WO2009017209A1 - Production equipment of liquid metal plated steel strip in coil and production method of liquid metal plated steel strip in coil - Google Patents

Production equipment of liquid metal plated steel strip in coil and production method of liquid metal plated steel strip in coil Download PDF

Info

Publication number
WO2009017209A1
WO2009017209A1 PCT/JP2008/063807 JP2008063807W WO2009017209A1 WO 2009017209 A1 WO2009017209 A1 WO 2009017209A1 JP 2008063807 W JP2008063807 W JP 2008063807W WO 2009017209 A1 WO2009017209 A1 WO 2009017209A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel strip
molten metal
roll
plated steel
squeeze roll
Prior art date
Application number
PCT/JP2008/063807
Other languages
French (fr)
Japanese (ja)
Inventor
Gentaro Takeda
Hiroyuki Fukuda
Hideyuki Takahashi
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007197681A external-priority patent/JP5194612B2/en
Priority claimed from JP2007197682A external-priority patent/JP5194613B2/en
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Publication of WO2009017209A1 publication Critical patent/WO2009017209A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates

Definitions

  • the present invention relates to a manufacturing apparatus for a molten metal-plated steel strip that can reduce the scattering of the molten metal in a molten metal plating process, and a method for manufacturing a molten metal-plated steel strip using the apparatus.
  • a typical continuous melting apparatus and process will be described with reference to FIG.
  • the steel strip 3 is immersed in a molten metal plating bath 8 filled in the plating tank 9 and the direction is changed by the sink roll 7, and then the steel strip 3 is pulled up vertically.
  • the steel strip coming out of the plating bath has molten metal attached to the surface.
  • the steel strip 3 to which the molten metal adheres is squeezed of excess molten metal by the pressurized gas ejected from the gas wiping nozzle 4 provided so as to be sandwiched in a non-contact manner.
  • the adhesion amount (plating adhesion amount) is controlled to be a predetermined plating thickness uniformly in the plate width direction and the plate longitudinal direction.
  • a support roll 6 in the bath is usually placed under the bath surface above the synchro 7 and gas is used as needed when alloying is performed.
  • a bath support roll 5 is installed above the wiping nozzle 4.
  • the nozzle is longer than the width of the steel strip, that is, extends beyond the width end of the steel strip 3 in order to cope with various widths of the steel strip and to cope with the deviation in the width direction when the steel strip is pulled up.
  • a so-called splash occurs in which molten metal falling below the steel strip is scattered by the disturbance of the jet that collides with the steel strip 3, and the surface quality of the steel strip is degraded.
  • it is only necessary to increase the steel strip threading speed.
  • the viscosity of the molten metal As the line speed increases, the initial amount of adhesion immediately after passing through the steel sheet bath increases. For this reason, in order to control the amount of plating deposition within a certain range, the wiping gas pressure must be set to a higher pressure, which greatly increases the splash and makes it impossible to maintain good surface quality. In order to solve the above problem, the amount of excess molten metal that accompanies the steel strip is reduced to some extent from the molten metal plating tank to the gas wiping nozzle, and the initial adhesion amount immediately after passing through the plating bath is reduced. A method of reducing is disclosed.
  • the shape of the molten metal squeezing member is preferably a rectangular shape or a cylindrical body having an introduction portion whose distance from the front and back surfaces of the steel strip becomes wider at the lower end, and the installation position of the molten metal squeezing member is It is described that the position over the upper and lower surfaces of the plating solution is most desirable.
  • An object of the present invention is to provide a facility for manufacturing a molten metal-plated steel strip.
  • the present invention provides a method for producing a steel strip that can stably produce a molten metal-plated steel strip that reduces the occurrence of splash and is excellent in surface appearance at both normal plate feeding speed and high-speed plate feeding. It is an issue to provide. Disclosure of the invention
  • the present invention is directed to a steel strip that is continuously pulled up from a molten metal plating tank, by blowing gas from a gas wiping nozzle that is disposed opposite to both sides of the steel strip above the molten metal plating tank.
  • a molten metal squeezing roll disposed below the plating bath surface and above the support roll in the bath, on both sides of the steel strip, in non-contact with the steel strip. The molten metal squeezing port is driven so that the direction of rotation at the closest position to the steel strip is opposite to the direction of travel of the steel strip.
  • the molten metal squeeze roll is directly connected to the strip feed speed V p [m / sec] and the rotational speed V r [rad / sec] of the molten metal squeeze roll. It is preferable that the diameter D [m] and the closest distance S [mm] between the steel strip and the molten metal squeeze roll are set so as to satisfy the following formula (1).
  • the molten metal squeezing roll has a width direction of the steel strip that is greater than a roll diameter facing a central portion in the width direction of the steel strip. It is more preferable that the diameter of the roll facing both end portions is larger.
  • a rectifying plate that covers 1Z2 or more of the 1Z4 surface corresponding to the bath surface side and the steel strip side of the molten metal squeeze roll is further installed.
  • the ones made are preferred.
  • the diameter D [m] of the molten metal squeeze roll is determined with respect to the sheet feeding speed Vp [m / sec] of the steel strip and the rotational speed Vr [rad / sec] of the molten metal squeeze roll.
  • FIG. 1 is a cross-sectional view showing an embodiment of the apparatus for producing a molten metal plated steel strip according to the present invention.
  • FIG. 2 is a diagram showing the flow of molten metal in the vicinity of the steel strip passing through the molten metal squeeze roll j side and the molten metal squeeze roll part of the apparatus for producing a molten metal plated steel strip according to the present invention.
  • FIG. 3 is a diagram used for explaining the method for controlling the molten metal squeeze tool of the apparatus for producing a molten metal plated steel strip according to the present invention.
  • FIG. 4 (a) to FIG. 4 (c) are plan views for explaining the roll shape of the molten metal squeezing roll in the apparatus for producing a molten metal-plated steel strip according to the present invention.
  • FIG. 5 is a cross-sectional view showing a general apparatus for producing a molten metal-plated steel strip.
  • FIG. 6 is a view of a molten metal squeezing member described in Japanese Patent Application Laid-Open No. 2004-760602.
  • FIG. 7 is a cross-sectional view showing an embodiment in which a rectifying plate is attached to the apparatus for producing a molten metal plated steel strip of the present invention.
  • FIG. 8 is a diagram showing the flow of molten metal in the vicinity of the molten metal squeeze tool and the rectifying plate and in the vicinity of the steel strip passing through the molten metal squeezing roll part of the manufacturing apparatus for the molten metal plated steel strip of the present invention. is there.
  • FIG. 9 is a diagram used for explaining the control method of the molten metal squeeze roll and the rectifying plate in the apparatus for producing a molten metal plated steel strip of the present invention.
  • FIG. 10 (a) to FIG. 10 (b) are cross-sectional views showing another embodiment of the rectifying plate of the apparatus for producing a molten metal plated steel strip according to the present invention.
  • FIG. 1 is a cross-sectional view showing an embodiment of the apparatus for producing a molten metal plated steel strip according to the present invention.
  • 1 is a molten metal squeezing roll for removing excess molten metal accompanying the steel strip.
  • the molten metal squeezing roll 1 is disposed on both sides of the steel strip 3 below the bath surface and above the in-bath support roll 6, and is placed at a predetermined distance from the steel strip surface.
  • FIG. 2 is a view for explaining the flow of molten metal in the vicinity of the molten metal squeeze roll in FIG. 1 and in the vicinity of the steel strip passing through the molten metal squeeze roll.
  • the rotation direction of the molten metal squeeze roll 1 is controlled as described above, even if an accompanying flow 1 1 is generated as the steel strip 3 travels, a forced flow 1 2 in the opposite direction is generated.
  • the accompanying flow 11 of the steel strip 3 passing between the pair of molten metal squeezed rolls 1 can be greatly suppressed, and the amount of excess molten metal accompanying the steel strip pulled up from the plating bath can be reduced.
  • the axis of the molten metal squeeze roll 1 (or the rotation axis or the center axis) is parallel to the axis of the support roll 6 in the bath (or the rotation axis or the center axis).
  • a more effective control method for the molten metal squeeze roll 1 was studied. As shown in Fig.
  • the feeding speed of steel strip 3 is V p [m / sec]
  • the diameter of molten metal squeeze roll 1 is D [m]
  • the rotational speed is V r [rad / sec]
  • steel strip 3
  • the effective influence range of the flow generated by the rotation of the molten metal squeeze roll 1 is estimated to be approximately 10 mm from the outer surface of the roll by a water model experiment. Therefore, we found that the following equation (1) should be satisfied in order to reduce the excess molten metal accompanying the steel strip pulled up on the bath.
  • the molten metal squeeze roll 1 may be brought close to the steel strip 3 to such an extent that it does not generate rubbing (usually about 3 mm).
  • the shape of the molten metal squeezing roll 1 is not particularly limited as long as the effect of suppressing the accompanying flow 11 is not impaired.
  • 4 (a) to 4 (c) are schematic views overlooking the shape of the molten metal squeeze roll 1 in the width direction of the steel strip.
  • Figure 4 (a) shows the same diameter in the entire length of the steel strip. Splash that becomes a problem when performing gas wiping is usually generated at the edge of the steel strip. Therefore, if the amount of excess molten metal at the edge of the steel strip can be reduced more, the splash reduction effect will be higher. From Equation (1), the right side of Equation (1) increases as the distance S between the steel strip and the end of the steel strip on the roll side decreases, so the molten metal squeeze roll as shown in Fig. 4 (a) is Even if it is not possible to approach the steel strip over the entire length in the direction, it is possible to make the distance between the roll and the steel strip closer by increasing the roll diameter only at the edge in the width direction of the steel strip.
  • a certain range in the center of the roll is a constant diameter, and the outside is a tapered crown roll in which the roll diameter is increased in a tapered shape. May be.
  • a radial crown roll having a large roll diameter with a certain curvature from the center of the roll may be used. Further, a combination of these may be used.
  • diameter D of molten metal squeeze roll 1, edge of steel strip 3 and molten metal squeeze roll 1 Eq. (1) should be applied, where S is the closest distance to.
  • the in-bath support roll 6 is disposed on both sides of the steel strip 3, but the in-bath support roll 6 may be disposed on one side of the steel strip 3.
  • the position of the molten metal squeeze tool 1 disposed on the side where the support roll 6 in the bath is not disposed is the support in the bath whose vertical position is disposed on one side of the steel strip 3. It should be above the roll 6.
  • baffle plate is further installed so as to cover the molten metal squeezing roll 1, and have also completed the invention having the following characteristics.
  • FIG. 7 is a view showing an embodiment of the apparatus for producing a molten metal-plated steel strip according to the present invention.
  • 1 is a molten metal comparison roll
  • 2 is a current plate. The action of removing excess molten metal accompanying the steel strip is achieved by the molten metal squeezing roll 1 and the current plate 2.
  • the molten metal squeezing roll 1 is disposed across the steel strip and is installed at a predetermined distance from the surface of the steel strip.
  • the rectifying plate 2 is installed under the bath surface above the molten metal squeeze roll 1 so as to cover the roll with a gap from the molten metal squeeze roll 1.
  • the molten metal squeezing roll 1 is driven so as to rotate in the direction opposite to the traveling direction of the steel strip at the closest position to the steel strip.
  • FIG. 8 is a diagram for explaining the flow of the molten metal in the vicinity of the molten metal squeeze hole and the vicinity of the molten metal squeeze part in FIG.
  • the molten metal squeeze roll 1 When the rotational direction of the molten metal squeeze roll 1 is controlled as described above, the molten metal squeeze roll 1 is forced in the opposite direction even if an accompanying flow 1 1 is generated as the copper band advances. Since the general flow 1 2 is generated, the accompanying flow 1 1 can be suppressed.
  • the rectifying plate 2 can be developed by restricting the accompanying flow 1 2 generated by the rotational drive of the molten metal throttle 1 to the region between the molten metal throttle 1 and the rectifying plate 2. it can.
  • the accompanying flow 1 1 The flow to be generated for suppression is the flow in the opposite direction to the accompanying flow 1 1 as shown in Fig. 8. The effect will be greater by installing it side by side.
  • the rectifying plate 2 is a quarter of the outer peripheral surface of the molten metal squeeze roll 1, corresponding to the bath surface side and the steel strip side (in the arc AB in FIG. 9). It is effective to cover 1 Z 2 or more of the corresponding outer peripheral surface.
  • line AO is perpendicular to the steel strip surface
  • line BO is parallel to the steel strip surface
  • arc AB corresponds to the arc of quadrant OAB.
  • the 1/4 of the outer peripheral surface of the molten metal squeeze roll 1 corresponding to the anti-bath surface and the steel strip side (the outer peripheral surface corresponding to the arc AC in Fig. 9) is not covered with the rectifying plate 2.
  • the line segment CO is parallel to the steel strip surface, and the arc AC corresponds to the arc of the quadrant OAC.
  • the shape of the rectifying plate 2 is an arc with the same center as the molten metal squeeze roll 1, as shown in Fig. 9, and the plate passing speed of the steel strip is V p Cm / sec], the diameter of the molten metal squeeze roll 1 is D [m], the rotation speed is V r [rad / sec], the closest distance between the steel strip 3 and the molten metal squeeze roll 1 is S [mm], the molten metal squeeze If the distance between roll 1 and rectifying plate 2 is S r [mm], and the melt covered by rectifying plate 2 is L.
  • the circumference of molten metal squeeze roll 1 is L [mm].
  • the rectifying plate 2 Under the condition that the rectifying plate 2 is installed so as to cover 1/2 or more of the 1/4 surface corresponding to the bath surface side and the steel strip 3 side of the surface, it is lifted onto the bath along with the steel strip 3 In order to reduce excess molten metal, it is preferable to satisfy the following formulas (2) and (3).
  • the circumferential length L of the molten metal squeezing roll 1 covered by the rectifying plate 2 is projected toward the center of the molten metal squeezing roll 1 in a cross section perpendicular to the molten metal squeezing roll center line.
  • the molten metal squeezing roll 1 is the projected arc length of the rectifying plate on the outer peripheral surface, and the rectifying plate 2 covers the arc AB part of the quadrant OAB in FIG.
  • AC is not covered means that when the current plate 2 is projected toward the center of the molten metal squeeze roll 1, the current plate 2 is not projected onto the outer peripheral surface of the molten metal squeeze roll 1.
  • Equation (3) means that the distance S r between the molten metal squeeze roll 1 and the rectifying plate 2 is 5 times or less the closest distance S between the steel strip 3 and the molten metal squeeze roll. The larger the right side of Equation (2), the better the effect of reducing the amount of excess molten metal associated with the steel strip.
  • the molten metal squeezing roll 1 and the current plate 2 may be brought close to the steel strip 3 to the extent that no scuffing occurs. This distance is usually about 3 mm.
  • the rectifying plate 2 does not need to keep the distance from the molten metal squeezing roll 1 constant. Therefore, the shape of the current plate 2 is not limited to the arc shape. If the distance between the rectifying plate 2 and the molten metal squeezing roll 1 is not constant, the flow rate of the molten metal flowing between the rectifying plate 2 and the molten metal squeezing roll 1 is limited by the portion where the distance is the narrowest. 2 and the closest distance Sr between the molten metal squeezing rolls 1 as a representative value, the effect of reducing the amount of excess molten metal can be evaluated.
  • the shape of the rectifying plate 2 is not an arc as shown in Fig. 9, but for example, an inverted L shape with a horizontal portion and a vertical portion connected as shown in Fig. 10 (a), or a horizontal shape as shown in Fig. 10 (b) If the shape is such that the straight part and lead part are connected to each other, pressure loss will occur and the effect will be reduced, but the closest distance S r between the molten metal squeeze roll 1 and the current plate 2 will be By approximating the projected arc length L of the rectifying plate 1 on the outer peripheral surface of the molten metal squeeze roll 1 to the center of the molten metal squeeze roll 1 to the above formulas (2) and (3), the approximate effect Can be calculated.
  • the molten metal plating steel strip production equipment shown in Fig. 1 was installed in the continuous molten zinc plating line, and experiments were conducted on the molten zinc plating steel strip.
  • the molten metal squeezing rolls are opposed to both sides of the steel strip, and a servo motor that rotates each roll is installed at the end of the frame extended from the servo motor position control device provided on the machine side, and directly connected to this servo motor. .
  • the distance to the steel strip can be easily controlled, and the rotational speed of the molten metal squeeze roll can be set arbitrarily.
  • the distance between the bath surface and the upper end of the support roll in the bath on the side close to the bath surface was 80 mm.
  • the diameter of the center in the width direction is 50 mm, and the bath surface and roll center The distance was fixed at 35mm.
  • the length of the molten metal squeeze roll in the width direction of the steel strip was set to 2000 mm, equivalent to a gas wiping nozzle.
  • the production conditions for the hot-dip galvanized steel strip are as follows: the slit gap of the gas wiping nozzle is 0, 8 mm, the distance between the gas wiping nozzle and the steel strip is 7 mm, the nozzle height from the molten zinc bath is 400 mm, and the molten zinc bath temperature is 460 °.
  • the size of the steel strip to be produced was 0.8 mm thick X I. 2 m wide, and the coating weight was 45 g Zm 2 on one side.
  • Table 1 shows the other manufacturing conditions, molten metal squeeze roll conditions, and the results of a survey of the amount of splash that is the product quality index.
  • Splash occurrence rate is the ratio of the length of steel strip that was determined to have splash defects in the inspection process to the length of steel strip that passed under each manufacturing condition, and includes mild splash defects that do not cause any practical problems. .
  • Tapered crown roll is the distance from the steel strip in the flat part.
  • Examples 1 to 4 are in the direction of the roll width as illustrated in Fig. 4 (a), in the case of a flat molten metal squeeze roll that does not change its diameter. r is changed.
  • the splash occurrence rate is reduced, and the effect is more remarkable as the right side of Equation (1) is larger. It was hot.
  • Example 5 is a case of a tapered crown roll in which the center of the roll is flat and the diameter of the roll increases toward both ends, as shown in FIG. 4 (b).
  • the steel strip end can be as close as 6 mm, and the formula (1 ) The right side is between Example 3 and 4. Splash incidence was also a result.
  • Examples 6 and 7 and Comparative Example 2 were performed under the condition where the sheet passing speed was increased to 4. OmZ s. In Comparative Example 2, the splash was frequent and the operation was impossible. In Examples 6 and 7, the quality level was better than that of the current plate speed of 2.5 mZ s (Comparative Example 1). The operation became possible.
  • the plating thickness can be adjusted by gas wiping. Can be greatly reduced.
  • the amount of splash generated significantly increased when the plate passing speed was increased.
  • the plate passing speed is increased significantly, the occurrence of splash can be suppressed and plating without surface defects can be achieved. It becomes possible to manufacture a steel strip while maintaining high productivity. Examples 8 to 1 1
  • the manufacturing equipment for the molten metal plating steel strip shown in Fig. 7 was installed in the continuous molten zinc plating line, and an experiment for manufacturing the molten zinc plating steel strip was conducted.
  • the molten metal squeezing roll 1 was placed directly opposite to both sides of the steel strip, and a servo motor that rotates each roll was installed at the end of the frame extended from the position control device by the servo motor provided on the machine side. With this structure, the distance to the steel strip can be easily controlled. In addition, the number of revolutions of the molten metal throttle 1 can be set arbitrarily.
  • the rectifying plate 2 is attached to the frame on which the servo motor is installed, and the distance between the steel strip side end of the rectifying plate 2 and the steel strip 3 is set to be the same as the distance between the molten metal squeeze roll 1 and the steel strip 3.
  • the distance between the bath surface and the upper end of the support roll in the bath on the side close to the bath surface was 8 O mm.
  • the diameter (D) is 50 mm
  • the distance between the bath surface and the center of the molten metal squeeze roll is fixed to 35 mm
  • the closest distance (Sr) between the molten metal squeeze roll 1 and the current plate 2 is fixed to 2 mm.
  • the shape of the rectifying plate 2 is an arc (Examples 1 to 3) as shown in Fig. 9 or an inverted L-shape (horizontal direction 70 mm, vertical direction 50 mm; Example 4) of Fig. 10 (a). did.
  • the length of the molten metal throttle 1 and the current plate 2 in the width direction of the steel strip was set to 200 mm, which is equivalent to gas-dipping nose.
  • the production conditions for the hot-dip galvanized steel strip are as follows: slit gap of the gas wiping nozzle 0 ⁇ 8 mm, distance of the gas wiping nozzle steel strip 7 mm, nozzle height from the hot-dip zinc bath 400 mm, hot-dip zinc bath temperature 4 6
  • the size of the steel strip to be manufactured was 0.8 mm thickness x 1.2 m width, and the coating weight was 45 g / m 2 on one side.
  • Table 2 shows the other production conditions, molten metal squeeze roll conditions, and the results of a survey of the amount of splash generated that is a product quality index.
  • Splash occurrence rate is the ratio of the length of steel strip that was determined to have splash defects in the inspection process to the length of steel strip that passed under each manufacturing condition, and includes mild splash defects that do not cause any practical problems. .
  • Example 10 and Comparative Example 2 were performed under conditions where the plate passing speed was increased to 4.0 m / s. In Comparative Example 2 using conventional equipment, splashes occurred frequently and operation was impossible.In Example 10, operation at a quality level better than the current 2.5 m / s was possible. became.
  • Example 1 1 is a condition in which the shape of the current plate 2 is an inverted L shape.
  • the splash reduction effect was slightly inferior to Examples 8 and 9, but a significant splash reduction effect was obtained compared to Comparative Example 1.
  • the molten metal squeezing tool that rotates in the direction opposite to the traveling direction of the steel strip in a non-contact manner with the steel strip and the flow straightening plate so as to cover this joint are attached to the steel strip.
  • the amount of splash generated can be further greatly reduced because the metal thickness can be adjusted by gas wiping after reducing the excess plating metal.
  • the device of this effort can be used as a manufacturing facility for molten metal-plated steel strips that reduce the occurrence of splash and have an excellent surface appearance. Since the apparatus of the present invention can suppress the occurrence of splash even during high-speed sheet feeding, it can be used as an apparatus for manufacturing a molten metal plated steel strip having an excellent surface appearance while maintaining high productivity.
  • the steel strip manufacturing method of the present invention can be used as a method for manufacturing a molten metal-plated steel strip that reduces the occurrence of splash and has an excellent surface appearance.

Abstract

In the production equipment of a liquid metal plated steel strip in coil where gas is sprayed from gas wiping nozzles arranged oppositely to both sides of a steel strip being pulled continuously from a liquid metal plating tank while pinching the steel strip above the liquid metal plating tank, liquid metal squeezing rollers are arranged on the opposite sides of the steel strip without touching the steel strip above support rollers in the bath and below the plating bath surface, and the liquid metal squeezing rollers are driven such that the rotational direction at the position closest to the steel strip becomes the direction reverse to the advancing direction of the steel strip. This production equipment reduces occurrence of splash and produces a liquid metal plated steel strip in coil excellent in surface appearance stably.

Description

溶融金属めつき鋼帯の製造装置及び溶融金属めつき鋼帯の製造方法 Manufacturing apparatus for molten metal plating steel strip and method for manufacturing molten metal plating steel strip
技術分野 Technical field
本発明は、 溶融金属めつきプロセスにおいて、 溶融金属の飛散を軽減可能な溶 融金属めつき鋼帯の製造装置及びその装置を用いた溶融金属めつき鋼帯の製造方 法に関するものである。 明 田  The present invention relates to a manufacturing apparatus for a molten metal-plated steel strip that can reduce the scattering of the molten metal in a molten metal plating process, and a method for manufacturing a molten metal-plated steel strip using the apparatus. Akita
背景技術 書 Technical background
一般的な連続溶融めつきの装置とプロセスを、 図 5を用いて説明する。 鋼帯 3 を、 めっき槽 9内に満たした溶融金属めつき浴 8に浸漬させ、 シンクロール 7で 方向転換した後、 該鋼帯 3を鉛直上方に引き上げる。 該めっき浴から出た鋼帯は 表面に溶融金属が付着している。 この溶融金属の付着した鋼帯 3は、 それを非接 触で挟むように対向して設けられたガスワイピングノズル 4から噴出される加圧 気体によって余剰な溶融金属が絞り取られ、 溶融金属の付着量 (めっき付着量) が板幅方向およぴ板長手方向に均一に所定のめっき厚になるように制御される。 ガスワイビング部での鋼帯走行位置を安定化させるために、 通常、 シンクロ一 ル 7上方の浴面下に浴内サポートロール 6が配置され、 また合金化処理等を行う 場合は必要に応じてガスワイピングノズル 4の上方に浴上サポートロール 5が設 置される。 A typical continuous melting apparatus and process will be described with reference to FIG. The steel strip 3 is immersed in a molten metal plating bath 8 filled in the plating tank 9 and the direction is changed by the sink roll 7, and then the steel strip 3 is pulled up vertically. The steel strip coming out of the plating bath has molten metal attached to the surface. The steel strip 3 to which the molten metal adheres is squeezed of excess molten metal by the pressurized gas ejected from the gas wiping nozzle 4 provided so as to be sandwiched in a non-contact manner. The adhesion amount (plating adhesion amount) is controlled to be a predetermined plating thickness uniformly in the plate width direction and the plate longitudinal direction. In order to stabilize the running position of the steel strip in the gas wiping section, a support roll 6 in the bath is usually placed under the bath surface above the synchro 7 and gas is used as needed when alloying is performed. Above the wiping nozzle 4, a bath support roll 5 is installed.
Figure imgf000003_0001
多様な鋼帯幅に対応すると同時に鋼帯引き上げ時 の幅方向のズレなどに対応するため、 通常、 ノズルは鋼帯幅より長く、 すなわち 鋼帯 3の幅端部より外側まで延びている。 このようなガスワイビング装置では、 鋼帯 3に衝突した噴流の乱れによって鋼帯下方に落下する溶融金属が周囲に飛ぴ 散る、 いわゆるスプラッシュが発生して、 鋼帯の表面品質の低下を招く。 また、 連続プロセスにおいて、 生産量を増加させるには、 鋼帯通板速度を増加 させればよいが、 連続溶融めつきプロセスにおいてガスワイビング方式でめっき 付着量を制御する場合、 溶融金属の粘性により、 ライン速度の増加に伴って鋼帯 のめつき浴通過直後の初期付着量が増加する。 そのため、 めっき付着量を一定範 囲内に制御するには、 ワイビングガス圧力をより高圧に設定せざるを得ず、 それ によってスプラッシュが大幅に増加し、 良好な表面品質を維持できなくなる。 上記の問題を解決するため、 溶融金属めつき槽からガスワイビングノズルに到 達するまでの間で鋼帯に随伴する余剰な溶融金属をある程度削減してめつき浴通 過直後の初期付着量を低減しておく方法が開示されている。
Figure imgf000003_0001
Normally, the nozzle is longer than the width of the steel strip, that is, extends beyond the width end of the steel strip 3 in order to cope with various widths of the steel strip and to cope with the deviation in the width direction when the steel strip is pulled up. In such a gas wiping apparatus, a so-called splash occurs in which molten metal falling below the steel strip is scattered by the disturbance of the jet that collides with the steel strip 3, and the surface quality of the steel strip is degraded. In order to increase the production rate in the continuous process, it is only necessary to increase the steel strip threading speed. However, in the continuous melting staking process, when controlling the amount of plating deposited by the gas wiping method, the viscosity of the molten metal As the line speed increases, the initial amount of adhesion immediately after passing through the steel sheet bath increases. For this reason, in order to control the amount of plating deposition within a certain range, the wiping gas pressure must be set to a higher pressure, which greatly increases the splash and makes it impossible to maintain good surface quality. In order to solve the above problem, the amount of excess molten metal that accompanies the steel strip is reduced to some extent from the molten metal plating tank to the gas wiping nozzle, and the initial adhesion amount immediately after passing through the plating bath is reduced. A method of reducing is disclosed.
特開 2 0 0 4 - 7 6 0 8 2号公報には、 めっき液中のサポートロールとガスヮ ィビングノズルとの間に、 鋼帯の両面に非接触で対向する溶融金属絞り部材を設 けて余剰めつきを取り除いた後に、 ガスワイビングでめっき厚を調整する装置が 開示されている。 この装置では、 該溶融金属絞り部材の形状は、 矩形あるいは下 端ほど鋼帯表裏面との距離が広くなる導入部を有する形状あるいは円柱体が望ま しく、 該溶融金属絞り部材の設置位置は、 めっき液面の上下にまたがる位置が晕 も望ましい旨が記載されている。  In Japanese Patent Laid-Open No. 2000-076 082, there is a surplus by providing a molten metal squeeze member facing the both sides of the steel strip in a non-contact manner between the support roll in the plating solution and the gas rolling nozzle. An apparatus is disclosed that adjusts the plating thickness by gas wiping after removing plating. In this apparatus, the shape of the molten metal squeezing member is preferably a rectangular shape or a cylindrical body having an introduction portion whose distance from the front and back surfaces of the steel strip becomes wider at the lower end, and the installation position of the molten metal squeezing member is It is described that the position over the upper and lower surfaces of the plating solution is most desirable.
ところが、 この方法では、 該溶融金属絞り部材がめつき浴面より上側あるいは めっき液面の上下にまたがる場合に、 ガスワイビングによって最終的に取り除か れる溶融金属が下方に流れ落ちて、 鋼帯と溶融金属絞り部材との隙間に液だまり を形成してしまい、 その液溜まりの高さからガスワイビングまでの距離が短いた めに結果的に絞り効果は小さい。 また、 溶融金属絞り部材に固着して固体化した 金属が鋼帯に付着して表面欠陥が発生するなどの問題があった。 一方、 溶融金属 絞り部材をめつき槽内に配置した場合でも、 溶融金属絞り部材の下端ほど鋼帯と の距離が広くなる形状にすることによって、 図 6のように鋼帯 3と溶融金属絞り 部材 2 1間で流路が徐々に狭くなるため溶融金属が集中して流れ込んで流速が局 所的に増加し、 めっき絞り効果が小さくなる。 特開 2 0 0 5— 1 5 8 3 7号公報には、 めっき液面から出たところに、 鋼帯両 面に鋼帯に対して傾斜させたブレード搔き取り装置を設けて余剰めつきを取り除 いた後に、 ガスワイビングノズルでめっき厚を調整する装置で、 該ブレードの鋼 帯に最も近接する部分が直径 3 0 mm以下の丸みを有することが特徴の溶融金属 めっき装置が開示されている。 However, in this method, when the molten metal squeezing member extends above the plating bath surface or above and below the plating solution surface, the molten metal finally removed by gas wiping flows down, and the steel strip and the molten metal squeezing member As a result, the squeezing effect is small due to the short distance from the height of the liquid reservoir to the gas wiping. In addition, there was a problem that the metal solidified by adhering to the molten metal squeezing member adheres to the steel strip and causes surface defects. On the other hand, even when the molten metal squeezing member is placed in the squeeze tank, the steel strip 3 and the molten metal squeezed as shown in Fig. 6 can be formed by increasing the distance from the steel strip toward the lower end of the molten metal squeezing member. Since the flow path gradually narrows between the members 21, the molten metal concentrates and flows, the flow velocity increases locally, and the plating throttling effect is reduced. In Japanese Patent Laid-Open No. 2 0 0 5 — 1 5 8 3 7, a blade scraping device that is inclined with respect to the steel strip is provided on both sides of the steel strip at the place where it comes out of the plating solution surface, and the surplus is attached. Is a device that adjusts the plating thickness with a gas wiping nozzle after removing the steel plate, and a molten metal plating device characterized in that the portion of the blade closest to the steel strip has a roundness of 30 mm or less in diameter is disclosed. ing.
しかし、 この方法でほ、 例えブレードを傾斜させて鋼帯先端部に丸みを与えて も、 前述の方法と同様に上端に液だまりができてしまうためにそこからガスワイ ビングまでの距離が短いために結果的に絞り効果が小さくなる。  However, even if the blade is tilted by this method and the steel strip tip is rounded, a liquid pool is formed at the upper end as in the previous method, and the distance from there to the gas wiping is short. As a result, the aperture effect is reduced.
本宪明は、 上記問題点を考慮し、 通常通板速度においても、 また高速通板時に おいても、 スプラッシュの発生を低減し、 表面外観に優れる溶融金属めつき鋼帯 を安定して製造できる溶融金属めっき鋼帯製造設備を提供することを課題とする。 また、 本発明は、 通常通板速度においても、 また高速通板時においても、 スプ ラッシュの発生を低減し、 表面外観に優れる溶融金属めつき鋼帯を安定して製造 できる鋼帯の製造方法を提供することを課題とする。 発明の開示  In consideration of the above-mentioned problems, Tomoaki has consistently produced molten metal-plated steel strips that reduce the occurrence of splash and have excellent surface appearance at both normal and high-speed plate passing speeds. An object of the present invention is to provide a facility for manufacturing a molten metal-plated steel strip. In addition, the present invention provides a method for producing a steel strip that can stably produce a molten metal-plated steel strip that reduces the occurrence of splash and is excellent in surface appearance at both normal plate feeding speed and high-speed plate feeding. It is an issue to provide. Disclosure of the invention
すなわち本発明は、 溶融金属めつき槽から連続的に引き上げられる鋼帯に対し、 該溶融金属めつき槽上方で該鋼帯を挟んでその両面に対向配置したガスワイピン グノズルからガスを吹き付けて付着金属の厚さを制御する溶融金属めっき鋼帯の 製造装置において、 めっき浴面より下方かつ浴内サポートロールの上方に、 該鋼 帯の両側に該鋼帯と非接触で配置された溶融金属絞りロールを備え、 該溶融金属 絞り口一ルは該鋼帯との最近接位置での回転方向が鋼帯進行方向と逆方向となる ように駆動されることを特徴とする溶融金属めつき鋼帯の製造装置 Iであ'る。 な お、 この製造装置の場合、 該鋼帯の通板速度 V p [m/ s e c ] と該溶融金属絞 りロールの回転速度 V r [ r a d / s e c ] に対し、 該溶融金属絞りロールの直 径 D [m] 、 およぴ該鋼帯と該溶融金属絞りロールの最近接距離 S [mm] が下 式 (1 ) を満足するように設定されたものが好ましい。
Figure imgf000006_0001
また、 上記のいずれかに記載の溶融金属めつき鋼帯の製造装置では、 該溶融金属 絞りロールが、 該鋼帯の幅方向の中央部に面するロール直径よりも該鋼帯の幅方 向の両端部に面するロール直径の方が大きいものがより好ましい。 さらに、 上記の溶融金属めつき鋼帯の製造装置 Iでは、 該溶融金属絞りロール の外周面のうち浴面側でかつ鋼帯側に相当する 1Z4面の 1Z 2以上を覆う整流 板がさらに設置されたものが好ましい。 なお、 この製造装置の場合、 該鋼帯の通 板速度 Vp [m/s e c] と該溶融金属絞りロールの回転速度 Vr [r a d/s e c] に対し、 該溶融金属絞りロールの直径 D [m] 、 該鋼帯と該溶融金属絞り ロールの最近接距離 S [mm] 、 該溶融金属絞りロールと該整流板の最近接距離 S r [mm] 、 該整流板が覆う該溶融金属絞りロールの周長 L [mm] I 下記 式 (2) 及び式 (3) を満足するように設定されたものが好ましい。
That is, the present invention is directed to a steel strip that is continuously pulled up from a molten metal plating tank, by blowing gas from a gas wiping nozzle that is disposed opposite to both sides of the steel strip above the molten metal plating tank. In a manufacturing apparatus for a molten metal plated steel strip that controls the thickness of the molten metal, a molten metal squeezing roll disposed below the plating bath surface and above the support roll in the bath, on both sides of the steel strip, in non-contact with the steel strip The molten metal squeezing port is driven so that the direction of rotation at the closest position to the steel strip is opposite to the direction of travel of the steel strip. Manufacturing equipment I. In the case of this manufacturing apparatus, the molten metal squeeze roll is directly connected to the strip feed speed V p [m / sec] and the rotational speed V r [rad / sec] of the molten metal squeeze roll. It is preferable that the diameter D [m] and the closest distance S [mm] between the steel strip and the molten metal squeeze roll are set so as to satisfy the following formula (1).
Figure imgf000006_0001
Moreover, in the apparatus for producing a molten metal-plated steel strip according to any one of the above, the molten metal squeezing roll has a width direction of the steel strip that is greater than a roll diameter facing a central portion in the width direction of the steel strip. It is more preferable that the diameter of the roll facing both end portions is larger. Furthermore, in the manufacturing apparatus I for the molten metal-plated steel strip, a rectifying plate that covers 1Z2 or more of the 1Z4 surface corresponding to the bath surface side and the steel strip side of the molten metal squeeze roll is further installed. The ones made are preferred. In the case of this manufacturing apparatus, the diameter D [m] of the molten metal squeeze roll is determined with respect to the sheet feeding speed Vp [m / sec] of the steel strip and the rotational speed Vr [rad / sec] of the molten metal squeeze roll. A closest distance S [mm] between the steel strip and the molten metal squeezing roll; a closest distance S r [mm] between the molten metal squeezing roll and the rectifying plate; and a circumference of the molten metal squeezing roll covered by the rectifying plate Length L [mm] I It is preferable that the length is set so as to satisfy the following formulas (2) and (3).
Figure imgf000006_0002
Figure imgf000006_0002
Sr/S≤5— (3) さらに、 本発明は、 上記のいずれかに記載の溶融金属めつき鋼帯の製造装置を 用いて、 鋼帯に溶融金属めっきを行う溶融金属めっき鋼帯の製造方法でもある。 図面の簡単な説明 図 1は、 本発明の溶融金属めつき鋼帯の製造装置の一実施形態を示す断面図で ある。 Sr / S≤5— (3) Further, the present invention provides a method for producing a molten metal-plated steel strip for performing molten metal plating on a steel strip using the apparatus for producing a molten metal-plated steel strip according to any one of the above. It is also a method. Brief Description of Drawings FIG. 1 is a cross-sectional view showing an embodiment of the apparatus for producing a molten metal plated steel strip according to the present invention.
図 2は、 本発明の溶融金属めつき鋼帯の製造装置の溶融金属絞りロール j 辺及 び溶融金属絞りロール部を通過する鋼帯近傍の溶融金属の流れを示す図である。 図 3は、 本発明の溶融金属めつき鋼帯の製造装置の溶融金属絞り口ールの制御 方法の説明に用いた図である。  FIG. 2 is a diagram showing the flow of molten metal in the vicinity of the steel strip passing through the molten metal squeeze roll j side and the molten metal squeeze roll part of the apparatus for producing a molten metal plated steel strip according to the present invention. FIG. 3 is a diagram used for explaining the method for controlling the molten metal squeeze tool of the apparatus for producing a molten metal plated steel strip according to the present invention.
図 4 (a) 〜図 4 (c) は、 本発明の溶融金属めつき鋼帯の製造装置の溶融金属 絞りロールのロール形状を説明する平面図である。  FIG. 4 (a) to FIG. 4 (c) are plan views for explaining the roll shape of the molten metal squeezing roll in the apparatus for producing a molten metal-plated steel strip according to the present invention.
図 5は、 一般的な溶融金属めつき鋼帯の製造装置を示す断面図である。  FIG. 5 is a cross-sectional view showing a general apparatus for producing a molten metal-plated steel strip.
図 6は、 特開 2 0 0 4— 7 6 0 8 2号公報に記載の溶融金属絞り部材の図であ る。  FIG. 6 is a view of a molten metal squeezing member described in Japanese Patent Application Laid-Open No. 2004-760602.
図 7は、 本発明の溶融金属めつき鋼帯の製造装置に整流板を付設した一実施形 態を示す断面図である。  FIG. 7 is a cross-sectional view showing an embodiment in which a rectifying plate is attached to the apparatus for producing a molten metal plated steel strip of the present invention.
図 8は、 本発明の溶融金属めつき鋼帯の製造装置の溶融金属絞り口ール及び整 流板の周辺ならびに溶融金属絞りロール部を通過する鋼帯近傍の溶融金属の流れ を示す図である。  FIG. 8 is a diagram showing the flow of molten metal in the vicinity of the molten metal squeeze tool and the rectifying plate and in the vicinity of the steel strip passing through the molten metal squeezing roll part of the manufacturing apparatus for the molten metal plated steel strip of the present invention. is there.
図 9は、 本発明の溶融金属めつき鋼帯の製造装置の溶融金属絞りロールと整流 板の制御方法の説明に用いた図である。  FIG. 9 is a diagram used for explaining the control method of the molten metal squeeze roll and the rectifying plate in the apparatus for producing a molten metal plated steel strip of the present invention.
図 1 0 (a) 〜図 1 0 (b) は、 本発明の溶融金属めつき鋼帯の製造装置の整流 板の別の実施形態を示す断面図である。 発明を実施するための最良の形態  FIG. 10 (a) to FIG. 10 (b) are cross-sectional views showing another embodiment of the rectifying plate of the apparatus for producing a molten metal plated steel strip according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本努明者らは、 シンクロールからガスワイビングノズルまでの間に、 余剰な溶 融金属を取り除くた'めの溶融金属絞り部材を設置するにあたり、 前記のように液 溜まり位置とガスワイビング位置との距離が短いことで結果的に余剰めつき量を 削減できない問題が発生することから、 溶融金属絞り部材はめつき液面より下側 に設置するのが最良であるとの結論に至った。 しかしながら、 溶融金属絞り部材 の断面形状が従来技術のままではめつき絞り効果は小さい。 そこで、 めっき槽か ら出た鋼帯に付随する溶融金属の量を効果的に削減するべく、 溶融金属絞り部材 周辺の溶融金属の流れを模擬する水モデル装置を用いて、 詳細な流動解析を行つ た。 その結果、 鋼帯に付随して持上げられる溶融金属の量に影響しているのは、 鋼帯表面近傍で鋼帯進行方向に流れるいわゆる随伴流であり、 この流れを減少さ せるほど効果的であることがわかった。 In order to install a molten metal constricting member for removing excess molten metal between the sink roll and the gas wiping nozzle, the present inventors have established the liquid pool position and the gas wiping position as described above. As a result of the short distance, the problem of not being able to reduce the amount of excess clogging occurred, and it was concluded that it was best to install the molten metal constricting member below the clogging liquid level. However, molten metal squeezing member If the cross-sectional shape is the same as in the prior art, the effect of squeezing is small. Therefore, in order to effectively reduce the amount of molten metal accompanying the steel strip coming out of the plating tank, a detailed flow analysis is performed using a water model device that simulates the flow of molten metal around the molten metal throttle member. I went. As a result, the amount of molten metal that is lifted along with the steel strip is influenced by the so-called accompanying flow that flows in the direction of travel of the steel strip near the surface of the steel strip, and is effective to reduce this flow. I found out.
本発明者らは、 以上の知見に基づいて、 鋼帯に付随する余剰な溶融金属を取り 除くための溶融金属絞り部材形状などについて鋭意検討を重ねた結果、 溶融金属 絞り部材として、 鋼帯に非接触で鋼帯進行方向と逆方向に回転させるロールを配 置することを着想し、 以下の特徴を有する発明を完成させた。  Based on the above knowledge, the present inventors have made extensive studies on the shape of the molten metal drawing member for removing excess molten metal associated with the steel strip. The idea of arranging a roll that rotates in the direction opposite to the direction of travel of the steel strip in a non-contact manner was completed, and an invention having the following characteristics was completed.
以下、 図面を参照して本発明の実施の形態を説明する。 以下の図において、 説 明済みの図に示された部分の作用と同じ作用の部分には同じ符号を付してその説 明を省略する。 図 1は、 本発明の溶融金属めつき鋼帯の製造装置の一実施形態を 示す断面図である。 図 1において、 1は鋼帯に付随する余剰な溶融金属を取り除 くための溶融金属絞りロールである。 溶融金属絞りロール 1は、 浴面下でかつ浴 内サポートロール 6より上方に、 鋼帯 3の両側に配置され、 鋼帯面から所定の距 離離れた位置に設置されている。 溶融金属絞りロール 1は、 鋼帯との最近接位置 で鋼帯進行方向と逆方向に回転するように駆動される。 図 2は、 図 1の溶融金属 絞りロール周辺及ぴ該溶融金属絞りロール部を通過する鋼帯近傍の溶融金属の流 れを説明する図である。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following figures, parts having the same functions as those shown in the already explained figures are given the same reference numerals and explanations thereof are omitted. FIG. 1 is a cross-sectional view showing an embodiment of the apparatus for producing a molten metal plated steel strip according to the present invention. In FIG. 1, 1 is a molten metal squeezing roll for removing excess molten metal accompanying the steel strip. The molten metal squeezing roll 1 is disposed on both sides of the steel strip 3 below the bath surface and above the in-bath support roll 6, and is placed at a predetermined distance from the steel strip surface. The molten metal squeezing roll 1 is driven so as to rotate in the direction opposite to the traveling direction of the steel strip at the closest position to the steel strip. FIG. 2 is a view for explaining the flow of molten metal in the vicinity of the molten metal squeeze roll in FIG. 1 and in the vicinity of the steel strip passing through the molten metal squeeze roll.
溶融金属絞りロール 1の回転方向を上記のように制御すると、 鋼帯 3の進行に 伴う随伴流 1 1が発生していても、 それと逆方向の強制的な流れ 1 2を発生させ るので、 溶融金属絞りローノレ 1の一対の口ール間を通過した鋼帯 3の随伴流 1 1 を大幅に抑制でき、 めっき浴から引き上げられる鋼帯に付随する余剰な溶融金属 の量を削減できる。 なお、 溶融金属絞りロール 1の軸芯 (あるいは回転軸あるい は中心軸) は浴内サポートロール 6の軸芯 (あるいは回転軸あるいは中心軸) と 平行である。 次に、 溶融金属絞りロール 1のより効果的な制御方法を検討した。 図 3に示す ように、 鋼帯 3の通板速度を V p [m/ s e c ] , 溶融金属絞りロール 1の直径 を D [m] 、 回転速度を V r [ r a d / s e c ] 、 鋼帯 3と溶融金属絞りロール 1の最近接距離を S [mm] とすると、 溶融金属絞りロール 1の回転によって発 生する流れの有効影響範囲は、 水モデル実験によりロール外周面からおよそ 1 0 mmと見積もることができたため、 浴上に引き上げられる鋼帯に付随する余剰溶 融金属を削減するには、 下式 (1 ) を満たしていればよいことを見出した。 If the rotation direction of the molten metal squeeze roll 1 is controlled as described above, even if an accompanying flow 1 1 is generated as the steel strip 3 travels, a forced flow 1 2 in the opposite direction is generated. The accompanying flow 11 of the steel strip 3 passing between the pair of molten metal squeezed rolls 1 can be greatly suppressed, and the amount of excess molten metal accompanying the steel strip pulled up from the plating bath can be reduced. The axis of the molten metal squeeze roll 1 (or the rotation axis or the center axis) is parallel to the axis of the support roll 6 in the bath (or the rotation axis or the center axis). Next, a more effective control method for the molten metal squeeze roll 1 was studied. As shown in Fig. 3, the feeding speed of steel strip 3 is V p [m / sec], the diameter of molten metal squeeze roll 1 is D [m], the rotational speed is V r [rad / sec], and steel strip 3 And the closest distance between the molten metal squeeze roll 1 and S [mm], the effective influence range of the flow generated by the rotation of the molten metal squeeze roll 1 is estimated to be approximately 10 mm from the outer surface of the roll by a water model experiment. Therefore, we found that the following equation (1) should be satisfied in order to reduce the excess molten metal accompanying the steel strip pulled up on the bath.
Figure imgf000009_0001
式 (1 ) の右辺が大きければ大きいほど、 鋼帯に付随する余剰な溶融金属の量 を削減する効果を向上させることが可能である。
Figure imgf000009_0001
The larger the right side of equation (1), the better the effect of reducing the amount of excess molten metal associated with the steel strip.
溶融金属絞りロール 1は、 擦り疵を発生しない程度 (通常 3 mm程度) まで鋼 帯 3に近づけてよい。  The molten metal squeeze roll 1 may be brought close to the steel strip 3 to such an extent that it does not generate rubbing (usually about 3 mm).
溶融金属絞りロール 1の形状は、 随伴流 1 1の抑制効果を損なわない限り特に 限定されない。 図 4 (a) 〜図 4 (c) は、 溶融金属絞りロール 1の鋼帯幅方向の 形状を俯瞰した模式図である。 図 4 ( a ) は鋼帯幅方向全長に同じ直径である。 ガスワイビングを行う際に問題になるスプラッシュは、 通常、 鋼帯エッジ部での 発生が多い。 したがって、 鋼帯エッジ部の余剰な溶融金属をより多く削減できれ ば、 スプラッシュ低減効果はより高くなる。 式 (1 ) より、 鋼帯とロールの鋼帯 側端部の距離 Sを小さくするほど式 (1 ) の右辺は大きくなるので、 図 4 ( a ) のような溶融金属絞りロールを鋼帯幅方向全長に亘つて鋼帯に近接ィヒできなくて も、 鋼帯幅方向エッジ部分だけロール径を大きくすることで、 ロールと鋼帯との 距離を近接化することが可能になる。  The shape of the molten metal squeezing roll 1 is not particularly limited as long as the effect of suppressing the accompanying flow 11 is not impaired. 4 (a) to 4 (c) are schematic views overlooking the shape of the molten metal squeeze roll 1 in the width direction of the steel strip. Figure 4 (a) shows the same diameter in the entire length of the steel strip. Splash that becomes a problem when performing gas wiping is usually generated at the edge of the steel strip. Therefore, if the amount of excess molten metal at the edge of the steel strip can be reduced more, the splash reduction effect will be higher. From Equation (1), the right side of Equation (1) increases as the distance S between the steel strip and the end of the steel strip on the roll side decreases, so the molten metal squeeze roll as shown in Fig. 4 (a) is Even if it is not possible to approach the steel strip over the entire length in the direction, it is possible to make the distance between the roll and the steel strip closer by increasing the roll diameter only at the edge in the width direction of the steel strip.
その際、 図 4 ( b ) のようにロール中央部のある範囲は一定の直径で、 それよ り外側はテーパ状にロール径を大きくするようにしたテーパクラウンロールであ つてもよい。 また、 図 4 ( c ) のように、 ロール中央部からある曲率でローノレ径 が大きくなるようにしたラジアルクラウンロールであってもよい。 さらに、 これ らの組合せであってもよい。 At that time, as shown in Fig. 4 (b), a certain range in the center of the roll is a constant diameter, and the outside is a tapered crown roll in which the roll diameter is increased in a tapered shape. May be. Further, as shown in FIG. 4 (c), a radial crown roll having a large roll diameter with a certain curvature from the center of the roll may be used. Further, a combination of these may be used.
図 4 ( b ) と図 4 ( c ) のようにロール径の異なる溶融金属絞りロールを用い る場合は、 溶融金属絞りロール 1の直径 Dと、 鋼帯 3のエッジ部と溶融金属絞り ロール 1との最近接距離を Sとして、 式 (1 ) を適用すればよい。  When using molten metal squeeze rolls with different roll diameters as shown in Fig. 4 (b) and Fig. 4 (c), diameter D of molten metal squeeze roll 1, edge of steel strip 3 and molten metal squeeze roll 1 Eq. (1) should be applied, where S is the closest distance to.
なお、 図 1の装置では、 浴内サポートロール 6は、 鋼帯 3の両側に配置されて いるが、 浴内サポートロール 6は鋼帯 3の一方の側に配置されていてもよい。 こ の場合、 浴内サポートロール 6が配置されていない側に配置する溶融金属絞り口 ール 1の位置は、 その鉛直方向位置が、 鋼帯 3の一方の側に配置されている浴内 サポートロール 6よりも上方にあるようにすればよい。  In the apparatus shown in FIG. 1, the in-bath support roll 6 is disposed on both sides of the steel strip 3, but the in-bath support roll 6 may be disposed on one side of the steel strip 3. In this case, the position of the molten metal squeeze tool 1 disposed on the side where the support roll 6 in the bath is not disposed is the support in the bath whose vertical position is disposed on one side of the steel strip 3. It should be above the roll 6.
本発明者らは、 溶融金属絞りロール 1を覆うように整流板をさらに設置するこ とを着想し、 以下の特徴を有する発明も完成させた。  The present inventors have conceived that a baffle plate is further installed so as to cover the molten metal squeezing roll 1, and have also completed the invention having the following characteristics.
以下、 図面を参照して本発明の実施の形態を説明する。 図 7は、 本発明の溶融 金属めつき鋼帯の製造装置の一実施形態を示す図である。 以下の図において、 説 明済みの図に示された部分の作用と同じ作用の部分には同じ符号を付してその説 明を省略する。 図 7において、 1は溶融金属较りロール、 2は整流板である。 鋼 帯に付随する余剰な溶融金属を取り除く作用は、 溶融金属絞りロール 1と整流板 2とによって奏される。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 7 is a view showing an embodiment of the apparatus for producing a molten metal-plated steel strip according to the present invention. In the following figures, parts having the same functions as those shown in the already explained figures are given the same reference numerals and explanations thereof are omitted. In FIG. 7, 1 is a molten metal comparison roll, and 2 is a current plate. The action of removing excess molten metal accompanying the steel strip is achieved by the molten metal squeezing roll 1 and the current plate 2.
溶融金属絞りロール 1は、 鋼帯を挟んそ、配置され、 鋼帯表面から所定の距離離 れた位置に設置されている。 整流板 2は、 溶融金属絞りロール 1上方の浴面下に、 溶融金属絞りロール 1と間隔をあけて該ロールを覆うように設置されている。 溶 融金属絞りロール 1は、 鋼帯との最近接位置で鋼帯進行方向と逆方向に回転する ように駆動される。 図 8は、 図 7の溶融金属絞り口ール周辺及ぴ溶融金属絞り口 一ル部を通過する鋼帯近傍の溶融金属の流れを説明する図である。  The molten metal squeezing roll 1 is disposed across the steel strip and is installed at a predetermined distance from the surface of the steel strip. The rectifying plate 2 is installed under the bath surface above the molten metal squeeze roll 1 so as to cover the roll with a gap from the molten metal squeeze roll 1. The molten metal squeezing roll 1 is driven so as to rotate in the direction opposite to the traveling direction of the steel strip at the closest position to the steel strip. FIG. 8 is a diagram for explaining the flow of the molten metal in the vicinity of the molten metal squeeze hole and the vicinity of the molten metal squeeze part in FIG.
溶融金属絞りロール 1の回転方向を上記のように制御すると、 銅帯の進行に伴 う随伴流 1 1が発生していても、 溶融金属絞りロール 1は、 それと逆方向の強制 的な流れ 1 2を発生させているので、 随伴流 1 1を抑制できる。 整流板 2は、 溶 融金属絞り口ール 1の回転駆動によつて発生する随伴流 1 2を、 溶融金属絞り口 ール 1と整流板 2の間の領域に限定して発達させることができる。 随伴流 1 1抑 制のために発生させたい流れは、 図 8の流れ 1 2のような随伴流 1 1と逆方向の 流れであるから、 ロールを単独で回転させるよりも、 整流板 2を併設することで その効果がより大きくなる。 また、 溶融金属絞りロール 1による流れ 1 2に随伴 されて、 整流板 2上方でも鋼帯の進行に伴う随伴流 1 1と逆方向の流れが生じる。 この流れも随伴流 1 1の抑制に寄与する。 その結果、 随伴流 1 1が大幅に抑制さ れ、 めっき浴から引き上げられる鋼帯に付随する余剰な溶融金属の量を削減でき る。 なお、 溶融金属絞りロール 1の軸芯 (あるいは回転軸あるいは中心軸) は浴 内サポートロール 6の軸芯 (あるいは回転軸あるいは中心軸) と平行である。 次に整流板 2の長さを検討した。 流れ 1 2を十分に発達させるためには、 整流 板 2は、 溶融金属絞りロール 1の外周面のうち、 浴面側でかつ鋼帯側に相当する 1 / 4面 (図 9の弧 A Bに相当する外周面) の 1 Z 2以上を覆うことが有効であ る。 なお、 図 9で、 線分 A Oは鋼帯面と直角、 線分 B Oは鋼帯面と平行であり、 弧 A Bは四分円 O A Bの円弧に相当する。 整流板 2の長さは溶融金属絞りロール を覆うような形態であれば長いほど効果が向上する。 ただし、 溶融金属絞りロー ル 1の外周面のうち、 反浴面側でかつ鋼帯側に相当する 1 / 4面 (図 9の弧 A C に相当する外周面) 部分は整流板 2で覆わない方が好ましい。 なお、 線分 C Oは 鋼帯面と平行であり、 弧 A Cは四分円 O A Cの円弧に相当する。 When the rotational direction of the molten metal squeeze roll 1 is controlled as described above, the molten metal squeeze roll 1 is forced in the opposite direction even if an accompanying flow 1 1 is generated as the copper band advances. Since the general flow 1 2 is generated, the accompanying flow 1 1 can be suppressed. The rectifying plate 2 can be developed by restricting the accompanying flow 1 2 generated by the rotational drive of the molten metal throttle 1 to the region between the molten metal throttle 1 and the rectifying plate 2. it can. The accompanying flow 1 1 The flow to be generated for suppression is the flow in the opposite direction to the accompanying flow 1 1 as shown in Fig. 8. The effect will be greater by installing it side by side. In addition, accompanying the flow 12 by the molten metal squeezing roll 1, a flow in the opposite direction to the accompanying flow 11 as the steel strip proceeds also occurs above the current plate 2. This flow also contributes to the suppression of the accompanying flow 11. As a result, the accompanying flow 11 is greatly suppressed, and the amount of excess molten metal accompanying the steel strip pulled up from the plating bath can be reduced. The axis (or rotation axis or center axis) of the molten metal squeezing roll 1 is parallel to the axis (or rotation axis or center axis) of the support roll 6 in the bath. Next, the length of the current plate 2 was examined. In order to fully develop the flow 1 2, the rectifying plate 2 is a quarter of the outer peripheral surface of the molten metal squeeze roll 1, corresponding to the bath surface side and the steel strip side (in the arc AB in FIG. 9). It is effective to cover 1 Z 2 or more of the corresponding outer peripheral surface. In Fig. 9, line AO is perpendicular to the steel strip surface, line BO is parallel to the steel strip surface, and arc AB corresponds to the arc of quadrant OAB. As long as the length of the rectifying plate 2 covers the molten metal squeeze roll, the longer the rectifying plate 2, the better the effect. However, the 1/4 of the outer peripheral surface of the molten metal squeeze roll 1 corresponding to the anti-bath surface and the steel strip side (the outer peripheral surface corresponding to the arc AC in Fig. 9) is not covered with the rectifying plate 2. Is preferred. The line segment CO is parallel to the steel strip surface, and the arc AC corresponds to the arc of the quadrant OAC.
次に、 溶融金属絞りロール 1および整流板 2のより効果的な制御方法を検討し た。 整流板の基本的な性能を確認するため、 整流板 2の形状は、 図 9に示すよう に、 溶融金属絞りロール 1と同じ中心を持つ円弧とし、 鋼帯の通板速度を V p Cm/ s e c ] 、 溶融金属絞りロール 1の直径を D [m] 、 回転速度を V r [ r a d / s e c ] 、 鋼帯 3と溶融金属絞りロール 1の最近接距離を S [mm] 、 溶 融金属絞りロール 1と整流板 2の距離を S r [mm] 、 整流板 2が覆っている溶.. 融金属絞りロール 1の周長を L [mm] とすると、 .溶融金属絞りロール 1の外周 面のうち、 浴面側でかつ鋼帯 3側に相当する 1 / 4面の 1 / 2以上を覆うように 整流板 2を設置した条件下では、 鋼帯 3に付随して浴上に引き上げられる余剰溶 融金属を削減するためには、 下記の式 (2 ) 及ぴ式 ( 3 ) を満たすことが好まし レ、。 Next, more effective control methods for the molten metal squeeze roll 1 and the current plate 2 were studied. In order to confirm the basic performance of the rectifying plate, the shape of the rectifying plate 2 is an arc with the same center as the molten metal squeeze roll 1, as shown in Fig. 9, and the plate passing speed of the steel strip is V p Cm / sec], the diameter of the molten metal squeeze roll 1 is D [m], the rotation speed is V r [rad / sec], the closest distance between the steel strip 3 and the molten metal squeeze roll 1 is S [mm], the molten metal squeeze If the distance between roll 1 and rectifying plate 2 is S r [mm], and the melt covered by rectifying plate 2 is L. The circumference of molten metal squeeze roll 1 is L [mm]. Under the condition that the rectifying plate 2 is installed so as to cover 1/2 or more of the 1/4 surface corresponding to the bath surface side and the steel strip 3 side of the surface, it is lifted onto the bath along with the steel strip 3 In order to reduce excess molten metal, it is preferable to satisfy the following formulas (2) and (3).
ここで、 整流板 2が覆っている溶融金属絞りロール 1の周長 Lは、 該溶融金属 絞りロール中心線に垂直な断面で整流板 2を溶融金属絞りロール 1の中心に向か つて投影したときに該溶融金属絞りロール 1外周面における整流板の投影弧長で また、 整流板 2が図 9の四分円 O A Bの円弧 A B部分を覆うとは、 整流板 2を 溶融金属絞り口ール 1の中心に向かつて投影したときに該溶融金属絞り口ール 1 外周面に整流板 2の少なくとも一部が投影されるということであり、 整流板 2が 図 9の四分円 O A Cの円弧 A Cを覆わないとは、 整流板 2を溶融金属絞りロール 1の中心に向かつて投影したときに該溶融金属絞りロール 1外周面に整流板 2が 投影されないということである。  Here, the circumferential length L of the molten metal squeezing roll 1 covered by the rectifying plate 2 is projected toward the center of the molten metal squeezing roll 1 in a cross section perpendicular to the molten metal squeezing roll center line. Sometimes the molten metal squeezing roll 1 is the projected arc length of the rectifying plate on the outer peripheral surface, and the rectifying plate 2 covers the arc AB part of the quadrant OAB in FIG. This means that at least a part of the current plate 2 is projected on the outer peripheral surface when projected toward the center of 1, and the current plate 2 is a quadrant of the arc OAC in FIG. “AC is not covered” means that when the current plate 2 is projected toward the center of the molten metal squeeze roll 1, the current plate 2 is not projected onto the outer peripheral surface of the molten metal squeeze roll 1.
VrDSrL VrDSrL
2S
Figure imgf000012_0001
2S
Figure imgf000012_0001
式 (3 ) は溶融金属絞りロール 1と整流板 2の距離 S rを、 鋼帯 3と溶融金属 絞りロールの最近接距離 Sの 5倍以下にするということである。 式 (2 ) の右辺 が大きければ大きいほど鋼帯に付随する余剰な溶融金属の量を削減する効果を向 上させることが可能である。 Equation (3) means that the distance S r between the molten metal squeeze roll 1 and the rectifying plate 2 is 5 times or less the closest distance S between the steel strip 3 and the molten metal squeeze roll. The larger the right side of Equation (2), the better the effect of reducing the amount of excess molten metal associated with the steel strip.
溶融金属絞りロール 1と整流板 2は、 擦り疵を発生しない程度まで鋼帯 3に近 づけてよい。 通常、 この距離は 3 mm程度である。 整流板 2は、 溶融金属絞りロール 1との距離を一定に保つ必要はない。 従って、 整流板 2の形状は円弧状に限定されない。 整流板 2と溶融金属絞りロール 1との 距離が一定でない場合、 整流板 2と溶融金属絞りロール 1間を流れる溶融金属の 流量は、 その距離が最も狭くなる部分が制約となるため、 整流板 2と溶融金属絞 りロール 1の最近接距離 S rを代表値として、 余剰溶融金属量を削減する効果を 評価することが可能である。 The molten metal squeezing roll 1 and the current plate 2 may be brought close to the steel strip 3 to the extent that no scuffing occurs. This distance is usually about 3 mm. The rectifying plate 2 does not need to keep the distance from the molten metal squeezing roll 1 constant. Therefore, the shape of the current plate 2 is not limited to the arc shape. If the distance between the rectifying plate 2 and the molten metal squeezing roll 1 is not constant, the flow rate of the molten metal flowing between the rectifying plate 2 and the molten metal squeezing roll 1 is limited by the portion where the distance is the narrowest. 2 and the closest distance Sr between the molten metal squeezing rolls 1 as a representative value, the effect of reducing the amount of excess molten metal can be evaluated.
整流板 2の形状が図 9のような円弧でなく、 例えば図 1 0 ( a ) のような水平 部分と鉛直部分が接続された逆 L型形状や、 図 1 0 ( b ) のような水平部分、 鉛 直部分と傾斜部分を接続したような形状の場合、 多少圧損が発生して効果は低下 するものの、 溶融金属絞りロール 1と整流板 2との最近接距離 S r、 整流板 2を 溶融金属絞りロール 1中心に向かって投影したときに該溶融金属絞りロール 1外 周面における整流板 1の投影弧長 Lを前記式 (2 ) 、 式 (3 ) にあてはめること で、 およその効果を算定することが可能である。  The shape of the rectifying plate 2 is not an arc as shown in Fig. 9, but for example, an inverted L shape with a horizontal portion and a vertical portion connected as shown in Fig. 10 (a), or a horizontal shape as shown in Fig. 10 (b) If the shape is such that the straight part and lead part are connected to each other, pressure loss will occur and the effect will be reduced, but the closest distance S r between the molten metal squeeze roll 1 and the current plate 2 will be By approximating the projected arc length L of the rectifying plate 1 on the outer peripheral surface of the molten metal squeeze roll 1 to the center of the molten metal squeeze roll 1 to the above formulas (2) and (3), the approximate effect Can be calculated.
なお、 溶融金属絞りロール 1と整流板 2について上述した各条件は、 適宜組み 合わせて用いることができる。 実施例  The conditions described above for the molten metal squeezing roll 1 and the current plate 2 can be used in appropriate combination. Example
実施例 1〜 7 Examples 1-7
図 1に示した溶融金属めつき鋼帯の製造装置を、 連続溶融亜鉛めつきラインに 設置し、 溶融亜鉛めつき鋼帯の製造実験を行った。 溶融金属絞りロールは、 鋼帯 の両面に対向させ、 機側に設けたサーボモータよる位置制御装置からフレームを 伸ばした先に、 それぞれのロールを回転させるサーポモータを設置し、 このサー ポモータに直結した。 このような構造により、 鋼帯との距離を容易に制御できる ようにするとともに、 溶融金属絞りロールの回転数も任意に設定可能にした。 上記連続溶融亜鉛めつきラインにおいて、 浴面と浴面に近い側の浴内サポート ロール上端との距離は 8 0 mmであったので、 周辺機器との取り合いを考慮して、 溶融金属絞りロール 1の幅方向中央部の直径は 5 0 mmに、 浴面とロール中心と の距離を 35mmに固定した。 溶融金属絞りロールの鋼帯幅方向長さはガスワイ ピングノズル相当の 2000 mmとした。 The molten metal plating steel strip production equipment shown in Fig. 1 was installed in the continuous molten zinc plating line, and experiments were conducted on the molten zinc plating steel strip. The molten metal squeezing rolls are opposed to both sides of the steel strip, and a servo motor that rotates each roll is installed at the end of the frame extended from the servo motor position control device provided on the machine side, and directly connected to this servo motor. . With this structure, the distance to the steel strip can be easily controlled, and the rotational speed of the molten metal squeeze roll can be set arbitrarily. In the above-mentioned continuous molten zinc plating line, the distance between the bath surface and the upper end of the support roll in the bath on the side close to the bath surface was 80 mm. The diameter of the center in the width direction is 50 mm, and the bath surface and roll center The distance was fixed at 35mm. The length of the molten metal squeeze roll in the width direction of the steel strip was set to 2000 mm, equivalent to a gas wiping nozzle.
溶融亜鉛めつき鋼帯製造条件は、 ガスワイビングノズルのスリツトギャップ 0, 8 mm, ガスワイビングノズル一鋼帯距離 7 mm、 溶融亜鉛浴からのノズル高さ 400mm、 溶融亜鉛浴温度 460°Cとし、 製造する鋼帯のサイズは、 0. 8m m厚 X I. 2m幅、 めっき付着量は片面 45 g Zm2とした。 その他の製造条件 および溶融金属絞りロール条件、 製品品質指標となるスプラッシュ発生量の調査 結果を表 1に示す。 スプラッシュ発生率は、 各製造条件で通過した鋼帯長さに対 する検査工程でスプラッシュ欠陥ありと判定された鋼帯長さの比率であり、 実用 上問題とならない軽度のスプラッシュ欠陥を含んでいる。 The production conditions for the hot-dip galvanized steel strip are as follows: the slit gap of the gas wiping nozzle is 0, 8 mm, the distance between the gas wiping nozzle and the steel strip is 7 mm, the nozzle height from the molten zinc bath is 400 mm, and the molten zinc bath temperature is 460 °. The size of the steel strip to be produced was 0.8 mm thick X I. 2 m wide, and the coating weight was 45 g Zm 2 on one side. Table 1 shows the other manufacturing conditions, molten metal squeeze roll conditions, and the results of a survey of the amount of splash that is the product quality index. Splash occurrence rate is the ratio of the length of steel strip that was determined to have splash defects in the inspection process to the length of steel strip that passed under each manufacturing condition, and includes mild splash defects that do not cause any practical problems. .
表 1 table 1
Figure imgf000015_0001
Figure imgf000015_0001
*1)テーパークラウンロールはフラット部における鋼帯との距離。 * 1) Tapered crown roll is the distance from the steel strip in the flat part.
実施例 1 ~ 4は、 図 4 ( a ) に例示したようなロール幅方向に.直径が変化しな いフラットな溶融金属絞り口ールの場合で、 鋼帯との距離 Sおよび回転速度 V r を変化させている。 いずれの実施例でも、 現状の操業形態 (従来装置) である比 較例 1の場合と比較して、 スプラッシュ発生率は減少しており、 さらに式 ( 1 ) の右辺が大きいほどその効果は顕著であつた。 Examples 1 to 4 are in the direction of the roll width as illustrated in Fig. 4 (a), in the case of a flat molten metal squeeze roll that does not change its diameter. r is changed. In any of the examples, compared to the case of Comparative Example 1 which is the current operation mode (conventional device), the splash occurrence rate is reduced, and the effect is more remarkable as the right side of Equation (1) is larger. It was hot.
実施例 5は、 図 4 ( b ) のように、 ロール中央部はフラットで、 両端部にか けてロール直径が大きくなるテーパクラウンロールの場合である。 この実施例で は、 ロール中央部 (幅方向中央部) と鋼帯との距離は 9 mmでも、 鋼帯端部では 6 mm程度まで近接ィヒできており、 鋼帯端部における式 (1 ) 右辺は、 実施例 3 と 4の間になる。 スプラッシュ発生率もそれに応じた結果であった。  Example 5 is a case of a tapered crown roll in which the center of the roll is flat and the diameter of the roll increases toward both ends, as shown in FIG. 4 (b). In this example, even if the distance between the roll center (widthwise center) and the steel strip is 9 mm, the steel strip end can be as close as 6 mm, and the formula (1 ) The right side is between Example 3 and 4. Splash incidence was also a result.
実施例 6、 7および比較例 2は、 通板速度を 4 . O mZ sまで高速化した条件 下で行った。 比較例 2ではスプラッシュが多発し、 操業不能な状況であつたのに 対し、 実施例 6、 7では、 現状の通板速度 2 . 5 mZ sの例 (比較例 1 ) より良 い品質レベルでの操業が可能になつた。  Examples 6 and 7 and Comparative Example 2 were performed under the condition where the sheet passing speed was increased to 4. OmZ s. In Comparative Example 2, the splash was frequent and the operation was impossible. In Examples 6 and 7, the quality level was better than that of the current plate speed of 2.5 mZ s (Comparative Example 1). The operation became possible.
上述のように、 めっき浴中に設けた本発明の溶融金属絞りロールによって鋼帯 に付随する余剰なめっき金属を削減した後に、 ガスワイビングでめっき厚を調整 できるようになつたので、 スプラッシュの発生量を大幅に低減できる。 また従来 技術では通板速度を上昇するとスプラッシュの発生量が大幅に増加したが、 本宪 明によれば、 通板速度を大幅に上昇してもスプラッシュの発生を抑制でき、 表面 欠陥の無いめっき鋼帯を高い生産性を維持して製造することが可能となる。 実施例 8 ~ 1 1  As described above, after reducing excess plating metal attached to the steel strip by the molten metal squeeze roll of the present invention provided in the plating bath, the plating thickness can be adjusted by gas wiping. Can be greatly reduced. In addition, with the conventional technology, the amount of splash generated significantly increased when the plate passing speed was increased. However, according to this paper, even if the plate passing speed is increased significantly, the occurrence of splash can be suppressed and plating without surface defects can be achieved. It becomes possible to manufacture a steel strip while maintaining high productivity. Examples 8 to 1 1
図 7に示した溶融金属めつき鋼帯の製造装置を、 連続溶融亜鉛めつきラインに 設置し、 溶融亜鉛めつき鋼帯の製造実験を行った。 溶融金属絞りロール 1は、 鋼 帯両面に対向させ、 機側に設けたサーポモータよる位置制御装置からフレームを 伸ばした先に、 それぞれのロールを回転させるサーポモータを設置し、 このサー ポモータに直結した。 このような構造により、 鋼帯との距離を容易に制御できる ようにするとともに、 溶融金属絞り口ール 1の回転数も任意に設定可能にした。 整流板 2はサーボモータを設置したフレームに取り付け、 整流板 2の鋼帯側端部 と鋼帯 3の距離は、 溶融金属絞りロール 1と鋼帯 3の距離と同じ距離になるよう にした。 The manufacturing equipment for the molten metal plating steel strip shown in Fig. 7 was installed in the continuous molten zinc plating line, and an experiment for manufacturing the molten zinc plating steel strip was conducted. The molten metal squeezing roll 1 was placed directly opposite to both sides of the steel strip, and a servo motor that rotates each roll was installed at the end of the frame extended from the position control device by the servo motor provided on the machine side. With this structure, the distance to the steel strip can be easily controlled. In addition, the number of revolutions of the molten metal throttle 1 can be set arbitrarily. The rectifying plate 2 is attached to the frame on which the servo motor is installed, and the distance between the steel strip side end of the rectifying plate 2 and the steel strip 3 is set to be the same as the distance between the molten metal squeeze roll 1 and the steel strip 3.
上記連続溶融亜鉛めつきラインにおいて、 浴面と浴面に近い側の浴内サポート ロール上端との距離は 8 O mmであったので、 周辺機器との取り合いを考慮して、 溶融金属絞りロール 1の直径 (D) は 5 0 mmとし、 浴面と溶融金属絞りロール 中心との距離を 3 5 mmに、 溶融金属絞りロール 1と整流板 2の最近接距離 ( S r ) は 2 mmに固定した。 整流板 2の形状は図 9に示すような円弧 (実施例 1〜 3 ) 又は図 1 0 ( a ) の逆 L字型 (水平方向 7 0 mm、 鉛直方向 5 0 mm;実施 例 4 ) にした。 溶融金属絞り口ール 1および整流板 2の鋼帯幅方向長さはガスヮ ィピングノズノレ相当の 2 0 0 0 mmとした。  In the above-mentioned continuous molten zinc plating line, the distance between the bath surface and the upper end of the support roll in the bath on the side close to the bath surface was 8 O mm. The diameter (D) is 50 mm, the distance between the bath surface and the center of the molten metal squeeze roll is fixed to 35 mm, and the closest distance (Sr) between the molten metal squeeze roll 1 and the current plate 2 is fixed to 2 mm. did. The shape of the rectifying plate 2 is an arc (Examples 1 to 3) as shown in Fig. 9 or an inverted L-shape (horizontal direction 70 mm, vertical direction 50 mm; Example 4) of Fig. 10 (a). did. The length of the molten metal throttle 1 and the current plate 2 in the width direction of the steel strip was set to 200 mm, which is equivalent to gas-dipping nose.
溶融亜鉛めつき鋼帯製造条件は、 ガスワイピングノズルのスリットギヤップ 0 · 8 mm、 ガスワイピングノズルー鋼帯距離 7 mm、 溶融亜鉛浴からのノズル高さ 4 0 0 mm, 溶融亜鉛浴温度 4 6 0 °Cとし、 製造する鋼帯のサイズは、 0 . 8 m m厚 X 1 . 2 m幅、 めっき付着量は片面 4 5 g /m 2とした。 その他の製造条件 および溶融金属絞りロール条件、 製品品質指標となるスプラッシュ発生量の調査 結果を表 2に示す。 スプラッシュ発生率は、 各製造条件で通過した鋼帯長さに対 する検査工程でスプラッシュ欠陥ありと判定された鋼帯長さの比率であり、 実用 上問題とならない軽度のスプラッシュ欠陥を含んでいる。 The production conditions for the hot-dip galvanized steel strip are as follows: slit gap of the gas wiping nozzle 0 · 8 mm, distance of the gas wiping nozzle steel strip 7 mm, nozzle height from the hot-dip zinc bath 400 mm, hot-dip zinc bath temperature 4 6 The size of the steel strip to be manufactured was 0.8 mm thickness x 1.2 m width, and the coating weight was 45 g / m 2 on one side. Table 2 shows the other production conditions, molten metal squeeze roll conditions, and the results of a survey of the amount of splash generated that is a product quality index. Splash occurrence rate is the ratio of the length of steel strip that was determined to have splash defects in the inspection process to the length of steel strip that passed under each manufacturing condition, and includes mild splash defects that do not cause any practical problems. .
表 2 Table 2
Figure imgf000018_0001
Figure imgf000018_0001
実施例 8〜9は、 整流板 2が溶融金属絞りロールの外周面を覆う長さ (L ) 力 異なる条件であるが、 いずれも現状の操業形態 (従来装置) である比較例 1より 大幅なスプラッシュ低減効果が得られた。 In Examples 8 to 9, the length (L) force that the current plate 2 covers the outer peripheral surface of the molten metal squeeze roll is a different condition, but both are much larger than Comparative Example 1 that is the current operation mode (conventional device). Splash reduction effect was obtained.
実施例 1 0および比較例 2は、 通板速度を 4 . 0 m/ sまで高速化した条件下 で行った。 従来装置を用いた比較例 2ではスプラッシュが多発し、 操業不能な状 況であったのに対し、 実施例 1 0では、 現状の 2 . 5 m/ sより良い品質レベル での操業が可能になった。  Example 10 and Comparative Example 2 were performed under conditions where the plate passing speed was increased to 4.0 m / s. In Comparative Example 2 using conventional equipment, splashes occurred frequently and operation was impossible.In Example 10, operation at a quality level better than the current 2.5 m / s was possible. became.
実施例 1 1は、 整流板 2の形状を逆 L字型とした条件である。 実施例 8、 9と 比べるとスプラッシュ低減効果はやや劣るが、 比較例 1よりは大幅なスプラッシ ュ低減効果が得られた。  Example 1 1 is a condition in which the shape of the current plate 2 is an inverted L shape. The splash reduction effect was slightly inferior to Examples 8 and 9, but a significant splash reduction effect was obtained compared to Comparative Example 1.
上述のように、 鋼帯に非接触で鋼帯進行方向と逆方向に回転させる溶融金属絞 り口ール及びこの口一ルを覆うように整流板を設けることによつて鋼帯に付随す る余剰なめっき金属を削減した後にガスワイピングでめつき厚を調整できるので、 スプラッシュの発生量をさらに大幅に低減できる。 産業上の利用可能性  As described above, the molten metal squeezing tool that rotates in the direction opposite to the traveling direction of the steel strip in a non-contact manner with the steel strip and the flow straightening plate so as to cover this joint are attached to the steel strip. The amount of splash generated can be further greatly reduced because the metal thickness can be adjusted by gas wiping after reducing the excess plating metal. Industrial applicability
本努明の装置は、 スプラッシュの発生を低減し、 表面外観に優れる溶融金属め つき鋼帯の製造設備として利用することができる。 本発明の装置は、 高速通板時 にもスプラッシュの発生を抑制できるので、 表面外観に優れる溶融金属めっき鋼 帯を高い生産性を維持して製造する装置として利用することができる。  The device of this effort can be used as a manufacturing facility for molten metal-plated steel strips that reduce the occurrence of splash and have an excellent surface appearance. Since the apparatus of the present invention can suppress the occurrence of splash even during high-speed sheet feeding, it can be used as an apparatus for manufacturing a molten metal plated steel strip having an excellent surface appearance while maintaining high productivity.
また、 本発明の鋼帯の製造方法は、 スプラッシュの発生を低減し、 表面外観に 優れる溶融金属めつき鋼帯の製造方法として利用することができる。  The steel strip manufacturing method of the present invention can be used as a method for manufacturing a molten metal-plated steel strip that reduces the occurrence of splash and has an excellent surface appearance.

Claims

請 求 の 範 囲 The scope of the claims
1. 溶西金属めつき槽から連続的に引き上げられる鋼帯に対し、 該溶融金属め つき槽上方で該鋼帯を挟んでその両面に対向配置したガスワイビングノズルから ガスを吹き付けて付着金属の厚さを制御する溶融金属めつき鋼帯の製造装置にお いて、 めっき浴面より下方かつ浴内サポートロールの上方に、 該鋼帯の両側に該 鋼帯と非接触で配置された溶融金属絞り口ールを備え、 該溶融金属絞り口ールは 該鋼帯との最近接位置での回転方向が鋼帯進行方向と逆方向となるように駆動さ れることを特徴とする溶融金属めっき鋼帯の製造装置。 1. Adhering metal to a steel strip that is continuously pulled up from a molten metal plating tank by blowing gas from a gas wiping nozzle placed on both sides of the steel strip above the molten metal plating tank. In a manufacturing apparatus for a molten metal-plated steel strip that controls the thickness of the molten metal, the molten metal is disposed below the plating bath surface and above the support roll in the bath, on both sides of the steel strip, in non-contact with the steel strip. A molten metal comprising a metal squeezing tool, wherein the molten metal squeezing tool is driven so that a rotation direction at a position closest to the steel strip is opposite to a traveling direction of the steel strip. Plated steel strip manufacturing equipment.
2. 該鋼帯の通板速度 V.p [m/s e c] と該溶融金属絞りロールの回転速度 V r [r a d/s e c] に対し、 該溶融金属絞りロールの直径 D [m] 、 および 該鋼帯と該溶融金属絞りロールの最近接距離 S [mm] が下式 (1) を満足する ように設定された請求項 1に記載の溶融金属めつき鋼帯の製造装置。 2. The diameter D [m] of the molten metal squeeze roll with respect to the plate feed speed Vp [m / sec] of the steel strip and the rotational speed V r [rad / sec] of the molten metal squeeze roll, and the steel strip 2. The apparatus for producing a molten metal-plated steel strip according to claim 1, wherein a closest distance S [mm] between the molten metal squeezing rolls is set so as to satisfy the following formula (1):
Figure imgf000020_0001
Figure imgf000020_0001
3. 該溶融金属絞りロールが、 該鋼帯の幅方向の中央部に面するロール直径よ りも該鋼帯の幅方向の両端部に面するロール直径の方が大きい請求項 1に記載の 溶融金属めつき鋼帯の製造装置。 · 3. The molten metal squeezing roll according to claim 1, wherein the diameter of the roll facing both ends of the steel strip in the width direction is larger than the diameter of the roll facing the central portion in the width direction of the steel strip. Manufacturing equipment for steel strips with molten metal. ·
4. 該溶融金属絞りロールが、 該鋼帯の幅方向の中央部に面するロール直径よ りも該鋼帯の幅方向の両端部に面するロール直径の方が大きい請求項 2に記載の 溶融金属めっき鋼帯の製造装置。 4. The molten metal squeezing roll according to claim 2, wherein the roll diameter facing both ends of the steel strip in the width direction is larger than the roll diameter facing the central portion in the width direction of the steel strip. Manufacturing equipment for molten metal-plated steel strip.
5. 該溶融金属絞り口ールの外周面のうち浴面側でかつ鋼帯側に相当する 1 Z5. 1 Z corresponding to the bath side and the steel strip side of the outer peripheral surface of the molten metal throttle hole
4面の 1/2以上を覆う整流板がさらに設置された請求項 1に記載の溶融金属め つき鋼帯の製造装置。 2. The apparatus for producing a molten metal-plated steel strip according to claim 1, further comprising a baffle plate covering at least half of the four surfaces.
6. 該鋼帯の通板速度 Vp [m/s e c] と該溶融金属絞りロールの回転速度 V r [r a d/s e c] に対し、 該溶融金属絞りロールの直径 D [m] 、 該鋼帯 と該溶融金属絞りロールの最近接距離 S [mm] 、 該溶融金属絞りロールと該整 流板の最近接距離 S r [mm] 、 該整流板が覆う該溶融金属絞りロールの周長 L [mm] I 下記式 (2) 及ぴ式 (3) を満足するように設定された請求項 5に 記載の溶融金属めつき鋼帯の製造装置。 6. The diameter D [m] of the molten metal squeeze roll, the steel strip and the rotation speed V r [rad / sec] of the molten metal squeeze roll with respect to the plate feed speed Vp [m / sec] of the steel strip The closest distance S [mm] of the molten metal squeeze roll, the closest distance S r [mm] of the molten metal squeeze roll and the rectifying plate, and the circumferential length L [mm] of the molten metal squeeze roll covered by the current plate I The apparatus for producing a molten metal-plated steel strip according to claim 5, which is set to satisfy the following formula (2) and formula (3).
Figure imgf000021_0001
Figure imgf000021_0001
Sr/S≤5'' (3)  Sr / S≤5 '' (3)
7. 請求項 1〜 6のいずれかに記載の溶融金属めつき鋼帯の製造装置を用いて 鋼帯に溶融金属めつきを行う溶融金属めつき鋼帯の製造方法。 7. A method for producing a molten metal-plated steel strip, which uses the molten metal-plated steel strip production apparatus according to any one of claims 1 to 6 to perform molten metal plating on the steel strip.
PCT/JP2008/063807 2007-07-30 2008-07-25 Production equipment of liquid metal plated steel strip in coil and production method of liquid metal plated steel strip in coil WO2009017209A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007-197682 2007-07-30
JP2007197681A JP5194612B2 (en) 2007-07-30 2007-07-30 Manufacturing apparatus for molten metal plated steel strip and method for manufacturing molten metal plated steel strip
JP2007-197681 2007-07-30
JP2007197682A JP5194613B2 (en) 2007-07-30 2007-07-30 Manufacturing apparatus for molten metal plated steel strip and method for manufacturing molten metal plated steel strip

Publications (1)

Publication Number Publication Date
WO2009017209A1 true WO2009017209A1 (en) 2009-02-05

Family

ID=40304438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/063807 WO2009017209A1 (en) 2007-07-30 2008-07-25 Production equipment of liquid metal plated steel strip in coil and production method of liquid metal plated steel strip in coil

Country Status (1)

Country Link
WO (1) WO2009017209A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2184377A1 (en) * 2007-09-05 2010-05-12 JFE Steel Corporation Apparatus for manufacturing hot-dip metal plated steel band
CN105316570A (en) * 2015-12-11 2016-02-10 武汉钢铁(集团)公司 Hot-dip galvanized steel sheet with unequal-thickness zinc layers and production method thereof
CN110462092A (en) * 2017-03-31 2019-11-15 杰富意钢铁株式会社 The manufacturing method of hot-dip plating metal steel band and its manufacturing device
US11313020B2 (en) 2017-03-31 2022-04-26 Jfe Steel Corporation Method and apparatus for manufacturing hot-dip metal plated steel strip

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548124A (en) * 1977-06-21 1979-01-22 Nippon Steel Corp Controlling method for amount of molten metal adhered in continuous hot dipping
JPS55128570A (en) * 1979-03-29 1980-10-04 Nippon Steel Corp Continuous galvanizing apparatus for strip
JPS6288749U (en) * 1985-11-26 1987-06-06
JPH06207263A (en) * 1992-08-27 1994-07-26 Nkk Corp Hot-dip metal coating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548124A (en) * 1977-06-21 1979-01-22 Nippon Steel Corp Controlling method for amount of molten metal adhered in continuous hot dipping
JPS55128570A (en) * 1979-03-29 1980-10-04 Nippon Steel Corp Continuous galvanizing apparatus for strip
JPS6288749U (en) * 1985-11-26 1987-06-06
JPH06207263A (en) * 1992-08-27 1994-07-26 Nkk Corp Hot-dip metal coating device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2184377A1 (en) * 2007-09-05 2010-05-12 JFE Steel Corporation Apparatus for manufacturing hot-dip metal plated steel band
EP2184377A4 (en) * 2007-09-05 2011-02-16 Jfe Steel Corp Apparatus for manufacturing hot-dip metal plated steel band
CN105316570A (en) * 2015-12-11 2016-02-10 武汉钢铁(集团)公司 Hot-dip galvanized steel sheet with unequal-thickness zinc layers and production method thereof
CN110462092A (en) * 2017-03-31 2019-11-15 杰富意钢铁株式会社 The manufacturing method of hot-dip plating metal steel band and its manufacturing device
EP3604601A4 (en) * 2017-03-31 2020-02-05 JFE Steel Corporation Method and device for producing hot-dip metal plated steel strip
US11313020B2 (en) 2017-03-31 2022-04-26 Jfe Steel Corporation Method and apparatus for manufacturing hot-dip metal plated steel strip

Similar Documents

Publication Publication Date Title
JP5549050B2 (en) Manufacturing equipment for molten metal plated steel strip
JP5493260B2 (en) Molten metal plated steel strip manufacturing apparatus and manufacturing method of molten metal plated steel strip
JP2848208B2 (en) Hot-dip metal plating equipment
JP5470932B2 (en) Hot-dip metal-plated steel strip manufacturing equipment and hot-metal-plated steel strip manufacturing method
WO2009017209A1 (en) Production equipment of liquid metal plated steel strip in coil and production method of liquid metal plated steel strip in coil
JP5444730B2 (en) Molten metal plating steel strip production equipment
JP5444744B2 (en) Manufacturing equipment for molten metal plated steel strip
JP5375150B2 (en) Manufacturing equipment for molten metal plated steel strip
JP2011202287A (en) Method for manufacturing hot-dip metal-plated steel strip
JP4998696B2 (en) Manufacturing apparatus for molten metal plated steel strip and method for manufacturing molten metal plated steel strip
JP5194613B2 (en) Manufacturing apparatus for molten metal plated steel strip and method for manufacturing molten metal plated steel strip
JP5194612B2 (en) Manufacturing apparatus for molten metal plated steel strip and method for manufacturing molten metal plated steel strip
JP2004076082A (en) Apparatus and method for manufacturing hot dip coated metallic strip
JP3573074B2 (en) Rectifying member for hot-dip metal plating bath and method for producing hot-dip galvanized steel strip
JP5444705B2 (en) Molten metal plating steel strip production equipment
JP2007197782A (en) Manufacturing method of hot dip metal coated steel strip
JPH042756A (en) Gas wiping method for continuous hot dipping
JP5386779B2 (en) Method and apparatus for manufacturing hot-dip galvanized steel sheet
JPH0434906Y2 (en)
JPS6350423B2 (en)
JPH04247861A (en) Continuous galvanizing method and device
JPH04221054A (en) Edge wiping device in continuous hot dipping
JPS644835Y2 (en)
JPH09279322A (en) Gas wiping nozzle for hot dip coated steel pipe and production of hot dip coated steel pipe
JPH08232055A (en) Gas wiping device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08792020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08792020

Country of ref document: EP

Kind code of ref document: A1