JP5640340B2 - Manufacturing method of molten metal plated steel strip - Google Patents

Manufacturing method of molten metal plated steel strip Download PDF

Info

Publication number
JP5640340B2
JP5640340B2 JP2009179235A JP2009179235A JP5640340B2 JP 5640340 B2 JP5640340 B2 JP 5640340B2 JP 2009179235 A JP2009179235 A JP 2009179235A JP 2009179235 A JP2009179235 A JP 2009179235A JP 5640340 B2 JP5640340 B2 JP 5640340B2
Authority
JP
Japan
Prior art keywords
steel strip
gas
nozzle
gas wiping
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009179235A
Other languages
Japanese (ja)
Other versions
JP2011032526A (en
Inventor
玄太郎 武田
玄太郎 武田
高橋 秀行
秀行 高橋
雅俊 辰巳
雅俊 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009179235A priority Critical patent/JP5640340B2/en
Publication of JP2011032526A publication Critical patent/JP2011032526A/en
Application granted granted Critical
Publication of JP5640340B2 publication Critical patent/JP5640340B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Description

本発明は、溶融金属めっき浴から連続的に引き上げられる鋼帯の表面に、ガスワイピングノズルから気体を吹き付け、鋼帯表面のめっき付着量の制御を行う溶融金属めっき鋼帯の製造方法に関するものである。   The present invention relates to a method for producing a molten metal plated steel strip in which a gas wiping nozzle is sprayed with a gas onto the surface of a steel strip that is continuously pulled up from a molten metal plating bath to control the amount of coating on the surface of the steel strip. is there.

鋼帯の連続溶融めっきプロセスにおいては、図6に示すように、溶融金属が満たされているめっき浴2に鋼帯Sを浸漬させ、シンクロール3で方向転換した後、めっき浴2から垂直上方に引き上げ、めっき浴2の上方において、鋼帯Sを挟んで対向して設けられたガスワイピングノズル1a,1bから鋼帯面にガス(加圧空気など)を吹き付けるガスワイピングが行われる。このガスワイピングにより、鋼帯表面に付着した余剰な溶融金属が掻き取られてめっき付着量が制御されるとともに、付着した溶融金属が板幅方向および板長手方向で均一化される。
上記のようなガスワイピング部での鋼帯走行位置を安定化させるために、通常、シンクロール上方の浴面下にサポートロール4が配置され、また合金化処理等を行う場合は必要に応じてガスワイピングノズル1a,1bの上方にサポートロール5が設置される。
In the continuous hot dip plating process of the steel strip, as shown in FIG. 6, the steel strip S is immersed in the plating bath 2 filled with the molten metal, the direction is changed by the sink roll 3, and then vertically upward from the plating bath 2. Then, above the plating bath 2, gas wiping is performed in which gas (pressurized air or the like) is blown onto the steel strip surface from the gas wiping nozzles 1a and 1b provided facing each other across the steel strip S. By this gas wiping, excess molten metal adhering to the surface of the steel strip is scraped to control the amount of plating adhesion, and the adhering molten metal is made uniform in the plate width direction and the plate longitudinal direction.
In order to stabilize the steel strip traveling position in the gas wiping unit as described above, the support roll 4 is usually disposed under the bath surface above the sink roll, and when performing alloying treatment or the like as necessary. A support roll 5 is installed above the gas wiping nozzles 1a and 1b.

ガスワイピングノズル1a,1bは、多様な鋼帯幅に対応すると同時に鋼帯引き上げ時の幅方向のズレなどに対応するため、通常、鋼帯幅より長く構成され、鋼帯Sの幅端部より外側まで延びている。このようなガスワイピング装置では、鋼帯Sに衝突したガス噴流の乱れによって鋼帯下方に落下する溶融金属が周囲に飛び散る、いわゆるスプラッシュが発生し、これが鋼帯表面に付着してめっき鋼帯の表面品質の低下を招くという問題がある。   The gas wiping nozzles 1a and 1b are usually configured to be longer than the steel strip width in order to cope with various steel strip widths and at the same time to shift in the width direction when the steel strip is pulled up. It extends to the outside. In such a gas wiping apparatus, a so-called splash is generated in which molten metal falling below the steel strip is scattered by the disturbance of the gas jet colliding with the steel strip S, which adheres to the surface of the steel strip and adheres to the plated steel strip. There is a problem that the surface quality is degraded.

また、鋼帯の連続処理プロセスにおいて生産量を増加させるには、鋼帯通板速度を増加させればよい。しかし、連続溶融めっきプロセスにおいてガスワイピング方式でめっき付着量を制御する場合、鋼帯通板速度を増加させると、溶融金属の粘性によって鋼帯のめっき浴通過直後の初期付着量が増加するため、めっき付着量を一定範囲内に制御するには、ガスワイピングノズルから鋼帯面に吹き付けるガスをより高圧に設定する必要があり、これによってスプラッシュが大幅に増加し、良好な表面品質を維持できなくなる。   Further, in order to increase the production amount in the continuous treatment process of the steel strip, the steel strip passing speed may be increased. However, when controlling the coating amount by gas wiping method in the continuous hot dipping process, increasing the steel strip passing speed increases the initial adhesion amount immediately after passing through the plating bath of the steel strip due to the viscosity of the molten metal, In order to control the coating amount within a certain range, it is necessary to set the gas sprayed from the gas wiping nozzle to the steel strip surface at a higher pressure, which greatly increases the splash and cannot maintain good surface quality. .

上記のような問題を解決するため、特許文献1,2には、めっき浴を出てからガスワイピング部に到達する前の鋼帯にガスを吹き付け、余剰な溶融金属をある程度除去しておく技術が示されている。
特許文献1の技術は、通板する鋼帯両脇部にバッフルプレートを配置するとともに、このバッフルプレートの鋼帯側コーナー下部に、鋼帯エッジ付近の噴射ガスの流れを内向きに変える傾斜ガイドを設けたものである。
また、特許文献2の技術は、主ノズル(ワイピングノズル)に隣接して副ノズル(補助ノズル)を設け、主ノズルと副ノズルの仕切り板の噴出口先端を鋭角にするとともに、主ノズルからの主噴流に対して副ノズルからの副噴流を僅かに傾けるものであり、同文献によれば、ポテンシャル・コアが長くなる結果、付着量制御性が高まり、ガス噴流が安定するため騒音も低減するとしている。
In order to solve the above-mentioned problems, Patent Documents 1 and 2 describe a technique in which gas is blown to a steel strip before it reaches the gas wiping section after leaving the plating bath, and the excess molten metal is removed to some extent. It is shown.
In the technique of Patent Document 1, a baffle plate is arranged on both sides of a steel strip to be passed, and an inclined guide that changes the flow of a jet gas in the vicinity of the steel strip edge inwardly at the bottom of the steel strip side corner of the baffle plate. Is provided.
In addition, the technique of Patent Document 2 is provided with a sub nozzle (auxiliary nozzle) adjacent to the main nozzle (wiping nozzle) to make the tip of the outlet of the partition plate of the main nozzle and the sub nozzle an acute angle, and from the main nozzle. According to the document, the potential core is lengthened, resulting in an increase in adhesion amount controllability and stabilization of the gas jet, thereby reducing noise. It is said.

しかし、特許文献1,2の技術では、一時的なスプラッシュ低減は図れるものの、操業中にスプラッシュの発生を安定的に低減させることはできない。すなわち、溶融金属用のガスワイピングノズルのスリットギャップは、一般に縦横比が非常に小さく(アスペクト比=1:2000程度)、このためノズルの加工精度や取付精度がガスワイピングの適否に与える影響が非常に大きい。したがって、ガスワイピングノズル自体の加工精度や取付精度、さらにはライン速度、鋼帯の反り量などの操業条件によって、スプラッシュが発生しにくい最適条件は異なったものとなる。このため、特許文献1,2の技術を用いたとしても、スプラッシュの発生を安定的に抑えることは困難である。   However, although the techniques of Patent Documents 1 and 2 can achieve a temporary splash reduction, the occurrence of splash cannot be stably reduced during operation. In other words, the slit gap of a gas wiping nozzle for molten metal generally has a very small aspect ratio (aspect ratio = 1: 2000), so that the processing accuracy and mounting accuracy of the nozzle have a great influence on the suitability of gas wiping. Big. Therefore, the optimum conditions in which splash is unlikely to occur vary depending on the operating conditions such as the processing accuracy and mounting accuracy of the gas wiping nozzle itself, as well as the line speed and the warp amount of the steel strip. For this reason, even if the techniques of Patent Documents 1 and 2 are used, it is difficult to stably suppress the occurrence of splash.

この問題を解決するために、特許文献3には、次のような方法が提案されている。この方法は、ガスワイピング部で発生する音波の周波数スペクトルとスプラッシュ発生との相関関係を利用し、ガスワイピング部で発生する音波を測定して周波数スペクトルに変換し、この周波数スペクトルの特定周波数領域での音圧強度又は音圧強度の積分値が基準値以下となるように、ガスワイピングノズルの位置を調整するものである。   In order to solve this problem, Patent Document 3 proposes the following method. This method uses the correlation between the frequency spectrum of the sound wave generated by the gas wiping unit and the splash generation, measures the sound wave generated by the gas wiping unit and converts it to a frequency spectrum, and in a specific frequency region of this frequency spectrum. The position of the gas wiping nozzle is adjusted so that the sound pressure intensity or the integrated value of the sound pressure intensity is below the reference value.

特開2003−321756号公報JP 2003-321756 A 特開平10−204599号公報JP-A-10-204599 特開2007−308778号公報JP 2007-308778 A

しかし、特許文献3の方法では、評価の対象とする「特定周波数領域」が広い周波数領域に亘っており、スプラッシュ発生に関連するガス振動周波数スペクトルのわずかな変化に対応できないため、鋼帯サイズの変更やその他種々の操業条件の変更によるスプラッシュ発生状況変化を適切に検知することができず、このため操業が安定しないことがある。   However, in the method of Patent Document 3, since the “specific frequency region” to be evaluated extends over a wide frequency region, and cannot cope with a slight change in the gas vibration frequency spectrum related to the occurrence of splash, A change in the occurrence of splash due to a change or a change in various other operating conditions cannot be properly detected, and the operation may not be stable.

したがって本発明の目的は、以上のような従来技術の課題を解決し、ガスワイピングノズルを用いてめっき付着量の制御を行う溶融金属めっき鋼帯の製造方法において、鋼帯の通板速度に関わりなくスプラッシュによるめっき表面欠陥の発生を適切に抑え、高品質の溶融金属めっき鋼帯を安定して製造することができる製造方法を提供することにある。   Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art and relates to the sheet feeding speed of the steel strip in the manufacturing method of a hot-dip metal-plated steel strip in which the amount of plating adhesion is controlled using a gas wiping nozzle. Another object of the present invention is to provide a production method that can appropriately suppress the occurrence of plating surface defects due to splash and stably produce a high-quality hot-dip metal-plated steel strip.

本発明者らは、特許文献3のようにガスワイピング部で発生する音波の周波数スペクトルとスプラッシュの発生との相関関係を利用する方法について、評価の対象とすべきワイピングガス振動周波数帯を極力限定すべく、さらに検討を進めたところ、そもそも鋼帯エッジ部分でスプラッシュが発生しやすいのは、鋼帯がない部分において、対向する1対のワイピングノズルから噴射されたガス噴流どうしが衝突し、上下に振動する振動現象が発生することが主たる原因であることが判った。したがって、ガスワイピング部の音波測定(騒音測定)を行い、周波数スペクトルを求める際に、背景の騒音による周波数成分を差し引くことにより、ガスワイピング振動音周波数が明確に測定できることが判った。そして、さらに検討を進めた結果、ガスワイピングノズル条件で決まる特定の周波数領域に周波数スペクトルのピークが現れないように、ガスワイピングノズルの設定条件を調整することにより、スプラッシュによるめっき表面欠陥の発生を効果的に抑制できることが判った。   The inventors of the present invention limited the wiping gas vibration frequency band to be evaluated as much as possible with respect to a method using the correlation between the frequency spectrum of the sound wave generated in the gas wiping unit and the occurrence of splash as in Patent Document 3. As a result of further investigations, splashes are likely to occur at the edge of the steel strip in the first place because the gas jets injected from a pair of opposing wiping nozzles collide with each other in the absence of the steel strip. It was found that the main cause was the occurrence of a vibration phenomenon. Therefore, it was found that the gas wiping vibration sound frequency can be clearly measured by subtracting the frequency component due to background noise when performing sound wave measurement (noise measurement) of the gas wiping unit and obtaining the frequency spectrum. As a result of further investigation, by adjusting the gas wiping nozzle setting conditions so that the frequency spectrum peak does not appear in a specific frequency range determined by the gas wiping nozzle conditions, the occurrence of plating surface defects due to splash can be prevented. It was found that it can be effectively suppressed.

本発明はこのような知見に基づきなされたもので、以下を要旨とするものである。
[1]溶融金属めっき浴から連続的に引き上げられる鋼帯の表面に、ガスワイピングノズルからガスを吹き付けてめっき付着量の制御を行う溶融金属めっき鋼帯の製造方法において、ガスワイピング部で発生する音波を測定して周波数スペクトルに変換し、予め決められた周波数領域に周波数スペクトルのピークが現れたときに、当該ピークを相対的に小さくしてなくなるようにガスワイピングノズルの設定条件を調整する溶融金属めっき鋼帯の製造方法であって、予め決められた周波数領域が、下式で求められるStが0.1≦St≦0.15を満たす周波数領域であることを特徴とする溶融金属めっき鋼帯の製造方法。
St=fd/U
但し f:振動周波数
d:ガスワイピングノズルのスリットギャップBに対するガスワイピングノズル間距離Lの比率(=L/B*0.001)
U:ガスワイピングノズルのノズル出口ガス速度(m/s)
[2]上記[1]の製造方法において、調整されるガスワイピングノズルの設定条件が、浴面からのノズル高さ又は/及び鋼帯に対する上下方向でのガス噴射角度であることを特徴とする溶融金属めっき鋼帯の製造方法。
The present invention has been made on the basis of such findings and has the following gist.
[1] Generated at the gas wiping section in the manufacturing method of the molten metal plated steel strip, in which the amount of coating is controlled by blowing gas from the gas wiping nozzle onto the surface of the steel strip that is continuously pulled up from the molten metal plating bath. transformed into the frequency spectrum by measuring the sound waves, when the peak of the frequency spectrum in a predetermined frequency region appears, it adjusts the setting condition of the gas wiping nozzle as eliminated by the peak relatively small melt A method for producing a metal-plated steel strip, wherein the predetermined frequency region is a frequency region in which St obtained by the following formula satisfies 0.1 ≦ St ≦ 0.15: Manufacturing method of the belt.
St = fd / U
Where f: vibration frequency
d: Ratio of the distance L between the gas wiping nozzles to the slit gap B of the gas wiping nozzles (= L / B * 0.001)
U: Gas outlet nozzle gas velocity (m / s)
[2] In the production method of [1], the gas wiping nozzle setting condition to be adjusted is a nozzle height from the bath surface or / and a gas injection angle in a vertical direction with respect to the steel strip. A method for producing a molten metal-plated steel strip .

本願発明によれば、スプラッシュ発生源となるガスワイピング振動を抑制できるので、鋼帯通板速度に関わりなくスプラッシュの発生量を安定的に低減し、表面欠陥の無いめっき鋼帯を高い生産性で安定的に製造することができる。   According to the present invention, it is possible to suppress the gas wiping vibration that becomes a splash generation source, so that the amount of splash generation can be stably reduced regardless of the steel strip passage speed, and a plated steel strip without surface defects can be produced with high productivity. It can be manufactured stably.

ガスワイピング部における鋼帯エッジ近傍での対向ガス噴流の状態を示す模式図Schematic diagram showing the state of the opposed gas jet near the steel strip edge in the gas wiping section 図3の実験において使用した1対のガスワイピングノズルの上下方向でのガス噴射角度の角度差θを示す説明図Explanatory drawing which shows angle difference (theta) of the gas injection angle in the up-down direction of a pair of gas wiping nozzle used in the experiment of FIG. 1対のガスワイピングノズルの上下方向でのガス噴射角度にそれぞれ0.2゜、1.2゜の角度差θを付けて行った実験において、ガスワイピング振動音の周波数スペクトルを示す図面Drawing which shows the frequency spectrum of a gas wiping vibration sound in the experiment conducted by adding an angle difference θ of 0.2 ° and 1.2 ° to the gas injection angle in the vertical direction of a pair of gas wiping nozzles, respectively. ガスワイピング振動音の1600〜2300Hzにおけるパワースペクトル平均値とスプラッシュ量との関係を示すグラフThe graph which shows the relationship between the power spectrum average value and splash amount in 1600-2300Hz of a gas wiping vibration sound 実施例において、従来例と本発明例のスプラッシュ欠陥率を示すグラフIn an Example, the graph which shows the splash defect rate of a prior art example and this invention example 鋼帯の連続溶融めっき設備を模式的に示す説明図Explanatory drawing schematically showing continuous hot dip plating equipment for steel strip

溶融金属めっき浴から連続的に引き上げられる鋼帯の表面に、ガスワイピングノズルからガスを吹き付けてめっき付着量の制御を行う方法では、ガスワイピングにより生じる溶融金属のスプラッシュの多くは、鋼帯エッジ部から発生する(エッジスプラッシュ)。これは以下のような理由による。すなわち、鋼帯両側に配置されたガスワイピングノズルから吐出されたガス噴流は、鋼帯センター部では、鋼帯に衝突した後は単独噴流のまま壁面噴流となるのに対し、鋼帯エッジ部では、対向する両ガスワイピングノズルからのガス噴流が互いに衝突することで、図1に示すように上下に大きく振動する現象が見られることが判った。このため鋼帯エッジ部ではガスの速度変動(乱れ)が非常に大きくなり、スプラッシュが発生しやすくなるのである。   In the method of controlling the coating amount by blowing gas from the gas wiping nozzle onto the surface of the steel strip that is continuously pulled up from the molten metal plating bath, most of the splash of molten metal generated by gas wiping is Generated from (edge splash). This is due to the following reasons. That is, the gas jet discharged from the gas wiping nozzles arranged on both sides of the steel strip becomes a wall jet as a single jet after colliding with the steel strip at the steel strip center, whereas at the steel strip edge, It has been found that a phenomenon in which the gas jets from the opposing gas wiping nozzles collide with each other causes a large vibration in the vertical direction as shown in FIG. For this reason, the gas velocity fluctuation (disturbance) becomes very large at the steel strip edge portion, and splash is likely to occur.

この現象について、実際の溶融亜鉛めっきプロセスを再現できる溶融亜鉛めっきワイピングシミュレーターを用いて、改めて実験的な検証を行った。ガスワイピングノズルは、スリットギャップ:1.0mm、ノズル間距離:10mm、スリット幅:400mmとし、ノズルガス圧力は70kPaとした。溶融亜鉛めっき浴温は460℃とし、板厚0.4mm、板幅200mmの鋼帯を2.5m/sで通板させ、その際、騒音計にてガスワイピング振動音の測定とガスワイピングノズル下部に飛散するスプラッシュの捕集を同時に実施した。なお、実際の連続溶融めっきラインで発生するスプラッシュ欠陥と、ガスワイピングノズル下部に飛散するスプラッシュ量には相関があることは予め確認してある。   This phenomenon was experimentally verified again using a hot dip galvanizing wiping simulator that can reproduce the actual hot dip galvanizing process. The gas wiping nozzle had a slit gap of 1.0 mm, a distance between nozzles of 10 mm, a slit width of 400 mm, and a nozzle gas pressure of 70 kPa. The hot dip galvanizing bath temperature is 460 ° C, and a steel strip with a plate thickness of 0.4 mm and a plate width of 200 mm is passed at 2.5 m / s. At that time, measurement of gas wiping vibration noise and gas wiping nozzle are performed with a noise meter. Splashes scattered at the bottom were collected at the same time. In addition, it has been confirmed in advance that there is a correlation between the splash defect that occurs in the actual continuous hot dipping line and the amount of splash splashed under the gas wiping nozzle.

上記条件において、ガスワイピングノズルの上下方向でのガス噴射角度を変化させた場合の実験結果を以下に示す。図2に示すように、1対のガスワイピングノズル1a,1bの上下方向でのガス噴射角度にそれぞれ0.2゜、1.2゜の角度差θを付けて実験を行った。ノズル噴射口先端からノズル旋回中心までの距離は200mmとした。図3に、ガスワイピング振動音を測定し、周波数スペクトルに変換した結果を示す。これによれば、ガス噴射角度の角度差θが0.2゜と1.2゜では、特異周波数(パワースペクトル値がピークを示す周波数)が異なっている。この条件を含め、角度差θを種々変化させた場合のスプラッシュ量と1600〜2300Hzにおけるガスワイピング振動音のパワースペクトル平均値との関係を示したのが図4である。これによれば、パワースペクトル値の低下がスプラッシュ量の低減に寄与すること、より具体的には、特定の周波数領域(図4の場合には1550〜2325Hz)に周波数スペクトルのピークがある場合(例えば、角度差θが0.2゜の場合)に対して、同周波数領域に周波数スペクトルのピークがない場合(例えば、角度差θが1.2゜の場合)には、スプラッシュ量が顕著に低減していることが判る。   The experimental results when the gas injection angle in the vertical direction of the gas wiping nozzle is changed under the above conditions are shown below. As shown in FIG. 2, the experiment was performed with an angle difference θ of 0.2 ° and 1.2 ° added to the vertical gas injection angles of the pair of gas wiping nozzles 1a and 1b. The distance from the nozzle nozzle tip to the nozzle turning center was 200 mm. FIG. 3 shows the result of measuring the gas wiping vibration sound and converting it to a frequency spectrum. According to this, when the angle difference θ between the gas injection angles is 0.2 ° and 1.2 °, the singular frequency (frequency at which the power spectrum value shows a peak) is different. Including this condition, FIG. 4 shows the relationship between the amount of splash when the angle difference θ is variously changed and the power spectrum average value of the gas wiping vibration sound at 1600 to 2300 Hz. According to this, the decrease in the power spectrum value contributes to the reduction of the splash amount, more specifically, when there is a peak of the frequency spectrum in a specific frequency region (1550 to 2325 Hz in the case of FIG. 4) ( For example, when there is no peak of the frequency spectrum in the same frequency region (for example, when the angle difference θ is 1.2 °), the splash amount is significant. It turns out that it is reducing.

以上の理由から本発明では、ガスワイピング部で発生する音波を測定して周波数スペクトルに変換し、予め決められた周波数領域Aに周波数スペクトルのピークが現れないように、ワイピングノズルの設定条件を調整するものであり、これにより、スプラッシュ発生源となるガスワイピング振動を抑制でき、スプラッシュ量を顕著に低減させることができる。   For the above reasons, in the present invention, the sound wave generated in the gas wiping unit is measured and converted into a frequency spectrum, and the setting condition of the wiping nozzle is adjusted so that the peak of the frequency spectrum does not appear in the predetermined frequency region A. As a result, it is possible to suppress the gas wiping vibration that becomes a splash generation source, and to significantly reduce the amount of splash.

ここで、上記周波数領域Aは、以下のようにして予め決定すればよい。すなわち、上記のような噴流の振動現象は、一般的にストローハル数St(=fd/U)で整理できることが知られている(例えば、社河内敏彦著,「噴流工学」,森北出版株式会社,2004年3月,p.37−38参照)。ここで、f:振動周波数、d:代表長さ、U:代表速度である。ガスワイピング部のような系の場合、dをガスワイピングノズルのスリットギャップBに対するガスワイピングノズル間距離Lの比率(=L/B*0.001)、Uをノズル出口ガス速度とし、0.1≦St≦0.15を満たす周波数領域を上記周波数領域Aとすればよいこと、すなわち当該周波数領域に周波数スペクトルのピークが現れないようにすればよいことが判った。このように周波数領域Aは、ガスワイピングノズルのスリットギャップおよびノズル間距離とノズル出口ガス速度(ノズルガス圧力)によって決定されるため、実際の操業に適用する場合には、予めガスワイピングノズルのスリットギャップおよびノズル間距離とノズルガス圧力により周波数領域Aを求めておく必要がある。例えば、ガスワイピングノズルのスリットギャップ:0.9mm、ノズル間距離:16mm、ノズルガス圧力:60kPa(ノズル出口ガス速度:290m/s)の場合は、周波数領域Aは1631〜2447Hzとなる。   Here, the frequency region A may be determined in advance as follows. That is, it is known that the vibration phenomenon of the jet as described above can be generally arranged by the Strouhal number St (= fd / U) (for example, Toshihiko Shauchi, “Jet Engineering”, Morikita Publishing Co., Ltd.) , March 2004, p.37-38). Here, f: vibration frequency, d: representative length, U: representative speed. In the case of a system such as a gas wiping unit, d is the ratio of the distance L between the gas wiping nozzles to the slit gap B of the gas wiping nozzle (= L / B * 0.001), U is the nozzle outlet gas velocity, 0.1 It has been found that the frequency region satisfying ≦ St ≦ 0.15 may be the frequency region A, that is, the peak of the frequency spectrum may be prevented from appearing in the frequency region. Thus, since the frequency region A is determined by the slit gap of the gas wiping nozzle, the distance between the nozzles, and the nozzle outlet gas velocity (nozzle gas pressure), when applied to actual operation, the slit gap of the gas wiping nozzle in advance. Further, the frequency region A needs to be obtained from the distance between nozzles and the nozzle gas pressure. For example, when the slit gap of the gas wiping nozzle is 0.9 mm, the distance between nozzles is 16 mm, and the nozzle gas pressure is 60 kPa (nozzle outlet gas velocity: 290 m / s), the frequency region A is 1631 to 2447 Hz.

また、調整可能なガスワイピングノズルの設定条件としては、例えば、ノズルガス圧力、ノズル−鋼帯距離、上下方向でのガス噴射角度(ノズル角度)、浴面からのノズル高さなどが考えられるが、ノズルガス圧力とノズル−鋼帯距離は、これらを変更するとめっき付着量も変わってしまうので、一般に操業中における変更(調整)が難しい。したがって、操業中に変更(調整)を行うような場合には、上下方向でのガス噴射角度、浴面からのノズル高さのいずれか又は両方を調整するのが特に望ましい。   In addition, as the setting conditions of the adjustable gas wiping nozzle, for example, nozzle gas pressure, nozzle-steel strip distance, gas injection angle in the vertical direction (nozzle angle), nozzle height from the bath surface, etc. can be considered. If the nozzle gas pressure and the nozzle-steel strip distance are changed, the amount of plating adhesion also changes, so that it is generally difficult to change (adjust) during operation. Therefore, when changing (adjusting) during operation, it is particularly desirable to adjust either or both of the gas injection angle in the vertical direction and the nozzle height from the bath surface.

本発明を実施するに当たっては、ガスワイピング部近傍に音圧検出用マイクを設置してガスワイピング部からの音波を測定し、この音波を公知のリアルタイム音波解析装置で周波数スペクトルに変換する。プロセス制御装置では、この周波数スペクトルに基づき、ガスワイピングノズル条件から求められる周波数領域Aに周波数スペクトルのピークが現れるかどうかを判定し、周波数領域Aに周波数スペクトルのピークが現れる場合には、ガスワイピングノズルの設定条件を調整し(例えば、鋼帯表裏のガスワイピングノズルの上下方向でのガス噴射角度を大きくするように変更する)、周波数領域A内に周波数スペクトルのピークが現れないようにする。
なお、このようなガスワイピング部からの音波の周波数スペクトルの解析とこれに基づくガスワイピングノズルの位置調整は、操業中連続的に行ってもよいし、適宜時間的な間隔をおいて行ってもよい。また、めっき条件の変更時に適宜行ってもよい。
In carrying out the present invention, a sound pressure detection microphone is installed in the vicinity of the gas wiping unit to measure the sound wave from the gas wiping unit, and the sound wave is converted into a frequency spectrum by a known real-time sound wave analyzer. In the process control device, based on the frequency spectrum, it is determined whether or not a frequency spectrum peak appears in the frequency region A determined from the gas wiping nozzle condition. If the frequency spectrum peak appears in the frequency region A, the gas wiping is performed. Nozzle setting conditions are adjusted (for example, the gas injection angle in the vertical direction of the gas wiping nozzle on the front and back of the steel strip is changed so as to increase), so that the peak of the frequency spectrum does not appear in the frequency region A.
The analysis of the frequency spectrum of the sound wave from the gas wiping unit and the position adjustment of the gas wiping nozzle based on the analysis may be performed continuously during the operation or may be performed at appropriate time intervals. Good. Moreover, you may perform suitably at the time of change of plating conditions.

連続溶融亜鉛めっき設備において、板厚:0.7〜1.0mm、板幅:1000〜1200mmの鋼帯を、片面めっき付着量:45〜50g/m、通板速度:2〜2.5m/sの条件で連続溶融亜鉛めっきし、溶融亜鉛めっき鋼帯を製造した。
使用したガスワイピングノズルは、スリット幅:2000mm、スリットギャップ:0.9mmであり、ノズルガス圧力:60〜80kPa、ノズル−鋼帯距離:7〜10mm、めっき浴面からのノズル高さ:400mmとした。また、バッフルプレートを固定条件で使用した。
In a continuous hot dip galvanizing facility, a steel strip having a plate thickness of 0.7 to 1.0 mm, a plate width of 1000 to 1200 mm, a single-sided plating adhesion amount of 45 to 50 g / m 2 , and a plate passing speed of 2 to 2.5 m. A hot dip galvanized steel strip was produced by continuous hot dip galvanizing under the conditions of / s.
The gas wiping nozzle used had a slit width of 2000 mm and a slit gap of 0.9 mm, a nozzle gas pressure of 60 to 80 kPa, a nozzle-steel strip distance of 7 to 10 mm, and a nozzle height from the plating bath surface of 400 mm. . A baffle plate was used under fixed conditions.

本発明例では、ワイピングノズル側部から約5m離れた場所にマイクロフォンを設置してガスワイピング部からの音波を測定し、その音波をリアルタイム音波解析装置(リアルタイムFFT,サンプリング周波数20kHz)で周波数スペクトルに変換処理(常時処理)し、スペクトルピークと判定された周波数10点を出力する。ガスワイピング条件の設定計算を行うプロセス制御装置では、ガスワイピングノズル条件から算出される現時点の周波数領域AとリアルタイムFFTから出力された10点を比較し、周波数領域A内の数値があれば、上下方向でのガス噴射角度を変更するようにした。   In the example of the present invention, a microphone is installed at a location about 5 m away from the side of the wiping nozzle and the sound wave from the gas wiping unit is measured, and the sound wave is converted into a frequency spectrum by a real-time sound wave analysis device (real-time FFT, sampling frequency 20 kHz). Conversion processing (always processing) is performed, and 10 frequencies determined as spectrum peaks are output. In the process control device that performs calculation calculation of the gas wiping condition, the current frequency region A calculated from the gas wiping nozzle condition is compared with 10 points output from the real-time FFT, and if there is a numerical value in the frequency region A, The gas injection angle in the direction was changed.

本発明例と従来例(特許文献1と特許文献3の各方法)の各々10日間のスプラッシュ欠陥率推移を図5に示す。なお、スプラッシュ発生量は、各製造条件で通過した鋼帯長さに対する検査工程でスプラッシュ欠陥ありと判定された鋼帯長さの比率であり、実用上問題とならない軽度のスプラッシュ欠陥を含んでいる。図5によれば、本発明例のスプラッシュ欠陥率は、従来例1(特許文献1の方法)に比べて大幅に低減(全平均で86%減)し、従来例2(特許文献3の方法)に比べても低位で安定する(全平均で45%減)ことを確認した。   FIG. 5 shows the transition of the splash defect rate for 10 days for each of the invention example and the conventional example (each method of Patent Document 1 and Patent Document 3). The amount of splash generated is the ratio of the steel strip length determined to have a splash defect in the inspection process to the steel strip length passed under each manufacturing condition, and includes a slight splash defect that does not cause a practical problem. . According to FIG. 5, the splash defect rate of the example of the present invention is significantly reduced (86% reduction in average) compared to the conventional example 1 (the method of Patent Document 1), and the conventional example 2 (the method of Patent Document 3). ), It was confirmed that it was stable at a low level (a 45% decrease in the overall average).

1a,1b ガスワイピングノズル
2 めっき浴
3 シンクロール
4,5 サポートロール
S 鋼帯
1a, 1b Gas wiping nozzle 2 Plating bath 3 Sink roll 4, 5 Support roll S Steel strip

Claims (2)

溶融金属めっき浴から連続的に引き上げられる鋼帯の表面に、ガスワイピングノズルからガスを吹き付けてめっき付着量の制御を行う溶融金属めっき鋼帯の製造方法において、
ガスワイピング部で発生する音波を測定して周波数スペクトルに変換し、予め決められた周波数領域に周波数スペクトルのピークが現れたときに、当該ピークを相対的に小さくしてなくなるようにガスワイピングノズルの設定条件を調整する溶融金属めっき鋼帯の製造方法であって、
予め決められた周波数領域が、下式で求められるStが0.1≦St≦0.15を満たす周波数領域であることを特徴とする溶融金属めっき鋼帯の製造方法。
St=fd/U
但し f:振動周波数
d:ガスワイピングノズルのスリットギャップBに対するガスワイピングノズル間距離Lの比率(=L/B*0.001)
U:ガスワイピングノズルのノズル出口ガス速度(m/s)
In the manufacturing method of the molten metal plating steel strip, which controls the amount of plating by blowing gas from the gas wiping nozzle on the surface of the steel strip continuously pulled up from the molten metal plating bath,
The sound wave generated in the gas wiping unit is measured and converted into a frequency spectrum. When a frequency spectrum peak appears in a predetermined frequency region , the gas wiping nozzle A method of manufacturing a molten metal-plated steel strip that adjusts the setting conditions ,
The method for producing a hot-dip metal-plated steel strip, wherein the predetermined frequency region is a frequency region in which St obtained by the following equation satisfies 0.1 ≦ St ≦ 0.15 .
St = fd / U
Where f: vibration frequency
d: Ratio of the distance L between the gas wiping nozzles to the slit gap B of the gas wiping nozzles (= L / B * 0.001)
U: Gas outlet nozzle gas velocity (m / s)
調整されるガスワイピングノズルの設定条件が、浴面からのノズル高さ又は/及び鋼帯に対する上下方向でのガス噴射角度であることを特徴とする請求項1に記載の溶融金属めっき鋼帯の製造方法。   The molten metal-plated steel strip according to claim 1, wherein the set condition of the gas wiping nozzle to be adjusted is a nozzle height from the bath surface or / and a gas injection angle in a vertical direction with respect to the steel strip. Production method.
JP2009179235A 2009-07-31 2009-07-31 Manufacturing method of molten metal plated steel strip Active JP5640340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009179235A JP5640340B2 (en) 2009-07-31 2009-07-31 Manufacturing method of molten metal plated steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009179235A JP5640340B2 (en) 2009-07-31 2009-07-31 Manufacturing method of molten metal plated steel strip

Publications (2)

Publication Number Publication Date
JP2011032526A JP2011032526A (en) 2011-02-17
JP5640340B2 true JP5640340B2 (en) 2014-12-17

Family

ID=43761890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009179235A Active JP5640340B2 (en) 2009-07-31 2009-07-31 Manufacturing method of molten metal plated steel strip

Country Status (1)

Country Link
JP (1) JP5640340B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5532831B2 (en) * 2009-11-10 2014-06-25 Jfeスチール株式会社 Manufacturing method of molten metal plated steel strip
EP3825684A1 (en) 2019-11-25 2021-05-26 Primetals Technologies France SAS System for water removal from a liquid metal coating on a travelling metal band

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4062284B2 (en) * 2004-06-04 2008-03-19 Jfeスチール株式会社 Hot-dip coating adhesion amount control method and gas wiping nozzle
JP4857906B2 (en) * 2006-05-20 2012-01-18 Jfeスチール株式会社 Manufacturing method of molten metal plated steel strip
JP2007321171A (en) * 2006-05-30 2007-12-13 Kobe Steel Ltd Nozzle device for wiping hot-dip galvanizing film, and hot-dip galvanizing apparatus using the same

Also Published As

Publication number Publication date
JP2011032526A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
JP2009062563A (en) Apparatus for manufacturing hot-dip metal plated coated steel strip
JP5470932B2 (en) Hot-dip metal-plated steel strip manufacturing equipment and hot-metal-plated steel strip manufacturing method
JP5640340B2 (en) Manufacturing method of molten metal plated steel strip
JP4857906B2 (en) Manufacturing method of molten metal plated steel strip
JP5532831B2 (en) Manufacturing method of molten metal plated steel strip
JP5418550B2 (en) Manufacturing method of molten metal plated steel strip
KR20190022766A (en) METHOD OF MANUFACTURING MOLDED METAL PLATED KINGDOM AND MOLDED METAL PLATING APPARATUS
JP6500846B2 (en) Method of manufacturing hot-dip metallized steel strip and continuous hot-dip metal plating equipment
JP4816105B2 (en) Manufacturing method of molten metal plated steel strip
JP2010174263A (en) Apparatus for manufacturing hot-dip coated steel strip
JP4677846B2 (en) Manufacturing method of molten metal plated steel strip
JP5375150B2 (en) Manufacturing equipment for molten metal plated steel strip
WO2009017209A1 (en) Production equipment of liquid metal plated steel strip in coil and production method of liquid metal plated steel strip in coil
JP5444744B2 (en) Manufacturing equipment for molten metal plated steel strip
JP4547818B2 (en) Method for controlling the coating amount of hot dip galvanized steel sheet
JP2018178154A (en) Edge mask shield plate at wiping nozzle part of molten zinc plating line and molten zinc scattering prevention method
JP2004269930A (en) Method for manufacturing hot dip metal coated steel sheet
JP5396996B2 (en) Manufacturing method of hot dipped steel sheet
JPH11279736A (en) Gas wiping method suitable for thick plating
JP5556286B2 (en) Gas wiping equipment for molten metal plated steel strip
JP5194612B2 (en) Manufacturing apparatus for molten metal plated steel strip and method for manufacturing molten metal plated steel strip
JP5194613B2 (en) Manufacturing apparatus for molten metal plated steel strip and method for manufacturing molten metal plated steel strip
JP4765641B2 (en) Manufacturing method of molten metal plated steel strip
JP2005256055A (en) Consecutive hot dip metal coating method and its apparatus
JP6350088B2 (en) Manufacturing method and gas wiping apparatus for molten metal plating metal strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141013

R150 Certificate of patent or registration of utility model

Ref document number: 5640340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250