel ratio from the target air-fuel ratio is corrected. Thus the actual exhaust air-fuel ratio lambda R the air-fuel ratio control of the better the response to control the target exhaust air fuel ratio lambda T a, can suppress the deterioration of exhaust emission due to the response delay.

【0008】[0008]

【発明の実施の形態】以下、添付図面を参照しつつ本発
明の実施の形態を詳細に説明する。図1は本発明に係る
ディーゼル機関の空燃比制御装置の一実施形態を示す概
略構成図である。ディーゼル機関(以下、単に機関と記
す)11は、頂部に燃焼室12を設けた複数の気筒を有
する。機関11の吸入行程において、吸気弁14を開弁
することにより吸気ポート13が開口され、吸気通路1
6を介して外気(吸入空気)が燃焼室12へ吸入され
る。燃料噴射ポンプ18は、燃料ライン19を通じて燃
料を燃料噴射ノズル17へ圧送する。燃料噴射ノズル1
7は、電子制御ユニット(以下、ECUと記す)20に
より駆動され、圧送された燃料を燃焼室12内へ直接噴
射する。このように、機関11の吸入行程において燃焼
室12内へ供給された空気と燃料は、圧縮行程、爆発燃
焼行程を経て排気ガスとなり、排気行程において、排気
弁23を開弁することにより開口された排気ポート2
2、排気通路24を介して燃焼室12から外気中へ排出
される。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of an air-fuel ratio control device for a diesel engine according to the present invention. A diesel engine (hereinafter simply referred to as an engine) 11 has a plurality of cylinders provided with a combustion chamber 12 at the top. In the intake stroke of the engine 11, the intake port 13 is opened by opening the intake valve 14, so that the intake passage 1
The outside air (intake air) is sucked into the combustion chamber 12 through 6. The fuel injection pump 18 pumps fuel through the fuel line 19 to the fuel injection nozzle 17. Fuel injection nozzle 1
The electronic control unit 7 is driven by an electronic control unit (hereinafter, referred to as an ECU) 20 and directly injects the pumped fuel into the combustion chamber 12. As described above, the air and the fuel supplied into the combustion chamber 12 in the intake stroke of the engine 11 become exhaust gas through the compression stroke and the explosion combustion stroke, and are opened by opening the exhaust valve 23 in the exhaust stroke. Exhaust port 2
2. Discharged from the combustion chamber 12 to the outside air via the exhaust passage 24.

【0009】ステップモータ26は、ECU20からの
制御信号に基づいて、吸気絞り弁25の開度が所望の値
になるように吸気絞り弁25を駆動する。全開スイッチ
58は、吸気絞り弁25が全開位置にあるときにONと
なり、それ以外の位置にあるときにOFFとなる。EC
U20は、機関11の運転状態に応じて吸気絞り弁25
の開度を回転数NEと燃料噴射量Qfin との2次元マッ
プ(図示せず)から算出される目標ステップ量LSTG
Rにステップモータ26を駆動して調節し、それにより
吸入空気量を調節する。
The step motor 26 drives the intake throttle valve 25 based on a control signal from the ECU 20 so that the opening degree of the intake throttle valve 25 becomes a desired value. The fully open switch 58 is turned on when the intake throttle valve 25 is at the fully open position, and is turned off when the intake throttle valve 25 is at any other position. EC
U20 is an intake throttle valve 25 according to the operating state of the engine 11.
Target step amount LSTG calculated from a two-dimensional map (not shown) the opening degree of the rotational speed NE and the fuel injection amount Q fin
R is adjusted by driving the step motor 26, thereby adjusting the intake air amount.

【0010】EGR(排気ガス再循環)装置40は、燃
焼室12から排気通路24へ排出される排気ガスの一部
を吸気通路16へ再循環させて燃焼室12へ戻す。EG
R装置40は、排気通路24から吸気通路16へ排気ガ
スの一部を流すための吸気通路16と排気通路24を連
通するEGR通路41と、EGR通路41を流れる排気
ガスの量(EGR量)を調整するためのEGR弁42と
を備えている。
An EGR (exhaust gas recirculation) device 40 recirculates a part of the exhaust gas discharged from the combustion chamber 12 to the exhaust passage 24 to the intake passage 16 and returns the exhaust gas to the combustion chamber 12. EG
The R device 40 includes an EGR passage 41 communicating the intake passage 16 and the exhaust passage 24 for flowing a part of the exhaust gas from the exhaust passage 24 to the intake passage 16, and an amount of the exhaust gas flowing through the EGR passage 41 (EGR amount). And an EGR valve 42 for adjusting the pressure.

【0011】EGR弁42は、負圧および大気圧として
EGR通路41を開閉するダイアフラム弁である。EG
R装置40は、圧力室46に導入される負圧および大気
圧を調整する電子真空制御弁(EVRV)48を備えて
いる。EVRV48は、ポンプ32に接続される負圧ポ
ート51と、大気を取り込む大気ポート53とに接続さ
れ、圧力室46に供給される負圧の大きさを調節する。
ECU20は、機関11の運転状態に応じてEVRV4
8の駆動デューティ比ED(=0〜100%)を回転数
NEと燃料噴射量Qfin との2次元マップ(図示せず)
から算出される目標駆動デューティ比EDに可変制御す
ることによって、EGR弁42の開度を調節し、それに
よりEGR量を調節する。また、駆動デューティ比ED
は、機関11の運転状態、例えば水温THWや吸気圧P
Mに応じて補正される。
The EGR valve 42 is a diaphragm valve that opens and closes the EGR passage 41 at negative pressure and atmospheric pressure. EG
The R device 40 includes an electronic vacuum control valve (EVRV) 48 for adjusting the negative pressure and the atmospheric pressure introduced into the pressure chamber 46. The EVRV 48 is connected to a negative pressure port 51 connected to the pump 32 and an atmosphere port 53 for taking in the atmosphere, and adjusts the magnitude of the negative pressure supplied to the pressure chamber 46.
The ECU 20 controls the EVRV4 according to the operating state of the engine 11.
8 is a two-dimensional map (not shown) of the rotational speed NE and the fuel injection amount Qfin with respect to the drive duty ratio ED (= 0 to 100%).
The opening degree of the EGR valve 42 is adjusted by variably controlling the target drive duty ratio ED calculated from Eq. Also, the drive duty ratio ED
Is the operating state of the engine 11, for example, the water temperature THW and the intake pressure P
It is corrected according to M.

【0012】図2は電子制御ユニットの内部および外部
との入出力関係を示すブロック構成図である。電子制御
ユニット(ECU)20は、機関11の燃料噴射量制
御、燃料噴射時期制御等を遂行する。またECU20
は、本発明のディーゼル機関の空燃比制御方法を遂行す
る。ECU20の内部は、例えばデジタルコンピュータ
からなり、双方向性バス69によって相互に接続された
CPU63、ROM64、RAM65、バッテリバック
アップRAM66、入力ポート67および出力ポート6
8を具備する。
FIG. 2 is a block diagram showing the input / output relationship between the inside and outside of the electronic control unit. The electronic control unit (ECU) 20 performs fuel injection amount control of the engine 11, fuel injection timing control, and the like. ECU 20
Perform the method for controlling the air-fuel ratio of a diesel engine according to the present invention. The inside of the ECU 20 is composed of, for example, a digital computer, and the CPU 63, the ROM 64, the RAM 65, the battery backup RAM 66, the input port 67, and the output port 6 interconnected by a bidirectional bus 69.
8 is provided.

【0013】機関11に設けられた水温センサ57は、
機関11を冷却する冷却水の温度THWを検出し、水温
THWに比例したアナログ電圧の信号をECU20へ入
力する。吸気通路16の外気吸引側に設けられたエアフ
ローメータ59は、吸気通路16を経由して機関11の
燃焼室12へ吸入される吸入空気量GNを検出し、吸入
空気量GNに比例したアナログ電圧の信号をECU20
へ入力する。アクセルペダル60の近傍に設けられたア
クセルセンサ61は、アクセルペダルの踏込量に応じた
アクセル開度ACCPを検出し、アクセル開度ACCP
に比例したアナログ電圧の信号をECU20へ入力す
る。吸気通路16に設けられた吸気圧センサ62は、吸
気通路16内の吸気圧力PMを検出し、吸気圧力PMに
比例したアナログ電圧の信号をECU20へ入力する。
ECU20へ供給されるこれら水温THW、吸入空気量
GN、アクセル開度ACCPおよび吸気圧力PMの各ア
ナログ電圧信号は、それぞれバッファ70、マルチプレ
クサ71およびA/D変換器72を介して入力ポート6
7に入力される。
The water temperature sensor 57 provided in the engine 11 is
The temperature THW of the cooling water for cooling the engine 11 is detected, and an analog voltage signal proportional to the water temperature THW is input to the ECU 20. An air flow meter 59 provided on the outside air suction side of the intake passage 16 detects an intake air amount GN to be taken into the combustion chamber 12 of the engine 11 via the intake passage 16, and an analog voltage proportional to the intake air amount GN. Signal of ECU20
Enter An accelerator sensor 61 provided in the vicinity of the accelerator pedal 60 detects the accelerator opening ACCP according to the depression amount of the accelerator pedal, and detects the accelerator opening ACCP.
Is input to the ECU 20. An intake pressure sensor 62 provided in the intake passage 16 detects an intake pressure PM in the intake passage 16 and inputs an analog voltage signal proportional to the intake pressure PM to the ECU 20.
The analog voltage signals of the water temperature THW, the intake air amount GN, the accelerator opening ACCP and the intake pressure PM supplied to the ECU 20 are supplied to the input port 6 via a buffer 70, a multiplexer 71 and an A / D converter 72, respectively.
7 is input.

【0014】機関11のクランクシャフト21は、噴射
ポンプ18の駆動軸29を回転させる。噴射ポンプ18
に設けられた回転速度センサ56は、駆動軸29の回転
速度を検出することによりクランクシャフト21の回転
速度、すなわち機関の回転数NEを検出する。回転速度
センサ56は、その出力信号を波形整形回路73を介し
て入力ポート67に入力する。また、クランクシャフト
21の角度を検出する図1に示さないクランク角センサ
55もクランク角に換算して所定のクランク角、例えば
30°CA毎に出力パルス信号を発生し、その出力信号
を波形整形回路73を介して入力ポート67に入力す
る。
The crankshaft 21 of the engine 11 rotates a drive shaft 29 of the injection pump 18. Injection pump 18
The rotation speed sensor 56 provided at the sensor detects the rotation speed of the drive shaft 29 to detect the rotation speed of the crankshaft 21, that is, the rotation speed NE of the engine. The rotation speed sensor 56 inputs the output signal to the input port 67 via the waveform shaping circuit 73. Also, a crank angle sensor 55 (not shown in FIG. 1) for detecting the angle of the crankshaft 21 generates an output pulse signal at every predetermined crank angle, for example, every 30 ° CA by converting into a crank angle, and the output signal is shaped into a waveform. The signal is input to the input port 67 via the circuit 73.

【0015】ステップモータ26や電子真空制御弁(E
VRV)48を駆動する各電気信号は、出力ポート6
8、駆動回路74を介してそれぞれ出力される。これよ
り、本発明によるEGR制御について以下に詳細に説明
する。図3はEGR弁の開度とEGR通路の開口面積と
の関係を示す図である。図3において横軸はEGR弁の
開度、縦軸はEGR弁の開度に応じて変化するEGR通
路の開口面積を示す。図3に示すように、EGR弁の開
度が増大するに連れてEGR通路の開口面積は増大する
が、EGR弁の開度の変化に対するEGR通路の開口面
積の変化は、EGR弁の開度の増大に連れて徐々に小さ
くなり、EGR弁の開度が所定開度、例えば70%以上
になると、EGR弁の開度の変化に対してEGR通路の
開口面積は殆ど変化しなくなる。また、図3に示すEG
R弁の開度70%はEGR通路の開口面積の約80%に
相当する。図3から、EGR弁の開度が所定開度以上に
なると、EGR弁の開度を変えてもEGR通路の開口面
積の変化は小さいのでEGR量は応答良く変化しないこ
とが判る。
The step motor 26 and the electronic vacuum control valve (E
(VRV) 48 is output to the output port 6
8, output via the drive circuit 74, respectively. Hereinafter, the EGR control according to the present invention will be described in detail. FIG. 3 is a diagram showing a relationship between the opening degree of the EGR valve and the opening area of the EGR passage. In FIG. 3, the horizontal axis represents the opening of the EGR valve, and the vertical axis represents the opening area of the EGR passage that changes according to the opening of the EGR valve. As shown in FIG. 3, the opening area of the EGR passage increases as the opening degree of the EGR valve increases. However, the change in the opening area of the EGR passage with respect to the change in the opening degree of the EGR valve depends on the opening degree of the EGR valve. When the opening degree of the EGR valve reaches a predetermined opening degree, for example, 70% or more, the opening area of the EGR passage hardly changes with a change in the opening degree of the EGR valve. The EG shown in FIG.
The 70% opening of the R valve corresponds to about 80% of the opening area of the EGR passage. FIG. 3 shows that when the opening degree of the EGR valve is equal to or more than the predetermined opening degree, the change in the opening area of the EGR passage is small even if the opening degree of the EGR valve is changed, so that the EGR amount does not change with good response.

【0016】図4は吸気絞り弁の開度と吸気通路の開口
面積との関係を示す図である。図4において横軸は吸気
絞り弁の開度、縦軸は吸気絞り弁の開度に応じて変化す
る吸気通路の開口面積を示す。図4に示すように、吸気
絞り弁の開度が増大するに連れて吸気通路の開口面積は
増大するが、吸気絞り弁の開度の変化に対する吸気通路
の開口面積の変化は、吸気絞り弁の開度の増大に連れて
徐々に小さくなり、吸気絞り弁の開度が所定開度、例え
ば70%以上になると、吸気絞り弁の開度の変化に対し
て吸気通路の開口面積は殆ど変化しなくなる。また、図
4に示す吸気絞り弁の開度70%は吸気通路の開口面積
の約90%に相当する。図4から、吸気絞り弁の開度が
所定開度以上になると、吸気絞り弁の開度を変えても吸
気通路の開口面積の変化は小さいので吸入空気量は応答
良く変化しないことが判る。
FIG. 4 shows the relationship between the opening degree of the intake throttle valve and the opening area of the intake passage. In FIG. 4, the horizontal axis represents the opening degree of the intake throttle valve, and the vertical axis represents the opening area of the intake passage that changes according to the opening degree of the intake throttle valve. As shown in FIG. 4, the opening area of the intake passage increases as the opening degree of the intake throttle valve increases, but the change in the opening area of the intake passage with respect to the change in the opening degree of the intake throttle valve depends on the intake throttle valve. When the opening degree of the intake throttle valve becomes a predetermined opening degree, for example, 70% or more, the opening area of the intake passage changes substantially with the change of the opening degree of the intake throttle valve. No longer. Further, the opening degree of 70% of the intake throttle valve shown in FIG. 4 corresponds to about 90% of the opening area of the intake passage. From FIG. 4, it can be seen that when the opening degree of the intake throttle valve is equal to or larger than the predetermined opening degree, even if the opening degree of the intake throttle valve is changed, the change in the opening area of the intake passage is small, so that the intake air amount does not change with good response.

【0017】図5は機関の運転状態に応じてEGR弁と
吸気絞り弁の各開度を算出するマップである。図5にお
いて横軸は機関の回転数NE(rpm)、縦軸は機関の
負荷に相当する燃料噴射量Qfin を示す。図5に示すよ
うに、EGR弁は、軽負荷程余剰空気が多いため要求さ
れるEGR量が多く高開度に設定され、高負荷になると
スモークの発生を抑制するため低開度に設定される。一
方、吸気絞り弁は、軽負荷程余剰空気が多く排気ガス量
低減が要求されるため低開度に設定され、高負荷になる
とスモークの発生を抑制するため高開度に設定される。
要約すると、機関が高負荷な程、EGR弁の開度は低
く、吸気絞り弁の開度は高く設定される。
FIG. 5 is a map for calculating the respective opening degrees of the EGR valve and the intake throttle valve according to the operating state of the engine. In FIG. 5, the horizontal axis indicates the engine speed NE (rpm), and the vertical axis indicates the fuel injection amount Qfin corresponding to the engine load. As shown in FIG. 5, the EGR valve is set to a high opening with a large amount of excess air as the load becomes lighter, and is set to a low opening to suppress the generation of smoke at a high load. You. On the other hand, the intake throttle valve is set to a low opening because the excess air is required to be reduced as the load becomes lighter and the exhaust gas amount is required to be reduced, and is set to a high opening to suppress the generation of smoke at a high load.
In summary, the higher the load of the engine, the lower the opening of the EGR valve and the higher the opening of the intake throttle valve.

【0018】したがって、機関の実排気空燃比λR を機
関の運転状態に応じた目標排気空燃比λT に制御する空
燃比制御の実行に際し、機関の軽負荷領域(右上から左
下への斜線で示す吸気絞り弁による補正領域)では、E
GR弁の開度が高いので、吸気絞り弁の開度を可変する
方がEGR弁の開度を可変するより高感度で応答し、機
関の高負荷領域(左上から右下への斜線で示すEGR弁
による補正領域)では、吸気絞り弁の開度が高いので、
EGR弁の開度を可変する方が吸気絞り弁の開度を可変
するより高感度で応答することが判る。
Therefore, when executing the air-fuel ratio control for controlling the actual exhaust air-fuel ratio λ R of the engine to the target exhaust air-fuel ratio λ T according to the operating state of the engine, the light load region of the engine (the hatched line from upper right to lower left) In the correction region by the intake throttle valve shown in FIG.
Since the opening degree of the GR valve is high, varying the opening degree of the intake throttle valve responds with higher sensitivity than varying the opening degree of the EGR valve, and the engine is in a high load region (shown by oblique lines from upper left to lower right). In the correction region by the EGR valve), since the opening degree of the intake throttle valve is high,
It can be seen that varying the opening of the EGR valve responds with higher sensitivity than varying the opening of the intake throttle valve.

【0019】本発明による実排気空燃比の目標空燃比に
対するずれ量を補正する空燃比制御は、EGR弁の開度
と吸気絞り弁の開度の変化による空燃比制御の応答性が
機関の負荷状態に応じて異なることに着目し、EGR弁
の開度が所定開度、例えば70%を超えたか否かを判定
し、EGR弁開度が所定開度未満であると判定されたと
き、EGR弁開度を可変することにより、上記空燃比の
ずれ量を補正し、EGR開度が所定開度を超えたと判定
されたとき、吸気絞り弁の開度を可変することにより、
上記空燃比のずれ量を補正する。本発明は、このように
制御することにより、空燃比制御の応答性を早め、応答
遅れによる排気エミッションの悪化を抑制する。
In the air-fuel ratio control for correcting the deviation of the actual exhaust air-fuel ratio from the target air-fuel ratio according to the present invention, the responsiveness of the air-fuel ratio control due to the change in the opening degree of the EGR valve and the opening degree of the intake throttle valve changes the load of the engine. Focusing on the fact that the opening degree of the EGR valve exceeds a predetermined opening degree, for example, 70%, it is determined that the opening degree of the EGR valve exceeds a predetermined opening degree, for example, 70%. By varying the valve opening, the deviation amount of the air-fuel ratio is corrected, and when it is determined that the EGR opening exceeds a predetermined opening, the opening of the intake throttle valve is varied,
The deviation amount of the air-fuel ratio is corrected. According to the present invention, by performing such control, the responsiveness of the air-fuel ratio control is accelerated, and the deterioration of the exhaust emission due to the response delay is suppressed.

【0020】次に、上述した本発明による空燃比制御を
ECU20により実行した例をフローチャートを用いて
以下に説明する。図6は本発明によるEGR制御ルーチ
ンのフローチャートである。本ルーチンは、所定の周
期、例えば8ms毎に実行される。先ず、ステップ60
1では、エアフローメータ59により検出された機関1
回転当たりの吸入空気量GN、回転数NEおよびアクセ
ル開度ACCPをRAM65から読込む。ステップ60
2では、ステップ601で読込んだ今回処理周期の機関
の回転数NEi とアクセル開度ACCPi に応じて予め
RAM65に格納した2次元マップ(図示せず)から別
ルーチンで算出された噴射時期に噴射する燃料噴射量Q
fin(i)を算出する。
Next, an example in which the above-described air-fuel ratio control according to the present invention is executed by the ECU 20 will be described with reference to a flowchart. FIG. 6 is a flowchart of an EGR control routine according to the present invention. This routine is executed at a predetermined cycle, for example, every 8 ms. First, step 60
In 1, the engine 1 detected by the air flow meter 59
The intake air amount GN per revolution, the revolution speed NE and the accelerator opening ACCP are read from the RAM 65. Step 60
In 2, the two-dimensional map injected computed in another routine (not shown) timing stored in advance in the RAM65 according to the rotational speed NE i and the accelerator opening ACCP i of read elaborate engine of the current processing cycle in step 601 Fuel injection quantity Q
Calculate fin (i) .

【0021】ステップ603では、ステップ601で読
込んだ今回処理周期の吸入空気量GNi とステップ60
2で算出した燃料噴射量Qfin(i)とに基づき、今回処理
周期の機関の排気ガスにおける実空燃比の理論空燃比に
対する比、すなわち実ラムダ値λR を、次式から算出す
る。 λR =GN(i) /Qfin(i)/Sto ここで、Stoは機関の排気ガスの実空燃比が理論空燃比
(14.5)のときにλR =1とするための係数であ
る。
In step 603, the intake air amount GN i read in step 601 in the current processing cycle is compared with step 60.
Based on the fuel injection amount calculated in 2 Q fin (i), the ratio to the theoretical air-fuel ratio of the actual air-fuel ratio in the exhaust gases of the engine of this processing cycle, that is, the actual lambda value lambda R, is calculated from the following equation. λ R = GN (i) / Q fin (i) / S to where S to is λ R = 1 when the actual air-fuel ratio of the exhaust gas of the engine is the stoichiometric air-fuel ratio (14.5). It is a coefficient.

【0022】ステップ604では、図7に示すような予
めROM64に格納された2次元マップに基づき機関の
回転数NEと燃料噴射量Qfin から機関の排気ガスにお
ける目標空燃比の理論空燃比に対する比である目標ラム
ダ値λT を算出する。ステップ605では、現在のEG
R量が所定量に到ったか否かを電子真空制御弁(EVR
V)48の駆動デューティ比EDがK(例えばK=70
%)未満か否かにより判別し、その判別結果がYESの
ときはEGR弁開度を可変してEGR量を変えることに
よる実排気空燃比λR を目標排気空燃比λT に制御する
空燃比制御の応答性が悪いのでステップ611へ進み、
吸気絞り弁の開度を可変することにより実排気空燃比λ
R を目標排気空燃比λT に合わせる空燃比制御を行う。
一方、その判別結果がNOのときはEGR弁開度を可変
してEGR量を変えることによる上記空燃比制御の応答
性が良いのでステップ606へ進み、EGR弁開度を可
変することにより実排気空燃比λR を目標排気空燃比λ
T に合わせる空燃比制御を行う。
In step 604, the ratio of the target air-fuel ratio of the exhaust gas of the engine to the stoichiometric air-fuel ratio is calculated from the engine speed NE and the fuel injection amount Qfin based on a two-dimensional map stored in the ROM 64 in advance as shown in FIG. to calculate a target lambda value λ T is. In step 605, the current EG
The electronic vacuum control valve (EVR) determines whether the R amount has reached a predetermined amount.
V) The drive duty ratio ED of 48 is K (for example, K = 70).
%), And when the result of the determination is YES, the actual exhaust air-fuel ratio λ R is controlled to the target exhaust air-fuel ratio λ T by varying the EGR valve opening to change the EGR amount. Because the control response is poor, proceed to step 611,
By varying the opening of the intake throttle valve, the actual exhaust air-fuel ratio λ
Carry out the air-fuel ratio control to adjust the R to the target exhaust air-fuel ratio λ T.
On the other hand, when the determination result is NO, the response to the air-fuel ratio control by changing the EGR valve opening amount and changing the EGR amount is good, so the process proceeds to step 606, and the actual exhaust gas is changed by changing the EGR valve opening amount. Change the air-fuel ratio λ R to the target exhaust air-fuel ratio λ
Perform air-fuel ratio control to match T.

【0023】ステップ606〜609では、EGR量を
EGR弁の開度を可変することにより補正する。すなわ
ち、実ラムダ値λR とステップ604で算出した目標ラ
ムダ値λT とを比較し、λR をλT に近づけるように、
ステップ606で、λR <λ T −αが成立するか否かを
判別し、その判別結果がYESのときはステップ607
でEGR量を増加させるように電子真空制御弁(EVR
V)48の駆動デューティ比EDを所定量、例えば1%
増加させ(ED←ED+1)、ステップ606の判別結
果がNOのときはステップ608でλR >λT +αが成
立するか否かを判別し、その判別結果がYESのときは
309でEGR量を減少させるようEVRV48の駆動
デューティ比EDを所定量、例えば1%減少させ(ED
←ED−1)、ステップ608の判別結果がNOのとき
は本ルーチンを終了する。
In steps 606 to 609, the EGR amount is
The correction is made by varying the opening of the EGR valve. Sand
And the actual lambda value λRAnd the target value calculated in step 604.
Waste value λTAnd λRTo λTTo get closer to
At step 606, λR TWhether or not -α holds
Discriminate, and if the discrimination result is YES, step 607.
The electronic vacuum control valve (EVR
V) The drive duty ratio ED of 48 is set to a predetermined amount, for example, 1%
Is increased (ED ← ED + 1), and the determination result of step 606 is made.
If the result is NO, then at step 608R> ΛT+ Α is formed
And if the result of the determination is YES
In step 309, the EVRV 48 is driven to reduce the EGR amount.
The duty ratio ED is reduced by a predetermined amount, for example, 1% (ED
← ED-1) When the determination result of step 608 is NO
Ends this routine.

【0024】ステップ610〜613では、EGR量を
吸気絞り弁25の開度を可変することにより補正する。
すなわち、実ラムダ値λR と上記目標ラムダ値λT とを
比較し、λR をλT に近づけるように、ステップ610
で、λR <λT −αが成立するか否かを判別し、その判
別結果がYESのときはステップ611で吸入空気量を
減少させるように吸気絞り弁25のステップモータ26
のステップ量を所定量、例えば1%減少させ(LSTG
R←LSTGR−1)、ステップ610の判別結果がN
Oのときはステップ612でλR >λT +αが成立する
か否かを判別し、その判別結果がYESのときは313
で吸入空気量を増加させるように吸気絞り弁25のステ
ップモータ26のステップ量LSTGRを所定量、例え
ば1%増加させ(LSTGR←LSTGR+1)、ステ
ップ612の判別結果がNOのときは本ルーチンを終了
する。
In steps 610 to 613, the EGR amount is corrected by changing the opening of the intake throttle valve 25.
That is, the actual lambda value λ R is compared with the target lambda value λ T, and step 610 is performed so that λ R approaches λ T.
Then, it is determined whether or not λ RT -α is satisfied. If the result of the determination is YES, step 611 of the intake throttle valve 25 is performed in step 611 so as to reduce the intake air amount.
Is reduced by a predetermined amount, for example, 1% (LSTG
R ← LSTGR-1), and the determination result of step 610 is N
If O, it is determined in step 612 whether or not λ R > λ T + α is satisfied. If the determination result is YES, 313 is determined.
The step amount LSTGR of the step motor 26 of the intake throttle valve 25 is increased by a predetermined amount, for example, 1% (LSTGR ← LSTGR + 1) so as to increase the intake air amount, and the routine ends when the determination result of step 612 is NO. I do.

【0025】[0025]

【発明の効果】以上説明したように、本発明によるディ
ーゼル機関のEGR制御方法によれば、EGR弁の開度
が所定量未満のとき、EGR弁の開度を可変することに
より機関の実排気空燃比を機関の運転状態に応じた目標
排気空燃比に制御する空燃比制御を行い、EGR弁の開
度が所定量より大のとき、吸気絞り弁の開度を可変する
ことにより上記空燃比制御を行うので、EGR弁または
吸気絞り弁の開度が大のときの空燃比制御の応答性が良
くなり、応答遅れによる排気エミッションの悪化を抑制
することができる。
As described above, according to the diesel engine EGR control method of the present invention, when the opening of the EGR valve is less than the predetermined amount, the actual exhaust of the engine is varied by varying the opening of the EGR valve. The air-fuel ratio is controlled to control the air-fuel ratio to a target exhaust air-fuel ratio according to the operating state of the engine, and when the opening of the EGR valve is larger than a predetermined amount, the opening of the intake throttle valve is varied to obtain the air-fuel ratio. Since the control is performed, the responsiveness of the air-fuel ratio control when the opening degree of the EGR valve or the intake throttle valve is large is improved, and the deterioration of the exhaust emission due to the response delay can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るディーゼル機関の空燃比制御装置
の一実施形態を示す概略構成図である。
FIG. 1 is a schematic configuration diagram illustrating an embodiment of an air-fuel ratio control device for a diesel engine according to the present invention.

【図2】電子制御ユニットの内部および外部との入出力
関係を示すブロック構成図である。
FIG. 2 is a block diagram showing an input / output relationship between the inside and outside of the electronic control unit.

【図3】EGR弁の開度とEGR通路の開口面積との関
係を示す図である。
FIG. 3 is a diagram showing a relationship between an opening degree of an EGR valve and an opening area of an EGR passage.

【図4】吸気絞り弁の開度と吸気通路の開口面積との関
係を示す図である。
FIG. 4 is a diagram showing a relationship between an opening degree of an intake throttle valve and an opening area of an intake passage.

【図5】機関の運転状態に応じてEGR弁と吸気絞り弁
の各開度を算出するマップである。
FIG. 5 is a map for calculating respective opening degrees of an EGR valve and an intake throttle valve in accordance with an operating state of an engine.

【図6】本発明による空燃比制御ルーチンのフローチャ
ートである。
FIG. 6 is a flowchart of an air-fuel ratio control routine according to the present invention.

【図7】機関の回転数NEと燃料噴射量Qfin から目標
ラムダ値λT を算出するマップである。
FIG. 7 is a map for calculating a target lambda value λ T from an engine speed NE and a fuel injection amount Q fin ;

【符号の説明】[Explanation of symbols]

11…ディーゼル機関 12…燃焼室 16…吸気通路 17…燃料噴射ノズル 20…電子制御ユニット(ECU) 25…吸気絞り弁 26…ステップモータ 40…排気ガス再循環(EGR)装置 41…EGR通路 42…EGR弁 48…電子真空制御弁(EVRV) 56…回転速度センサ 59…エアフローメータ DESCRIPTION OF SYMBOLS 11 ... Diesel engine 12 ... Combustion chamber 16 ... Intake passage 17 ... Fuel injection nozzle 20 ... Electronic control unit (ECU) 25 ... Intake throttle valve 26 ... Step motor 40 ... Exhaust gas recirculation (EGR) device 41 ... EGR passage 42 ... EGR valve 48: electronic vacuum control valve (EVRV) 56: rotational speed sensor 59: air flow meter

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F02D 21/08 301 F02D 21/08 301B 43/00 301 43/00 301K 301N 301W F02M 25/07 550 F02M 25/07 550A 570 570J ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI F02D 21/08 301 F02D 21/08 301B 43/00 301 43/00 301K 301N 301W F02M 25/07 550 F02M 25/07 550A 570 570J

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ディーゼル機関の吸気通路と排気通路と
を連通して該機関に排気ガスの一部を再循環させるEG
R通路に設けられたEGR弁と該機関の該吸気通路に設
けられた吸気絞り弁とを備え、該機関の運転状態に応じ
て空燃比を目標空燃比に制御するディーゼル機関の空燃
比制御方法において、 前記EGR弁の開度が所定開度を超えたか否かを判定
し、 前記EGR弁の開度が所定開度未満であると判定された
とき、該EGR弁の開度を可変することにより前記空燃
比の前記目標空燃比に対するずれ量を補正し、前記EG
R弁の開度が所定開度を超えたと判定されたとき、前記
吸気絞り弁の開度を可変することにより前記空燃比の前
記目標空燃比に対するずれ量を補正することを特徴とす
るディーゼル機関の空燃比制御方法。
An EG for communicating an intake passage and an exhaust passage of a diesel engine and recirculating a part of exhaust gas to the engine.
An air-fuel ratio control method for a diesel engine, comprising: an EGR valve provided in an R passage and an intake throttle valve provided in the intake passage of the engine, wherein the air-fuel ratio is controlled to a target air-fuel ratio in accordance with an operation state of the engine. In the above, it is determined whether or not the opening of the EGR valve has exceeded a predetermined opening, and when it is determined that the opening of the EGR valve is less than the predetermined opening, the opening of the EGR valve is varied. The deviation amount of the air-fuel ratio from the target air-fuel ratio is corrected by
When it is determined that the opening of the R valve exceeds a predetermined opening, the deviation amount of the air-fuel ratio from the target air-fuel ratio is corrected by varying the opening of the intake throttle valve. Air-fuel ratio control method.
JP10083776A 1998-03-30 1998-03-30 Air/fuel ratio control method for diesel engine Pending JPH11280525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10083776A JPH11280525A (en) 1998-03-30 1998-03-30 Air/fuel ratio control method for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10083776A JPH11280525A (en) 1998-03-30 1998-03-30 Air/fuel ratio control method for diesel engine

Publications (1)

Publication Number Publication Date
JPH11280525A true JPH11280525A (en) 1999-10-12

Family

ID=13812022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10083776A Pending JPH11280525A (en) 1998-03-30 1998-03-30 Air/fuel ratio control method for diesel engine

Country Status (1)

Country Link
JP (1) JPH11280525A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161179A (en) * 2001-11-27 2003-06-06 Toyota Motor Corp Internal combustion engine
FR2862091A1 (en) * 2003-11-07 2005-05-13 Renault Sas Air/fuel mixture ratio variation regulating method for diesel engine, involves producing control signals to control opening of intake and recirculation valves using corrector based on error deduced by comparing measured and desired ratios
FR2866392A1 (en) 2004-02-17 2005-08-19 Renault Sas Control apparatus for air supply to combustion chamber of Diesel engine supercharged by turbocompressor, based on regulating values of the richness and concentration of nitrogen oxides in the exhaust
JP2007270642A (en) * 2006-03-30 2007-10-18 Mitsubishi Fuso Truck & Bus Corp Egr control device of internal combustion engine
EP1965058A2 (en) 2007-02-28 2008-09-03 Mitsubishi Heavy Industries, Ltd. Diesel engine system with exhaust gas recirculation
CN112594073A (en) * 2020-12-15 2021-04-02 潍柴动力股份有限公司 Control method of air-fuel ratio of engine and engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161179A (en) * 2001-11-27 2003-06-06 Toyota Motor Corp Internal combustion engine
FR2862091A1 (en) * 2003-11-07 2005-05-13 Renault Sas Air/fuel mixture ratio variation regulating method for diesel engine, involves producing control signals to control opening of intake and recirculation valves using corrector based on error deduced by comparing measured and desired ratios
FR2866392A1 (en) 2004-02-17 2005-08-19 Renault Sas Control apparatus for air supply to combustion chamber of Diesel engine supercharged by turbocompressor, based on regulating values of the richness and concentration of nitrogen oxides in the exhaust
JP2007270642A (en) * 2006-03-30 2007-10-18 Mitsubishi Fuso Truck & Bus Corp Egr control device of internal combustion engine
EP1965058A2 (en) 2007-02-28 2008-09-03 Mitsubishi Heavy Industries, Ltd. Diesel engine system with exhaust gas recirculation
US8104457B2 (en) 2007-02-28 2012-01-31 Mitsubishi Heavy Industries, Ltd. Diesel engine system with exhaust gas recirculation
CN112594073A (en) * 2020-12-15 2021-04-02 潍柴动力股份有限公司 Control method of air-fuel ratio of engine and engine

Similar Documents

Publication Publication Date Title
JP3926522B2 (en) Intake control device for turbocharged engine
US6024069A (en) Controller for an internal combustion engine
EP0743437A2 (en) Idle speed control apparatus for an internal combustion engine
US20080046128A1 (en) Control system for internal combustion engine
EP1270910B1 (en) Control apparatus for internal combustion engine
US6443120B1 (en) Controlling apparatus and method of internal combustion engine
JP4135539B2 (en) Fuel injection amount control device for exhaust gas recirculation type internal combustion engine
JP4415509B2 (en) Control device for internal combustion engine
US7997067B2 (en) Exhaust emission control device and method for internal combustion engine, and engine control unit
JPH11280525A (en) Air/fuel ratio control method for diesel engine
JP4510656B2 (en) Exhaust gas purification device for internal combustion engine
JP3092547B2 (en) Intake throttle valve control device for engine with EGR control
JP2000227041A (en) Control device for cylinder injection type engine
JP2006299925A (en) Control device of diesel engine
JP3945070B2 (en) Engine control device
JPH028130B2 (en)
JPH11257142A (en) Fuel injection controller for diesel engine
JP3562137B2 (en) Control device for internal combustion engine
JP3307306B2 (en) Combustion system control device for internal combustion engine
JPH09151761A (en) Fuel control device for internal combustion engine
JP4325517B2 (en) Fuel injection control method for internal combustion engine
JP3812111B2 (en) Control device for internal combustion engine
JP3775100B2 (en) Engine control device
JP3916416B2 (en) Control device for internal combustion engine
JP4425003B2 (en) Control device for internal combustion engine