JPH11279736A - Gas wiping method suitable for thick plating - Google Patents

Gas wiping method suitable for thick plating

Info

Publication number
JPH11279736A
JPH11279736A JP8331598A JP8331598A JPH11279736A JP H11279736 A JPH11279736 A JP H11279736A JP 8331598 A JP8331598 A JP 8331598A JP 8331598 A JP8331598 A JP 8331598A JP H11279736 A JPH11279736 A JP H11279736A
Authority
JP
Japan
Prior art keywords
nozzle
steel strip
hot
wiping
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8331598A
Other languages
Japanese (ja)
Inventor
Hideki Hamada
秀樹 濱田
Nobuo Hatanaka
信夫 畠中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP8331598A priority Critical patent/JPH11279736A/en
Publication of JPH11279736A publication Critical patent/JPH11279736A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a thick hot dip metal plating steel sheet having uniform plating thickness by stabilizing blasting pressure distribution in the width direction of wiping gas flow even in the case of lowering the static pressure peak. SOLUTION: The nozzles for wiping having a lower side front end inclining surface 13 at 10-200 mm length L and 65-90 deg. inclining angle θ are disposed in both sides of the steel sheet 1 pulled up from the surface 8 of a hot-dipping bath 4 at 10-100 mm height H from the surface 8 of the hot-dipping bath 4 and 5-50 mm depth D from a nozzle hole 11 to the surface of the steel sheet 1, and the pressurized gas is blown into both surfaces of the front and the back sides of the steel sheet 1 from the nozzle 10 for wiping. Since the descending flow (a2 ) is pulled with eddy (a4 ) generated between the bath surface 8 and the nozzle bottom surface 12, dynamic pressure of the descending flow (a2 ) is raised and the static pressure peak is lowered at the neutral point (b), and the blasting pressure distribution suitable to the thick plating is obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶融めっき浴から引き
上げられる鋼帯に付着している過剰の溶融めっき金属を
除去し、特に厚目付け溶融めっき鋼板の目付け量調整に
適したガスワイピング方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas wiping method for removing excess hot-dip galvanized metal adhering to a steel strip pulled up from a hot-dip galvanizing bath, and particularly suitable for adjusting the basis weight of a thick hot-dip galvanized steel sheet. .

【0002】[0002]

【従来の技術】溶融めっきラインでは、図1に示すよう
に、めっき原板である鋼帯1を還元性雰囲気に維持され
た還元焼鈍炉2に搬送し、鋼帯1の表面を活性化した
後、還元焼鈍炉2からスナウト3を経て溶融めっき浴4
に送り込んでいる。鋼帯1は、溶融めっき浴4に浸漬さ
れているシンクロール5を周回し、進行方向を上向きに
変更される。次いで、鋼帯1は、サポートロール6を経
由して溶融めっき浴4から送り出され、ワイピング装置
7から噴射されたガスのワイピング作用によって溶融め
っき金属の付着量が調整される。溶融めっきされた鋼帯
1は、必要に応じて合金化熱処理され、次工程に搬送さ
れる。ワイピング装置7で過剰の溶融めっき金属をワイ
ピングすることによって、目付け量が調整されると共に
溶融めっき鋼帯の表面性状が安定化する。厚目付けが要
求される溶融めっき鋼帯を製造する際には、溶融めっき
浴4から引き上げられる鋼帯1に多量の溶融めっき金属
を随伴させ、ワイピング装置7による溶融めっき金属の
絞り取りを少なくしている。
2. Description of the Related Art In a hot-dip galvanizing line, as shown in FIG. 1, a steel strip 1, which is a raw plate for plating, is conveyed to a reduction annealing furnace 2 maintained in a reducing atmosphere to activate the surface of the steel strip 1. Hot-dip plating bath 4 from reduction annealing furnace 2 through snout 3
Has been sent to. The steel strip 1 goes around the sink roll 5 immersed in the hot-dip plating bath 4, and its traveling direction is changed upward. Next, the steel strip 1 is sent out of the hot-dip plating bath 4 via the support roll 6, and the amount of hot-dip metal deposited is adjusted by the wiping action of the gas injected from the wiping device 7. The hot-dip coated steel strip 1 is subjected to an alloying heat treatment as necessary, and is conveyed to the next step. By wiping excess hot-dip coated metal with the wiping device 7, the basis weight is adjusted and the surface properties of the hot-dip coated steel strip are stabilized. When manufacturing a hot-dip galvanized steel strip that requires thickening, a large amount of hot-dip metal is accompanied by the steel strip 1 pulled up from the hot-dip bath 4 to reduce the squeezing of the hot-dip metal by the wiping device 7. ing.

【0003】[0003]

【発明が解決しようとする課題】ワイピング装置7から
噴射されるガスの圧力を低下させることにより、溶融め
っき金属の除去量を少なくできる。しかし、ワイピング
装置7のヘッダ圧力を単純に低下させると、ノズル圧力
が不安定になり、所定のワイピング作用が得られなくな
る。たとえば、鋼帯1の板幅方向に関するワイピングガ
スの風圧分布が変動し、エッジ部におけるワイピング作
用が低下する結果、幅方向中央部に比較してエッジ部に
多量の溶融めっき金属が付着しやすくなる。ガス圧の低
下は、溶融めっき浴4から上昇中の鋼帯1に随伴してく
るドロスの除去作用を低減することにもなる。鋼帯1の
表面に付着残留するドロスは、そのまま異物として溶融
めっき層に取り込まれ、得られた溶融めっき鋼板の品質
を著しく低下させる。本発明は、このような問題を解消
すべく案出されたものであり、鋼帯表面に沿って下降す
るガス流を増大させ、ノズル口に対向する鋼帯表面の静
圧を低下させることにより、ガス圧を低下してワイピン
グする場合でも良好なワイピング作用を維持し、ドロス
に起因した異物の巻込みがなく、目付け量が効果的に調
整された厚目付け溶融めっき鋼板を得ることを目的とす
る。
By reducing the pressure of the gas injected from the wiping device 7, the amount of hot-dip metal removed can be reduced. However, if the header pressure of the wiping device 7 is simply reduced, the nozzle pressure becomes unstable, and a predetermined wiping action cannot be obtained. For example, the wind pressure distribution of the wiping gas in the width direction of the steel strip 1 fluctuates, and the wiping action at the edge portion is reduced. As a result, a larger amount of hot-dip plating metal is more likely to adhere to the edge portion than at the center portion in the width direction. . The reduction in gas pressure also reduces the action of removing dross accompanying the ascending steel strip 1 from the hot-dip plating bath 4. The dross adhering and remaining on the surface of the steel strip 1 is taken as it is as a foreign substance into the hot-dip coating layer, and significantly deteriorates the quality of the hot-dip steel sheet obtained. The present invention has been devised to solve such a problem, and by increasing the gas flow descending along the steel strip surface and reducing the static pressure on the steel strip surface facing the nozzle port. The purpose of the present invention is to obtain a thick-coated hot-dip coated steel sheet which maintains a good wiping action even when wiping at a reduced gas pressure, does not involve foreign matter caused by dross, and has an effectively adjusted basis weight. I do.

【0004】[0004]

【課題を解決するための手段】本発明のガスワイピング
方法は、その目的を達成するため、長さL=10〜20
0mm,傾斜角度θ=65〜90度の下側前端傾斜面を
もつワイピング用ノズルを、溶融めっき浴の湯面からノ
ズル底面までの高さH=10〜100mm,ノズル口か
ら鋼帯面までの距離D=5〜50mmの位置で溶融めっ
き浴から引き上げられる鋼帯の両側に配置し、ワイピン
グ用ノズルから鋼帯の表裏両面に向けて加圧ガスを吹き
付けることを特徴とする。
According to the gas wiping method of the present invention, in order to achieve the object, a length L = 10-20.
0 mm, a wiping nozzle having a lower front inclined surface at an inclination angle θ of 65 to 90 degrees, a height H from the molten metal bath surface to the nozzle bottom surface of H = 10 to 100 mm, and a height H from 10 to 100 mm from the nozzle opening to the steel strip surface. It is arranged on both sides of a steel strip pulled up from a hot-dip plating bath at a position of a distance D = 5 to 50 mm, and a pressurized gas is blown from a wiping nozzle toward both the front and back surfaces of the steel strip.

【0005】[0005]

【作用】本発明者等は、ワイピング用ノズルから鋼帯表
面に吹き付けられるガスの流れに及ぼす影響を種々の観
点から調査・研究した。その結果、下側前端傾斜面の傾
斜角度を大きくしたワイピング用ノズルを溶融めっき浴
の湯面及び鋼帯表面に対して特定された位置関係で配置
するとき、鋼帯表面に沿って下降するガス流れが増大
し、これに伴って噴射されたガスが上昇流と下降流に別
れる中立点で静圧が低下することを見い出した。下降流
の増加及び静圧の低下は、シミュレーション試験でガス
の流動状態を調査した結果から、次のようなメカニズム
で生じているものと推察される。
The present inventors have investigated and studied the effects of the wiping nozzle on the flow of gas blown onto the steel strip surface from various viewpoints. As a result, when disposing the wiping nozzle with the increased inclination angle of the lower front end inclined surface in a specified positional relationship with respect to the molten steel bath surface and the steel strip surface, the gas descending along the steel strip surface. It has been found that the flow increases and the static pressure decreases at the neutral point where the injected gas separates into an upward flow and a downward flow. The increase in the downward flow and the decrease in the static pressure are presumed to be caused by the following mechanism based on the result of investigation of the gas flow state by the simulation test.

【0006】溶融めっき浴4から引き上げられている鋼
帯1に対向させたノズル10のノズル口11から噴射さ
れたワイピング用のガスは、鋼帯1の表面に衝突した
後、図2に示すように上昇流a1 及び下降流a2 となっ
て鋼帯1の表面に沿って流動する。下降流a2 は、溶融
めっき浴4の湯面8で偏向して水平流a3 となる。ま
た、湯面8から高さH=10〜100mmの位置にノズ
ル10が通常配置されているため、ノズル底面12と湯
面8との間が減圧になり易い。下側前端傾斜面13の傾
斜角度θが大きいノズル10では、鋼帯1の表面及び下
側前端傾斜面13で下降流a2 が絞られるため、下降流
2 の直進性が高くなる。そのため、ノズル底面12と
湯面8との間が減圧になる傾向が一層強く、水平流a3
の一部がノズル底面12側に偏向し、図2で反時計方向
に回転する渦流a4 が発生する。これに対し、傾斜角度
θの小さいノズルでは、鋼帯1の表面と下側前端傾斜面
13との間を通過した下降流a2 がノズル底面12に沿
って拡散する割合が多く、渦流a4 が発生しない状態と
なる。
The wiping gas injected from the nozzle port 11 of the nozzle 10 facing the steel strip 1 pulled up from the hot-dip plating bath 4 collides with the surface of the steel strip 1, as shown in FIG. As a result, ascending flow a 1 and descending flow a 2 flow along the surface of the steel strip 1. Downdraft a 2 is a horizontal flow a 3 is deflected in the molten metal surface 8 of the hot-dip plating bath 4. Further, since the nozzle 10 is usually arranged at a position of a height H = 10 to 100 mm from the molten metal surface 8, the pressure between the nozzle bottom surface 12 and the molten metal surface 8 is easily reduced. In the nozzle 10 in which the inclination angle θ of the lower front end inclined surface 13 is large, the descending flow a 2 is narrowed by the surface of the steel strip 1 and the lower front end inclined surface 13, so that the straightness of the descending flow a 2 is increased. Therefore, the pressure between the nozzle bottom surface 12 and the molten metal surface 8 tends to be reduced, and the horizontal flow a 3
Some of deflected nozzle bottom 12 side, vortex a 4 to rotate in the counterclockwise direction in FIG. 2 is generated. On the other hand, in the nozzle with a small inclination angle θ, the descending flow a 2 passing between the surface of the steel strip 1 and the lower front end inclined surface 13 is more likely to diffuse along the nozzle bottom surface 12, and the vortex a 4 Does not occur.

【0007】渦流a4 は、反転した後、鋼帯1の表面と
下側前端傾斜面13との間から下降流a2 を引っ張り出
す流れとなる。そのため、下降流a2 の流量が多くな
り、ノズル10からのガスが上昇流a1 と下降流a2
別れる中立点bでの静圧ピークが低下し、余剰の溶融め
っき金属を除去するワイピング作用が弱められ厚目付け
に好適な圧力分布が得られる。下降流a2 の流量増加は
動圧の上昇を意味し、溶融めっき浴4から引き上げられ
ている鋼帯1に付着残留しているドロスc等の異物を押
し下げ、溶融めっき浴4に戻すことにも有効である。渦
流a4 の発生及び下降流a2 の流量増加を図るため、ノ
ズルの形状及び配置位置について検討を進めた。その結
果、下側前端傾斜面13の長さLを10〜200mm,
傾斜角度θを65〜90度とし、湯面8からノズル底面
12までの高さHを10〜100mm,ノズル口11か
ら鋼帯1面までの距離Dを5〜50mmの範囲に設定す
るとき、最適な渦流a4 及び下降流a2 が得られること
を多数の実験結果から見い出した。
After the reversal, the vortex flow a 4 is a flow that pulls down flow a 2 from between the surface of the steel strip 1 and the lower front end inclined surface 13. Therefore, the flow rate of downflow a 2 is increased, wiping gas from the nozzle 10 is lowered static pressure peak at the neutral point b to break up the upward flow a 1 flows downward a 2, to remove excess molten coating metal The effect is weakened, and a pressure distribution suitable for thickening is obtained. An increase in the flow rate of the descending flow a 2 means an increase in the dynamic pressure, and depresses foreign matter such as dross c remaining on the steel strip 1 pulled up from the hot-dip plating bath 4 and returns it to the hot-dip plating bath 4. Is also effective. Order to generate and flow increase in downflow a 2 vortex a 4, was studying the shape and position of the nozzles. As a result, the length L of the lower front end inclined surface 13 is 10 to 200 mm,
When the inclination angle θ is set to 65 to 90 degrees, the height H from the molten metal surface 8 to the nozzle bottom 12 is set to 10 to 100 mm, and the distance D from the nozzle port 11 to one steel strip 1 is set to 5 to 50 mm, that optimal vortex a 4 and downflow a 2 are obtained found from many experimental results.

【0008】下側前端傾斜面13の長さL及び傾斜角度
θは、下降流a2 の直進性を高める風洞を鋼帯1と下側
前端傾斜面13との間に形成するために重要な要因であ
る。L=10〜200mm,θ=65〜90度の範囲に
下側前端傾斜面13の長さL及び傾斜角度θを維持する
とき、風洞効果によって下降流a2 の直進性を高められ
ると共に、下側前端傾斜面13からノズル底面12を超
えた箇所が減圧し、カルマン現象による渦流a4 の発生
が促進される。また、発生した渦流a4 によって下降流
2 の流量が増加する。長さLが10mm未満では、鋼
帯1と下側前端傾斜面13との間にできる風洞が短く、
下降流a2 に十分な直進性が付与されない。逆に200
mmを超える長さLでは、渦流a4 の中心が鋼帯1上の
ワイピング作用点bから遠くなり、鋼帯1上のb点にお
ける静圧低減作用が弱くなる。傾斜角度θが65度未満
では、下降流a2 の流路断面積が大きくなるためガス拡
散が生じ、下降流a2 に十分な直進性が付与されない。
また、下側前端傾斜面13からノズル底面12に沿って
流れるガス流が生じ、渦流a4 の発生が抑えられる。逆
に90度を超える傾斜角度では、溶融めっき浴4から引
き上げられている鋼帯1の反りやフラッタリング等を吸
収するスペースが少なくなる。
The length L and the inclination angle θ of the lower front end inclined surface 13 are important for forming a wind tunnel between the steel strip 1 and the lower front end inclined surface 13 to enhance the straightness of the descending flow a 2. Is a factor. When the length L and the inclination angle θ of the lower front end inclined surface 13 are maintained in the range of L = 10 to 200 mm and θ = 65 to 90 degrees, the straightness of the downflow a 2 can be enhanced by the wind tunnel effect, and under reduced pressure is a part of the side front end inclined surface 13 beyond the nozzle bottom surface 12, the generation of vortex a 4 by Kalman phenomenon is promoted. The flow rate of downflow a 2 is increased by vortex a 4 occurred. When the length L is less than 10 mm, the wind tunnel formed between the steel strip 1 and the lower front end inclined surface 13 is short,
It is not granted sufficient linearity in downflow a 2. Conversely 200
In a length L of greater than mm, the center of the vortex a 4 becomes far from the wiping action point b on the steel strip 1, the static pressure reduction action in the b point on the steel strip 1 is weakened. The inclination angle θ is less than 65 degrees, the flow path cross-sectional area of the downward flow a 2 is is for gas diffusion increase occurs, it is not applied sufficient linearity in downflow a 2.
Further, the gas stream flowing along the lower front end inclined surface 13 on the nozzle bottom surface 12 occurs, the generation of vortex a 4 is suppressed. Conversely, if the inclination angle exceeds 90 degrees, the space for absorbing warpage, fluttering, and the like of the steel strip 1 pulled up from the hot-dip plating bath 4 is reduced.

【0009】湯面8から底面12までの高さHは、鋼帯
1に付着している溶融めっき金属の流動性が高い状態で
ワイピング用ガスを吹き付けると共に、ノズル底面12
と湯面8との間を減圧雰囲気にする上で重要な要因であ
る。高さHを10〜100mmの範囲に維持するとき、
流動性の高い溶融めっき金属にワイピング用ガスが吹き
付けられるため、余剰の溶融めっき金属が効率よく除去
される。また、ノズル底面12と湯面8との間がノズル
幅方向の外部空間に開放される割合が少なくなり、ノズ
ル底面12と湯面8との間に外部空間から流れ込む大気
等が抑制されるため、ノズル底面12と湯面8との間を
減圧雰囲気に維持し易くなる。高さHが100mmを超
えると、流動性が低下した溶融めっき金属にワイピング
用ガスが吹き付けられることになるため、高圧が必要と
されるばかりでなく、過剰な溶融めっき金属を効率よく
除去できなくなる。また、外部からノズル底面12と湯
面8との間に流れ込む大気等の流量が増加し、ノズル底
面12と湯面8との間を雰囲気圧が上昇し、渦流a4
発生が困難になる。逆に10mmに達しない高さHで
は、鋼帯1と下側前端傾斜面13との間から湯面8とノ
ズル底面12の間へと連続した風洞が生じ、却って渦流
4 の発生が弱くなる。
[0009] The height H from the molten metal surface 8 to the bottom surface 12 can be adjusted by spraying a wiping gas while the fluidity of the hot-dip metal deposited on the steel strip 1 is high,
This is an important factor in creating a decompressed atmosphere between the air and the molten metal surface 8. When maintaining the height H in the range of 10 to 100 mm,
Since the wiping gas is blown onto the hot-dip galvanized metal having a high fluidity, surplus hot-dip galvanized metal is efficiently removed. Further, the ratio of opening between the nozzle bottom surface 12 and the molten metal surface 8 to the external space in the nozzle width direction is reduced, and the air flowing from the external space between the nozzle bottom surface 12 and the molten metal surface 8 is suppressed. Thus, the space between the nozzle bottom surface 12 and the molten metal surface 8 can be easily maintained in a reduced pressure atmosphere. When the height H exceeds 100 mm, a wiping gas is sprayed on the hot-dip galvanized metal with reduced fluidity, so that not only high pressure is required, but also excessive hot-dip galvanized metal cannot be efficiently removed. . The flow rate of such air is increased flowing between the nozzle bottom surface 12 and the molten metal surface 8 from the outside, the ambient pressure increases between the nozzle bottom surface 12 and the molten metal surface 8, generation of vortex a 4 becomes difficult . Conversely the height H does not reach 10mm, the molten metal surface continuous wind tunnel occurs to between 8 and nozzle bottom 12 from between the steel strip 1 and a lower front inclined surface 13, rather the occurrence of vortex a 4 weak Become.

【0010】ノズル口11から鋼帯1面までの距離D
は、鋼帯1表面の中立点bで適正な静圧を得るために重
要な要因である。距離Dを5〜50mmの範囲に維持す
るとき、ガス圧を低下させてもワイピングに必要な静圧
が得られる。静圧は距離Dを小さくするほど上昇する
が、5mm未満の距離Dでは、溶融めっき浴4から引き
上げられている鋼帯1に反りやフラッタリングを吸収し
てノズル先端を鋼帯1と非接触状態に維持することが困
難になる。逆に、50mmを超える距離では、適正な静
圧を得るために過大なガス圧を必要とするばかりでな
く、鋼帯1と下側前端傾斜面13との間隙が開き、ノズ
ル幅方向両側から流出するガスの流量が増加し、余剰な
溶融めっき金属の除去に働くガスの利用効率が低下す
る。
The distance D from the nozzle port 11 to one surface of the steel strip
Is an important factor for obtaining an appropriate static pressure at the neutral point b of the steel strip 1 surface. When the distance D is maintained in the range of 5 to 50 mm, the static pressure required for wiping can be obtained even if the gas pressure is reduced. The static pressure increases as the distance D decreases, but at a distance D of less than 5 mm, the steel strip 1 pulled up from the hot-dip plating bath 4 absorbs warpage and fluttering so that the nozzle tip does not contact the steel strip 1. It becomes difficult to maintain the state. On the other hand, at a distance exceeding 50 mm, not only an excessive gas pressure is required to obtain an appropriate static pressure, but also a gap between the steel strip 1 and the lower front end inclined surface 13 is opened, and from both sides in the nozzle width direction. The flow rate of the gas flowing out increases, and the utilization efficiency of the gas that works to remove excess hot-dip galvanized metal decreases.

【0011】下側前端傾斜面13の長さLを10〜20
0mm,傾斜角度θを65〜90度としたノズル10
は、ノズル自体の設計は勿論、ノズル10の前端傾斜面
に角度調節板や角度調節ブロックを取り付けることによ
っても得られる。角度調節板や角度調節ブロックを使用
するノズルでは、角度調節板の傾斜角度を変え或いは角
度調節ブロックを取り外すことにより、通常操業条件下
でのガスワイピングに使用することができる。また、ノ
ズル自体の設計により下側前端傾斜面13の長さLを1
0〜200mm,傾斜角度θを65〜90度としたもの
では、通常の目付け量で溶融めっき鋼帯を製造する場合
にも風圧分布が一定化するため、ヘッダ圧を若干下げて
も効率よく目付け量を調整することが可能になる。
The length L of the lower front end inclined surface 13 is 10-20.
Nozzle 10 with 0 mm and inclination angle θ of 65 to 90 degrees
Can be obtained not only by designing the nozzle itself, but also by attaching an angle adjusting plate or an angle adjusting block to the front inclined surface of the nozzle 10. A nozzle using an angle adjusting plate or an angle adjusting block can be used for gas wiping under normal operating conditions by changing the inclination angle of the angle adjusting plate or removing the angle adjusting block. The length L of the lower front end inclined surface 13 is set to 1 by the design of the nozzle itself.
When the thickness is 0 to 200 mm and the inclination angle θ is 65 to 90 degrees, the wind pressure distribution is constant even when a hot-dip galvanized steel strip is manufactured with a normal weight per unit area. The amount can be adjusted.

【0012】[0012]

【実施例】下側前端傾斜面13の長さL,傾斜角度θが
種々異なり、幅1.0mm,リップ長さ20mmのスリ
ット状ノズル口11を形成したノズル10を用い、下側
前端傾斜面13の長さL,傾斜角度θ,湯面8からノズ
ル口11までの高さH,ノズル口11から鋼帯1面まで
の距離Dがガスワイピング作用に及ぼす影響を調査し
た。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A lower front end inclined surface 13 is formed by using a nozzle 10 having a slit-shaped nozzle port 11 having a length L and an inclination angle .theta. The effects of the length L, the inclination angle θ, the height H from the molten metal surface 8 to the nozzle port 11 and the distance D from the nozzle port 11 to the steel strip 1 on the gas wiping action were investigated.

【0013】下側前端傾斜面13の長さLの影響 下側前端傾斜面13の傾斜角度θを一定値75度に設定
し、下側前端傾斜面13の長さLを種々変えたノズル1
0を用意し、湯面8からノズル底面12までの高さH=
50mm,ノズル口11から鋼帯1面までの距離D=2
0mmの位置にノズル10を配置した。そして、ヘッダ
圧0.20kg/cm2 でガスを鋼帯1に吹き付け、中
立点bで風圧を測定した。表1の測定結果にみられるよ
うに、下側前端傾斜面13の長さLが10mm未満では
風圧はほとんど低下せず、L=10〜200mmの範囲
で風圧の低下が検出された。しかし、200mmを超え
る長さLでは却って風圧が増加に転じており、風圧低減
効果がL=250mmで消滅することが判った。
Influence of length L of lower front end inclined surface 13 The nozzle 1 in which the inclination angle θ of the lower front end inclined surface 13 is set to a constant value of 75 degrees and the length L of the lower front end inclined surface 13 is variously changed.
0, and the height H from the molten metal surface 8 to the nozzle bottom surface 12 is H =
50 mm, distance D from nozzle opening 11 to one surface of steel strip D = 2
The nozzle 10 was arranged at a position of 0 mm. Then, gas was blown onto the steel strip 1 at a header pressure of 0.20 kg / cm 2 , and the wind pressure was measured at the neutral point b. As can be seen from the measurement results in Table 1, when the length L of the lower front end inclined surface 13 was less than 10 mm, the wind pressure hardly decreased, and a decrease in the wind pressure was detected in the range of L = 10 to 200 mm. However, when the length L exceeds 200 mm, the wind pressure starts to increase, and it is found that the wind pressure reducing effect disappears when L = 250 mm.

【0014】 [0014]

【0015】下側前端傾斜面13の傾斜角度θの影響 下側前端傾斜面13の長さLが一定値60mmで傾斜角
度θを種々変えたノズル10を、湯面8からノズル底面
12までの高さH=50mm,100mm及び150m
m,ノズル口11から鋼帯1面までの距離D=20mm
の位置に配置し、ヘッダ圧力0.20kg/cm2 でガ
スを鋼帯1に吹き付け、中立点bで風圧を測定した。測
定結果を示す図3にみられるように、湯面8からノズル
底面12までの高さH=50mmにノズル10を配置し
た場合、60度未満では傾斜角度θが風圧に及ぼす影響
はほとんど検出されなかったが、60度を超えると傾斜
角度θに従って風圧が大きく低下した。傾斜角度θが風
圧低下に及ぼす影響は、湯面8からノズル底面12まで
の高さH=100mmに比較してH=50mmの方が顕
著であった。
Influence of inclination angle θ of lower front end inclined surface 13 The length L of the lower front end inclined surface 13 is a fixed value of 60 mm, and the nozzle 10 having variously changed inclination angles θ is formed from the molten metal surface 8 to the nozzle bottom surface 12. Height H = 50mm, 100mm and 150m
m, distance D from nozzle port 11 to one surface of steel strip D = 20 mm
, Gas was blown onto the steel strip 1 at a header pressure of 0.20 kg / cm 2 , and the wind pressure was measured at the neutral point b. As shown in FIG. 3 showing the measurement results, when the nozzle 10 is arranged at a height H = 50 mm from the molten metal surface 8 to the nozzle bottom surface 12, when the angle is less than 60 degrees, almost no influence of the inclination angle θ on the wind pressure is detected. However, when it exceeded 60 degrees, the wind pressure decreased greatly according to the inclination angle θ. The effect of the inclination angle θ on the decrease in wind pressure was more remarkable when H = 50 mm than when the height H from the molten metal surface 8 to the nozzle bottom 12 was H = 100 mm.

【0016】また、傾斜角度θ=30度及びθ=75度
のノズル10について、鋼帯1の幅方向風圧分布を測定
したところ、傾斜角度θ=75度のノズル10で得られ
た風圧分布は、図4に示すように傾斜角度θ=30の風
圧分布に比較して板幅方向全体で一様に下がっていた。
中立点bでの静圧は傾斜角度θ=30度のノズル10の
場合には0.057kg/cm2 であったのに対し、傾
斜角度θ=75度のノズル10の場合には0.052k
g/cm2 と低くなっていた。鋼帯1の表面に沿った下
降流a2 の動圧は、傾斜角度θ=30度のノズル10の
場合には0.023kg/cm2 であったのに対し、傾
斜角度θ=75度のノズル10の場合には0.028k
g/cm 2 と高くなっていた。
Further, the inclination angles θ = 30 degrees and θ = 75 degrees
The width direction wind pressure distribution of the steel strip 1 for the nozzle 10
As a result, the nozzle 10 with the inclination angle θ = 75 degrees was obtained.
The wind pressure distribution shown in FIG.
As compared with the pressure distribution, the pressure was reduced uniformly in the entire plate width direction.
The static pressure at the neutral point b is that of the nozzle 10 with the inclination angle θ = 30 degrees.
0.057kg / cm in caseTwo Was tilted
0.052k for nozzle 10 with oblique angle θ = 75 degrees
g / cmTwo And had been low. Below along the surface of steel strip 1
Downstream aTwo Dynamic pressure of the nozzle 10 with the inclination angle θ = 30 degrees
0.023kg / cm in caseTwo Was tilted
0.028 k in the case of the nozzle 10 having the oblique angle θ = 75 degrees
g / cm Two And was higher.

【0017】湯面8からノズル底面12までの高さHの
影響 下側前端傾斜面13の長さL及び傾斜角度θをそれぞれ
L=60mm,θ=75度の一定値に維持して、湯面8
からノズル底面12までの高さHを種々変更し、高さH
が風圧に及ぼす影響を調査した。なお、ノズル口11か
ら鋼帯1までの距離D=20mmの位置にノズル10を
配置し、ヘッダ圧0.20kg/cm2でガスを鋼帯1
に吹き付け、中立点bで風圧を測定した。表2の測定結
果にみられるように、湯面8からノズル底面12までの
高さHが10〜100mmの範囲では中立点bにおける
風圧が低下していたが、100mmを超える高さHでは
風圧が上昇し、H=150mmでは風圧低減効果がみら
れなかった。また、10mmに満たない高さHでは、湯
面の上下動が激しくなり、却って風圧が上昇する傾向が
みられた。
Influence of Height H from Hot Surface 8 to Nozzle Bottom 12 The length L and the inclination angle θ of the lower front end inclined surface 13 are maintained at constant values of L = 60 mm and θ = 75 degrees, respectively. Face 8
The height H from the nozzle to the nozzle bottom 12 is variously changed and the height H
The effect of wind on wind pressure was investigated. The nozzle 10 was arranged at a position D = 20 mm from the nozzle port 11 to the steel strip 1, and gas was supplied at a header pressure of 0.20 kg / cm 2 to the steel strip 1.
And the wind pressure was measured at the neutral point b. As can be seen from the measurement results in Table 2, when the height H from the molten metal surface 8 to the nozzle bottom 12 was in the range of 10 to 100 mm, the wind pressure at the neutral point b was reduced. Increased, and when H = 150 mm, no wind pressure reduction effect was observed. At a height H of less than 10 mm, the vertical movement of the molten metal surface became severe, and the wind pressure tended to increase.

【0018】 [0018]

【0019】ノズル口11から鋼帯1面までの距離Dの
影響 下側前端傾斜面13の傾斜角度θ及び長さLをそれぞれ
θ=75度,L=60mmの一定値に維持し、湯面8か
らノズル底面12までの高さHを50mm及び150m
mとし、ノズル口11から鋼帯1までの距離Dを種々変
更した位置にノズル10を配置し、ヘッダ圧0.20k
g/cm2 でガスを鋼帯1に吹き付け、中立点bで風圧
を測定した。表3の測定結果にみられるように、湯面8
からノズル底面12までの高さHを50mm及び150
mmとした条件下では、ノズル口11から鋼帯1面まで
の距離Dが50mm以下になると風圧が低減していた。
風圧低減効果は距離Dが短くなるほど大きくなるが、5
mmに満たない距離Dは、鋼帯1のバタツキに起因して
ノズル10の先端が鋼帯1に接触する虞れがあることか
ら実用に適さない。
Influence of the distance D from the nozzle port 11 to the steel strip 1 surface The inclination angle θ and the length L of the lower front end inclined surface 13 are maintained at constant values of θ = 75 degrees and L = 60 mm, respectively. The height H from 8 to the nozzle bottom 12 is 50 mm and 150 m.
m, the nozzle 10 was arranged at a position where the distance D from the nozzle port 11 to the steel strip 1 was variously changed, and the header pressure was 0.20 k.
A gas was blown onto the steel strip 1 at g / cm 2 , and the wind pressure was measured at the neutral point b. As shown in the measurement results in Table 3,
The height H from the nozzle to the nozzle bottom 12 is 50 mm and 150 mm.
Under the condition of mm, when the distance D from the nozzle port 11 to one surface of the steel strip became 50 mm or less, the wind pressure was reduced.
The wind pressure reduction effect increases as the distance D decreases, but
The distance D less than mm is not practical because the tip of the nozzle 10 may come into contact with the steel strip 1 due to the flapping of the steel strip 1.

【0020】 [0020]

【0021】以上の結果に基づき、下側前端傾斜面13
の長さL=60mm,傾斜角度θ=75度のノズル10
(本発明例)及び下側前端傾斜面13の長さL=60m
m,傾斜角度θ=30度のノズル10(比較例)を溶融
めっき浴4の湯面8から100mmの高さ、溶融めっき
浴4から引き上げられる鋼帯1の両面から20mm(本
発明例)及び30mm(比較例)離れた位置に配置した
ワイピング装置を用いて、溶融めっき浴4からラインス
ピード50m/分で引き上げられている鋼帯1にヘッダ
圧力0.20kg/cm2 でワイピングガスを板幅15
00mmの鋼帯1に吹き付けた。得られた溶融めっき鋼
帯を調査したところ、比較例では目付け量が鋼帯長手方
向に300〜320g/m2 と変動しており、幅方向で
は中央部が320g/m 2 と薄くエッジ部が360g/
2 と厚い分布であった。
Based on the above results, the lower front end inclined surface 13
10 having a length L = 60 mm and an inclination angle θ = 75 degrees
(Example of the present invention) and length L = 60 m of lower front end inclined surface 13
m, nozzle 10 (comparative example) with inclination angle θ = 30 degrees
Hot-dip plating with a height of 100 mm from the surface 8 of the plating bath 4
20 mm from both sides of steel strip 1 pulled out of bath 4
Inventive Example) and 30 mm (Comparative Example)
Using a wiping device, remove the line from the hot-dip plating bath 4.
Header on steel strip 1 being raised at a speed of 50 m / min
Pressure 0.20kg / cmTwo Wiping gas with width 15
It was sprayed on a steel strip 1 of 00 mm. Obtained hot-dip coated steel
When the band was examined, the basis weight in the comparative example was
300-320 g / mTwo And in the width direction
Is 320g / m in the center Two 360g /
mTwo And it was a thick distribution.

【0022】これに対し、本発明例では目付け量の変動
範囲が鋼帯長手方向300〜310g/m2 であり、幅
方向変動も中央部で310g/m2 ,エッジ部で300
g/m2 と狭くなっていた。このことは、下側前端傾斜
面13の長さL,傾斜角度θ,湯面8からノズル口11
までの高さH,ノズル口11から鋼帯1までの距離Dを
本発明に従って規制するとき、中立点bの静圧が低下し
て厚目付けに好適なワイピング作用が得られ、ワイピン
グガスの風圧分布が安定化することにより目付け量が安
定化することを示す。また、本発明例で形成された溶融
めっき層には、残留ドロスに起因する異物の混入が皆無
であった。
[0022] In contrast, the variation range of the basis weight in the present invention embodiment is a steel strip longitudinal 300~310g / m 2, lateral shift in the central portion 310 g / m 2, the edge portion 300
g / m 2 . This means that the lower front end inclined surface 13 has a length L, an inclination angle θ,
When the height H and the distance D from the nozzle port 11 to the steel strip 1 are regulated in accordance with the present invention, the static pressure at the neutral point b is reduced, and a wiping action suitable for thickening is obtained, and the wind pressure of the wiping gas is obtained. It shows that the basis weight is stabilized by stabilizing the distribution. Further, the hot-dip plating layer formed in the example of the present invention did not contain any foreign matter due to residual dross.

【0023】[0023]

【発明の効果】以上に説明したように、本発明において
は、下側前端傾斜面13の長さL=10〜200mm,
傾斜角度θ=65〜90度のノズルを湯面8からノズル
底面12までの高さH=5〜100mm,ノズル口11
から鋼帯1面までの距離D=5〜50mmの位置に配置
したワイピング装置を用いてワイピングすることによ
り、中立点での静圧が下がると共に、鋼帯の幅方向に関
して風圧分布が安定したガス流を形成することができ
る。そのため、目付け量の変動を抑えた厚目付け溶融め
っき鋼板の製造が可能となる。
As described above, in the present invention, the length L of the lower front end inclined surface 13 is 10 to 200 mm,
A nozzle having an inclination angle θ of 65 to 90 degrees is set at a height H from the molten metal surface 8 to the nozzle bottom surface 12 of H = 5 to 100 mm, and the nozzle opening 11
Wiping using a wiping device arranged at a distance D of 5 to 50 mm from the steel strip to one surface of the steel strip lowers the static pressure at the neutral point and stabilizes the wind pressure distribution in the width direction of the steel strip. A flow can be formed. For this reason, it is possible to manufacture a thick-coated hot-dip coated steel sheet while suppressing a change in the basis weight.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 溶融めっき設備の主要部[Fig. 1] Main parts of hot-dip plating equipment

【図2】 ガスワイピング用ノズルから噴射されたガス
の流動状態を説明する図
FIG. 2 is a diagram illustrating a flow state of gas injected from a gas wiping nozzle.

【図3】 ノズルの下型前端傾斜面の傾斜角度が鋼帯表
面の風圧に及ぼす影響を示したグラフ
FIG. 3 is a graph showing the effect of the inclination angle of the lower die front end inclined surface on the wind pressure on the steel strip surface.

【図4】 下型前端傾斜面の傾斜角度が異なるノズルか
ら鋼帯に吹き付けられたガスの鋼帯幅方向風圧分布を示
すグラフ
FIG. 4 is a graph showing the wind pressure distribution in the steel strip width direction of gas blown onto the steel strip from nozzles having different inclination angles of the lower die front end inclined surface.

【符号の説明】[Explanation of symbols]

1:鋼帯 2:還元焼鈍炉 3:スナウト 4:
溶融めっき浴 5:シンクロール 6:サポートロ
ール 7:ワイピング装置 8:湯面 10:ノズル 11:ノズル口 12:ノズル底面
13:下側前端傾斜面 θ:下側前端傾斜面の傾斜角度 L:下側前端傾
斜面の長さ H:湯面からノズル口までの高さ D:ノズル口か
ら鋼帯面までの距離 a1 :上昇流 a2 :下降流 a3 :水平流 a
4 :渦流 b:上昇流と下降流に別れる中立点 c:ドロス等の
異物
1: Steel strip 2: Reduction annealing furnace 3: Snout 4:
Hot-dip plating bath 5: Sink roll 6: Support roll 7: Wiping device 8: Hot water surface 10: Nozzle 11: Nozzle port 12: Nozzle bottom surface 13: Lower front end inclined surface θ: Lower front end inclined surface L: Lower angle length of the side front end inclined surface H: height D from the melt surface to the nozzle opening a distance from the nozzle port to the steel strip surface a 1: upward flow a 2: downflow a 3: horizontal flow a
4 : eddy current b: neutral point where it separates into upward flow and downward flow c: Foreign matter such as dross

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 長さL=10〜200mm,傾斜角度θ
=65〜90度の下側前端傾斜面をもつワイピング用ノ
ズルを、溶融めっき浴の湯面からノズル底面までの高さ
H=10〜100mm,ノズル口から鋼帯面までの距離
D=5〜50mmの位置で溶融めっき浴から引き上げら
れる鋼帯の両側に配置し、ワイピング用ノズルから鋼帯
の表裏両面に向けて加圧ガスを吹き付けることを特徴と
する厚目付けに適したガスワイピング方法。
1. Length L = 10 to 200 mm, inclination angle θ
= 65 to 90 degrees, the height of the wiping nozzle having the lower front end inclined surface from the molten metal bath surface to the nozzle bottom surface is H = 10 to 100 mm, and the distance from the nozzle port to the steel strip surface is D = 5 to 5 mm. A gas wiping method suitable for thickening, wherein the gas wiping method is arranged on both sides of a steel strip pulled up from a hot-dip plating bath at a position of 50 mm and sprays a pressurized gas from a wiping nozzle toward both the front and back surfaces of the steel strip.
JP8331598A 1998-03-30 1998-03-30 Gas wiping method suitable for thick plating Withdrawn JPH11279736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8331598A JPH11279736A (en) 1998-03-30 1998-03-30 Gas wiping method suitable for thick plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8331598A JPH11279736A (en) 1998-03-30 1998-03-30 Gas wiping method suitable for thick plating

Publications (1)

Publication Number Publication Date
JPH11279736A true JPH11279736A (en) 1999-10-12

Family

ID=13799001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8331598A Withdrawn JPH11279736A (en) 1998-03-30 1998-03-30 Gas wiping method suitable for thick plating

Country Status (1)

Country Link
JP (1) JPH11279736A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1586672A1 (en) 2004-04-13 2005-10-19 Mitsubishi-Hitachi Metals Machinery, Inc. Liquid wiping apparatus
JP2007270161A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk Gas wiping nozzle, and hot-dipped steel plate manufacturing method
JP2014015634A (en) * 2012-07-05 2014-01-30 Nippon Steel & Sumitomo Metal Gas wiping nozzle, and molten metal plated steel sheet manufacturing method
CN112513313A (en) * 2018-08-22 2021-03-16 杰富意钢铁株式会社 Method for producing molten metal coated steel strip and continuous molten metal coating apparatus
JP2022026756A (en) * 2020-07-31 2022-02-10 国立大学法人九州工業大学 Gas wiping nozzle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1586672A1 (en) 2004-04-13 2005-10-19 Mitsubishi-Hitachi Metals Machinery, Inc. Liquid wiping apparatus
US8079323B2 (en) 2004-04-13 2011-12-20 Mitsubishi-Hitachi Metals Machinery, Inc. Liquid wiping apparatus
JP2007270161A (en) * 2006-03-30 2007-10-18 Jfe Steel Kk Gas wiping nozzle, and hot-dipped steel plate manufacturing method
JP2014015634A (en) * 2012-07-05 2014-01-30 Nippon Steel & Sumitomo Metal Gas wiping nozzle, and molten metal plated steel sheet manufacturing method
CN112513313A (en) * 2018-08-22 2021-03-16 杰富意钢铁株式会社 Method for producing molten metal coated steel strip and continuous molten metal coating apparatus
US20210310109A1 (en) * 2018-08-22 2021-10-07 Jfe Steel Corporation Method of producing hot-dip metal coated steel strip and continuous hot-dip metal coating line
US11802329B2 (en) * 2018-08-22 2023-10-31 Jfe Steel Corporation Method of producing hot-dip metal coated steel strip and continuous hot-dip metal coating line
JP2022026756A (en) * 2020-07-31 2022-02-10 国立大学法人九州工業大学 Gas wiping nozzle

Similar Documents

Publication Publication Date Title
JP5549050B2 (en) Manufacturing equipment for molten metal plated steel strip
WO2009048031A1 (en) Apparatus for producing molten metal plated steel strip and process for producing molten metal plated steel strip
US11866829B2 (en) Device and method for manufacturing a coated metal strip with improved appearance by adjusting a coating thickness using gas jet wiping
JP5470932B2 (en) Hot-dip metal-plated steel strip manufacturing equipment and hot-metal-plated steel strip manufacturing method
US11802329B2 (en) Method of producing hot-dip metal coated steel strip and continuous hot-dip metal coating line
JP5418550B2 (en) Manufacturing method of molten metal plated steel strip
JPH11279736A (en) Gas wiping method suitable for thick plating
JP4816105B2 (en) Manufacturing method of molten metal plated steel strip
JP4857906B2 (en) Manufacturing method of molten metal plated steel strip
JP2010174263A (en) Apparatus for manufacturing hot-dip coated steel strip
JP5375150B2 (en) Manufacturing equipment for molten metal plated steel strip
JPH11279737A (en) Nozzle for gas wiping
JP2011252180A (en) Method of manufacturing hot dip metal coated steel strip
JP5824905B2 (en) Manufacturing method of molten metal plated steel strip
JPH05306449A (en) Method for preventing sticking of molten metal splash to strip surface at the time of hot dip metal coating
JP5532831B2 (en) Manufacturing method of molten metal plated steel strip
JP5640340B2 (en) Manufacturing method of molten metal plated steel strip
JP4765641B2 (en) Manufacturing method of molten metal plated steel strip
JPWO2020039869A1 (en) Method for producing hot-dip galvanized steel strip and continuous hot-dip galvanizing equipment
JP4599708B2 (en) Manufacturing apparatus and manufacturing method for continuous molten metal plated steel strip
JP2010144189A (en) Hot dip metal plated steel strip production apparatus
JPH04285146A (en) Continuous hot-dipping device
JP5556286B2 (en) Gas wiping equipment for molten metal plated steel strip
WO2023088625A1 (en) Method for manufacturing a coated metal strip with improved appearance and wiping device therefor
CN117897515A (en) Method for producing molten metal-plated steel strip

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607