JPH11277105A - Manufacture of thick steel plate excellent in resistance to scale peeling - Google Patents

Manufacture of thick steel plate excellent in resistance to scale peeling

Info

Publication number
JPH11277105A
JPH11277105A JP8111298A JP8111298A JPH11277105A JP H11277105 A JPH11277105 A JP H11277105A JP 8111298 A JP8111298 A JP 8111298A JP 8111298 A JP8111298 A JP 8111298A JP H11277105 A JPH11277105 A JP H11277105A
Authority
JP
Japan
Prior art keywords
rolling
scale
less
thick steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8111298A
Other languages
Japanese (ja)
Inventor
Manabu Hoshino
学 星野
Takashi Tomonari
貴 友成
Naoki Tanaka
直紀 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8111298A priority Critical patent/JPH11277105A/en
Publication of JPH11277105A publication Critical patent/JPH11277105A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the manufacturing method of thick steel plates which is excellent in resistance to scale peeling. SOLUTION: In this manufacturing method, after heating the steel to which 0.03-0.25% C, 0.05-less than 0.50% Si, 0.05-1.60% Mn and 0.005-0.10% Al are added at 1050-1300 deg.C and, after executing rolling under specified conditions under which temp. and draft are limited, the steel plates are gradually cooled by putting one plate on another so that the cooling rate at <=350 deg.C becomes $0.1 deg.C/sec. Moreover, at least one kind of element which is selected from the 2nd element group consisting of Nb, V, Ti, Cu, Ni, Cr, Mo and B and the 3rd element group consisting of Ca and REM may be made to contain in this steel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐スケール剥離性
に優れる厚鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thick steel plate having excellent scale peel resistance.

【0002】[0002]

【従来の技術】建設機械、コンクリート型枠、造船、橋
梁の分野では、業界全体の大きな課題として、製造コ
スト削減(製造ラインの自動化、加工作業の効率化の徹
底)、製品外観の改善、職場の衛生状態改善(特に
若年層の製造業離れの深刻化を受け、これに対する対
策)の3つがある。これらの分野において大量に使用さ
れる厚鋼板(主に板厚6〜25mm)の表面には、赤ス
ケールと呼ばれる赤く細かいスケールが多量に付着して
いる。この赤スケールは鋼板加工時に容易に鋼板から剥
離し、微粉末となって舞い上がるため、鋼板表面に書い
た罫書き線が消えること等による作業効率の低下、製造
ライン自動化の妨げ、労働衛生上の対策、さらにはコン
クリート型枠として使用時には製品外観の劣化等を招く
ため大きな問題となっている。このため、上記分野にお
いては、鋼板表面に剥離しやすい赤スケールがほとんど
存在しない、耐スケール剥離性に優れる厚鋼板への要求
が非常に強い。
2. Description of the Related Art In the fields of construction machinery, concrete formwork, shipbuilding, and bridges, the major issues for the entire industry are reduction of manufacturing costs (automation of manufacturing lines, thoroughness of processing operations), improvement of product appearance, workplaces. (Particularly in response to the seriousness of young people leaving the manufacturing industry and countermeasures against this). On a surface of a thick steel plate (mainly a plate thickness of 6 to 25 mm) used in a large amount in these fields, a large amount of a red fine scale called a red scale adheres. This red scale easily peels off from the steel sheet during the processing of the steel sheet and rises up as a fine powder. When used as a concrete formwork as a countermeasure, the appearance of the product is deteriorated, which is a major problem. For this reason, in the field described above, there is a very strong demand for a thick steel sheet having excellent scale peeling resistance, in which there is almost no red scale that easily peels off on the surface of the steel sheet.

【0003】さらに、建設機械を中心に上記分野におい
ては厚鋼板の切断加工に際してレーザ切断が急速に普及
しているが、赤スケール厚鋼板は安定してレーザ切断加
工できない。これは、赤スケール厚鋼板はミクロに見れ
ばスケールが剥離した部分が多数あることにより、レー
ザ切断時にセルフバーニングが起こるためであり、ミク
ロに見ても均一な厚みのスケールを有する耐スケール剥
離性に優れる厚鋼板であれば、安定したレーザ切断加工
が期待できる。
[0003] Furthermore, in the above-mentioned fields, mainly for construction machines, laser cutting is rapidly spreading in cutting thick steel plates, but red scale thick steel plates cannot be stably laser cut. This is because red scale thick steel plates have a large number of scale peeled parts when viewed microscopically, causing self-burning during laser cutting. If the steel plate is excellent in quality, stable laser cutting can be expected.

【0004】しかしながら、厚鋼板の製造工程において
は、圧延時に高温での滞留時間が長い、圧延後に巻
き取ることなく冷却するために冷却時にスケール及び地
鉄の酸化が進みやすい、等の製造工程の特徴上、鋼板表
面は非常に赤スケール化しやすい。
However, in the manufacturing process of steel plates, the residence time at a high temperature during rolling is long, and the scale and ground iron are easily oxidized during cooling in order to cool without winding after rolling. Characteristically, the surface of the steel sheet is very easily red-scaled.

【0005】赤スケールに対する従来の主な対策として
は、圧延時のデスケーリング水の高圧力化等のデスケー
リング装置の能力向上が検討されているが、デスケーリ
ング装置の改善および新設には多額の設備投資が必要と
なるため製造コストの増加を招く。デスケーリング装置
の能力向上以外の従来技術として、特開平9−8779
9号公報には、圧延温度を880℃以上、かつ圧下率を
21%以上に限定することで圧延時のスケール破砕を防
止し赤スケールの発生を抑制する技術が開示されてお
り、赤スケールのない厚鋼板を、安価に、安定して製造
可能である。しかしながら、この技術の適用時の問題点
として、鋼板形状を冷間で矯正する処理(コールドレベ
ラー処理)を行った時に部分的なスケール剥離が生じる
問題がある。これは赤スケールほどではないものの、ユ
ーザーの作業性を低下させるため問題となる。このため
赤スケールの発生を抑制した上で、さらにスケールの密
着性を高める必要がある。
As a conventional main countermeasure against the red scale, improvement of the capacity of a descaling device such as increasing the pressure of the descaling water at the time of rolling has been studied. Since capital investment is required, manufacturing costs increase. As a prior art other than the improvement of the capacity of the descaling device, Japanese Patent Application Laid-Open No. 9-8779
No. 9 discloses a technique in which the rolling temperature is limited to 880 ° C. or more and the rolling reduction is limited to 21% or more to prevent scale crushing during rolling and suppress the generation of red scale. Thick steel plates can be manufactured stably at low cost. However, as a problem at the time of applying this technology, there is a problem that partial scale peeling occurs when a process of correcting the shape of a steel sheet cold (cold leveler process) is performed. Although this is not as large as the red scale, it poses a problem because it reduces user workability. For this reason, it is necessary to further increase the adhesion of the scale while suppressing the generation of the red scale.

【0006】厚鋼板のスケール密着性向上に対する従来
技術として、特開平9−209036号公報には、成分
を限定した上で圧延仕上げ温度を700〜850℃の範
囲とする熱間圧延により所定の板厚としたのち、冷却途
中の、650〜570℃から徐冷処理を施すことを特徴
とするスケール密着性に優れた厚鋼板の製造方法が開示
されている。特開平9−272918号公報には、成分
を限定した上で高圧水デスケーリングを圧延中に3回以
上実施し、圧延を760〜800℃で終了し、空冷し
て、さらに鋼板の温度が500℃から300℃まで80
min以上の時間保熱して、その後放冷することを特徴
とするスケール密着性が良好な厚鋼板の製造方法が開示
されている。これらに開示された技術はいずれも圧延仕
上温度が低く赤スケールが発生しやすいため現実的な手
段とはなり得ない。
As a prior art for improving the scale adhesion of a thick steel plate, Japanese Patent Application Laid-Open No. 9-209036 discloses a method in which a predetermined plate is formed by hot rolling with a rolling finish temperature in the range of 700 to 850 ° C. after limiting the components. A method of manufacturing a thick steel plate having excellent scale adhesion, characterized in that a slow cooling treatment is performed from 650 to 570 ° C. during cooling after the thickness is increased. JP-A-9-272918 discloses that high-pressure water descaling is performed at least three times during rolling after limiting the components, rolling is completed at 760 to 800 ° C., air-cooled, and the temperature of the steel sheet is further increased to 500 ° C. 80 ° C to 300 ° C
A method for producing a thick steel plate having good scale adhesion, characterized by keeping heat for at least min and then allowing it to cool. Any of the techniques disclosed in these publications cannot be a practical means because the rolling finish temperature is low and red scale is easily generated.

【0007】その他に耐スケール剥離性に優れる厚鋼板
を、安価に、安定して製造可能と考えられる従来技術は
見当たらない。すなわち、赤スケールがなく、さらにコ
ールドレベラー処理時にもスケール剥離が生じない、耐
スケール剥離性に優れる厚鋼板を、安価に、安定して製
造し得る技術を新規に開発する必要がある。
[0007] In addition, there is no conventional technology considered to be able to stably produce a thick steel plate excellent in scale peeling resistance at low cost. That is, it is necessary to newly develop a technology capable of inexpensively and stably producing a thick steel sheet having no red scale and excellent in scale peeling resistance without scale peeling even during cold leveler treatment.

【0008】[0008]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、建設機械、コンクリート型枠、造船、橋梁
の分野の大きな課題である製造コスト削減に大きく貢献
することができる、赤スケールがなく、かつコールドレ
ベラー処理時にもスケールの剥離しない厚鋼板を、安価
に、安定して製造するための具体的方法を提供すること
である。
The problem to be solved by the present invention is that red scale, which can greatly contribute to the reduction of manufacturing costs, which is a major problem in the fields of construction machinery, concrete formwork, shipbuilding, and bridges. It is an object of the present invention to provide a concrete method for stably producing a thick steel plate which does not peel off even during the cold leveler treatment and does not peel off during the cold leveler treatment.

【0009】[0009]

【課題を解決するための手段】本発明は、以上の課題を
解決するためになされたものであって、その要旨は次の
通りである。(1)重量%にて、 C :0.03〜0.25% Si:0.05〜0.50%未満 Mn:0.05〜1.60% Al:0.005〜0.10% 残部がFe及び不可避的不純物からなる鋼片又は鋳片
を、1050〜1300℃に加熱し、圧延の最終パスの
ロール噛み込み温度をTF (℃)、仕上圧延での最終3
パスの平均圧下率をRF (%)とした時に、 880≦TF ≦1020 (℃) 21≦RF ≦40 (%) RF ≧155−3TF /20(%) の3式を同時に満足する条件にて圧延した後、350℃
以下での冷却速度が0.1℃/sec以下となるように
鋼板を積重ねて徐冷することを特徴とする、耐スケール
剥離性に優れる厚鋼板の製造方法。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and the gist thereof is as follows. (1) In weight%, C: 0.03 to 0.25% Si: 0.05 to less than 0.50% Mn: 0.05 to 1.60% Al: 0.005 to 0.10% Remainder Is heated to 1050 to 1300 ° C., the roll biting temperature in the final pass of rolling is T F (° C.), and the final 3 in finish rolling is performed.
The average rolling reduction path when the R F (%), 880 ≦ T F ≦ 1020 (℃) 21 ≦ R F ≦ 40 (%) R F ≧ 155-3T F / 20 3 Expressions (%) at the same time 350 ° C after rolling under satisfactory conditions
A method for producing a thick steel sheet having excellent scale peeling resistance, comprising stacking steel sheets and gradually cooling them so that the cooling rate below is 0.1 ° C./sec or less.

【0010】(2)重量%にて、 (a) C :0.03〜0.25% Si:0.05〜0.50%未満 Mn:0.05〜1.60% Al:0.005〜0.10%を含有し、さらに、 (b) Nb:0.001〜0.20% V :0.001〜0.30% Ti:0.001〜0.20% Cu:0.05〜1.50% Ni:0.05〜1.50% Cr:0.05〜1.00% Mo:0.05〜1.00% B :0.0003〜0.003% よりなる群から選ばれる少なくとも1種の元素を含有
し、残部がFe及び不可避的不純物からなる鋼片又は鋳
片を、1050〜1300℃に加熱し、圧延の最終パス
のロール噛み込み温度をTF (℃)、仕上圧延での最終
3パスの平均圧下率をRF (%)とした時に、 880≦TF ≦1020 (℃) 21≦RF ≦40 (%) RF ≧155−3TF /20(%) の3式を同時に満足する条件にて圧延した後、350℃
以下での冷却速度が0.1℃/sec以下となるように
鋼板を積重ねて徐冷することを特徴とする、耐スケール
剥離性に優れる厚鋼板の製造方法。
(2) By weight%: (a) C: 0.03 to 0.25% Si: 0.05 to less than 0.50% Mn: 0.05 to 1.60% Al: 0.005 (B) Nb: 0.001 to 0.20% V: 0.001 to 0.30% Ti: 0.001 to 0.20% Cu: 0.05 to 1.50% Ni: 0.05 to 1.50% Cr: 0.05 to 1.00% Mo: 0.05 to 1.00% B: 0.0003 to 0.003% A steel slab or a slab containing at least one element, the balance being Fe and unavoidable impurities, is heated to 1050 to 1300 ° C., and the roll bite temperature in the final pass of rolling is T F (° C.) the average reduction rate of the final three passes of the rolling when the R F (%), 880 ≦ T F ≦ 1020 (℃) After rolling with 1 ≦ R F ≦ 40 (% ) R F ≧ 155-3T F / 20 at the same time satisfying the condition 3 Expressions (%), 350 ℃
A method for producing a thick steel sheet having excellent scale peeling resistance, comprising stacking steel sheets and gradually cooling them so that the cooling rate below is 0.1 ° C./sec or less.

【0011】(3)重量%にて、 (a) C :0.03〜0.25% Si:0.05〜0.50%未満 Mn:0.05〜1.60% Al:0.005〜0.10%を含有し、さらに、 (b) Nb:0.001〜0.20% V :0.001〜0.30% Ti:0.001〜0.20% Cu:0.05〜1.50% Ni:0.05〜1.50% Cr:0.05〜1.00% Mo:0.05〜1.00% B :0.0003〜0.003% よりなる群から選ばれる少なくとも1種の元素と、 (c) Ca:0.0003〜0.010% REM:0.001〜0.030% よりなる群から選ばれる少なくとも1種の元素とを含有
し、残部がFe及び不可避的不純物からなる鋼片又は鋳
片を、1050〜1300℃に加熱し、圧延の最終パス
のロール噛み込み温度をTF (℃)、仕上圧延での最終
3パスの平均圧下率をRF (%)とした時に、 880≦TF ≦1020 (℃) 21≦RF ≦40 (%) RF ≧155−3TF /20(%) の3式を同時に満足する条件にて圧延した後、350℃
以下での冷却速度が0.1℃/sec以下となるように
鋼板を積重ねて徐冷することを特徴とする、耐スケール
剥離性に優れる厚鋼板の製造方法。
(3) By weight%: (a) C: 0.03 to 0.25% Si: 0.05 to less than 0.50% Mn: 0.05 to 1.60% Al: 0.005 (B) Nb: 0.001 to 0.20% V: 0.001 to 0.30% Ti: 0.001 to 0.20% Cu: 0.05 to 1.50% Ni: 0.05 to 1.50% Cr: 0.05 to 1.00% Mo: 0.05 to 1.00% B: 0.0003 to 0.003% At least one element and (c) at least one element selected from the group consisting of Ca: 0.0003 to 0.010% REM: 0.001 to 0.030%, with the balance being Fe and A slab or slab consisting of unavoidable impurities is heated to 1050 to 1300 ° C. Assuming that the roll biting temperature is T F (° C.) and the average draft of the final three passes in finish rolling is R F (%), 880 ≦ T F ≦ 1020 (° C.) 21 ≦ R F ≦ 40 (%) After rolling under conditions that simultaneously satisfy the three equations of R F ≧ 155-3T F / 20 (%), 350 ° C.
A method for producing a thick steel sheet having excellent scale peeling resistance, comprising stacking steel sheets and gradually cooling them so that the cooling rate below is 0.1 ° C./sec or less.

【0012】本発明者らは、上記の課題に対し、圧延条
件を制御し、圧延温度を880℃以上、かつ圧下率を2
1%以上に限定することで圧延時のスケールの破砕を防
止し赤スケール発生を抑制する技術を以前より開発して
いたが、本技術に加え、さらに圧延後に積重ね徐冷を行
うことにより、スケールの密着性が顕著に向上するため
赤スケールがないだけでなく、コールドレベラー処理時
の耐スケール剥離性にも優れる厚鋼板が、安価に、安定
して得られることを新規に知見し、本発明を成したもの
である。
The present inventors have solved the above-mentioned problems by controlling the rolling conditions so that the rolling temperature is 880 ° C. or more and the rolling reduction is 2
We have previously developed a technology to prevent scale crushing during rolling and suppress red scale generation by limiting it to 1% or more. In addition to this technology, by performing rolling slow cooling after rolling, scale The present inventors have found that a thick steel plate having not only no red scale but also excellent scale peeling resistance at the time of cold leveler treatment can be stably obtained at low cost and stably, because the adhesiveness of the steel is remarkably improved. It is what made.

【0013】スケールの密着性向上技術については熱延
鋼板において多くの知見があり、熱間圧延後の巻取り処
理を行うことでスケール組成を密着性の悪いウスタイト
から密着性の良好なマグネタイトに変態させることが可
能であり、厚鋼板のスケールに比較し熱延鋼板のスケー
ル密着性は良好である。このため、厚鋼板についてもこ
のスケール組成制御技術を応用すべく検討が行われてい
るが、変態に必要な温度の確保が容易でないことに加
え、温度を確保できたとしてもスケール密着性の良い厚
鋼板が得にくいため実用化には至っていなかった。変態
に必要な温度確保には、圧延直後の積重ね徐冷、熱
処理、温浴中での保持などが考えられるが、製造コス
ト面から現実的なのは 圧延直後の積重ね徐冷である。
しかしながら、従来の圧延鋼板、すなわち鋼板表面に破
砕したスケール粉末が多量に存在している厚鋼板に対し
積重ね徐冷を行っても、すでに破砕してしまっているス
ケールに対しては積重ね徐冷によるスケールと地鉄との
密着性改善効果が及ばないためスケールは剥離しやす
い。また、積重ねた時に鋼板同士が接触しておらず空気
にさらされ酸化される部分は赤スケールとなるのに対
し、鋼板同士が接触し酸化が抑制される部分は黒スケー
ルとなるため鋼板表面がまだら模様となり厚鋼板の見栄
えが悪くなる問題があった。このため従来は圧延直後に
積重ね徐冷を行っても顕著にスケール密着性の向上した
鋼板は得られないばかりか鋼板の見栄えが劣化するため
積重ね徐冷の実用化はなされていない。
[0013] There is a lot of knowledge about the technique of improving the adhesion of the scale in hot-rolled steel sheets, and the winding process after hot rolling transforms the scale composition from wustite with poor adhesion to magnetite with good adhesion. The hot rolled steel sheet has better scale adhesion than the thick steel sheet scale. For this reason, thick steel plates are being studied to apply this scale composition control technology, but it is not easy to secure the temperature required for transformation, and even if the temperature can be secured, the scale adhesion is good. Since it was difficult to obtain a thick steel plate, it had not been put to practical use. In order to secure the temperature required for the transformation, gradual cooling immediately after rolling, heat treatment, holding in a hot bath, etc. are conceivable. However, in terms of manufacturing costs, the gradual cooling immediately after rolling is practical.
However, even if the conventional rolled steel sheet, that is, the thick steel plate in which a large amount of crushed scale powder is present on the steel sheet surface is stacked and gradually cooled, the scale that has already been crushed is subjected to the stacked slow cooling. Since the effect of improving the adhesion between the scale and the base steel does not reach the scale, the scale is easily peeled. In addition, the parts where the steel sheets are not in contact with each other and are oxidized when exposed to air when stacked are red scale, whereas the parts where the steel sheets are in contact and oxidation is suppressed are black scale, so the steel sheet surface is There was a problem that the pattern became mottled and the appearance of the thick steel plate deteriorated. For this reason, conventionally, even if stacking slow cooling is performed immediately after rolling, not only a steel sheet with remarkably improved scale adhesion is not obtained, but also the appearance of the steel sheet deteriorates, so that stacking slow cooling has not been put to practical use.

【0014】これに対し、本発明者らは、数多くの実験
を行った結果、積重ね徐冷によりスケール密着性を向上
させるには、積重ね徐冷に先立つ鋼板表面のスケール状
態の制御が非常に重要であることを知見した。すなわ
ち、スケールが圧延により破砕されず地鉄と密着してい
る状態に制御した上で積重ね徐冷を行うことにより、ス
ケール密着性が顕著に向上し、さらに赤スケールの生成
原因である破砕されたスケールがないため鋼板表面は一
様に黒く、赤色と黒色のまだら模様も発生せず鋼板の見
栄えが良好となることを見出し本発明を成したものであ
る。
On the other hand, as a result of many experiments, the present inventors have found that control of the scale state of the steel sheet surface prior to the stack slow cooling is very important for improving the scale adhesion by the slow stack cooling. It was found that. That is, the scale is not crushed by rolling and is controlled to be in close contact with the base iron, and by performing slow cooling by stacking, the scale adhesiveness is remarkably improved, and furthermore, crushed which is a cause of the generation of red scale. The present invention has been found that the surface of the steel sheet is uniformly black because there is no scale, and that the appearance of the steel sheet becomes good without generating red and black mottled patterns.

【0015】[0015]

【発明の実施の形態】本発明における、成分限定理由を
述べる。Cは強度確保のため0.03%以上の添加が必
要であり、多量添加は母材靭性を劣化させると共に溶接
熱影響部を硬化させ溶接性を劣化させるため、その上限
を0.25%とする。Siは鋼の脱酸のため0.05%
以上の添加が必要であり、多量添加は圧延時のデスケー
リング性を劣化させ、スケール押し込み疵が発生しやす
くなること、およびコスト上昇を招くことから、その上
限を0.50%未満とする。Mnは鋼中に含まれるSを
固定し靭性を良好にするために0.05%以上の添加が
必要であり、多量添加は製造コストの増加を招くと同時
に靭性も劣化させるため、その上限を1.60%とす
る。Alは鋼の脱酸のため0.005%以上の添加が必
要であり、多量添加は靭性を著しく劣化させるため、そ
の上限を0.10%とする。
BEST MODE FOR CARRYING OUT THE INVENTION The reasons for limiting the components in the present invention will be described. C is required to be added in an amount of 0.03% or more in order to secure the strength. A large amount of C deteriorates the base metal toughness and hardens the weld heat affected zone to deteriorate the weldability, so the upper limit is 0.25%. I do. Si is 0.05% for deoxidizing steel
The above addition is necessary, and a large amount of addition deteriorates the descaling property at the time of rolling, easily causes scale indentation flaws, and raises the cost. Therefore, the upper limit is set to less than 0.50%. Mn needs to be added in an amount of 0.05% or more in order to fix S contained in steel and improve toughness. A large amount of Mn causes an increase in manufacturing cost and also deteriorates toughness. 1.60%. Al needs to be added in an amount of 0.005% or more to deoxidize steel, and a large amount of Al significantly deteriorates toughness. Therefore, the upper limit is set to 0.10%.

【0016】本発明においては、用いる鋼は、上記した
元素に加えて、主として高強度化を図るために、 Nb:0.001〜0.20% V :0.001〜0.30% Ti:0.001〜0.20% Cu:0.05〜1.50% Ni:0.05〜1.50% Cr:0.05〜1.00% Mo:0.05〜1.00% B :0.0003〜0.003% よりなる群から選ばれる少なくとも1種の元素を含有す
ることができる。
In the present invention, in addition to the above-mentioned elements, the steel used mainly contains Nb: 0.001 to 0.20% V: 0.001 to 0.30% Ti: 0.001 to 0.20% Cu: 0.05 to 1.50% Ni: 0.05 to 1.50% Cr: 0.05 to 1.00% Mo: 0.05 to 1.00% B: At least one element selected from the group consisting of 0.0003 to 0.003% can be contained.

【0017】Nb、V、Tiは鋼中に炭窒化物として析
出し強度を高める効果に加え、鋼のミクロ組織を細粒化
することにより強度と母材靭性、溶接熱影響部の靭性を
共に向上させる効果を有する。各元素とも、これらの効
果を得るには0.001%以上の添加が必要であり、多
量添加は溶接熱影響部の靭性を大幅に劣化させるため、
その上限をNbは0.20%、Vは0.30%、Tiは
0.20%とする。Cuは強度及び耐食性を向上させる
効果を有する。これらの効果を得るには0.05%以上
の添加が必要であり、多量添加はスラブの熱間割れ発生
の原因となるため、その上限を1.50%とする。Ni
は強度と靭性を共に向上させる効果を有する。この効果
を得るには0.05%以上の添加が必要であり、多量添
加は経済性を著しく損なうため、その上限を1.50%
とする。Crは焼入れ性を高める効果、焼戻し軟化抵抗
を高める効果、及び耐食性を向上させる効果を有する。
これらの効果を得るには0.05%以上の添加添加が必
要であり、多量添加は溶接熱影響部の靭性を劣化させる
ことから、その上限を1.00%とする。Moは焼入れ
性を高める効果、及び焼戻し軟化抵抗を高める効果を有
する。これらの効果を得るためには、0.05%以上の
添加が必要であり、多量添加は溶接熱影響部の靭性を劣
化させることから、その上限を1.00%とする。Bは
焼入れ性を著しく向上させ、強度を高める効果を有す
る。この効果を得るためには0.0003%以上の添加
が必要であり、多量添加は溶接熱影響部を硬化させるこ
とにより溶接性を大幅に劣化させるため0.003%を
その上限とする。
Nb, V, and Ti are precipitated as carbonitrides in steel to increase the strength. In addition, by reducing the microstructure of the steel, the strength, base metal toughness, and toughness of the weld heat affected zone can be improved. It has the effect of improving. In order to obtain these effects, 0.001% or more of each element is required for each element, and the addition of a large amount significantly deteriorates the toughness of the heat affected zone.
The upper limits are 0.20% for Nb, 0.30% for V, and 0.20% for Ti. Cu has an effect of improving strength and corrosion resistance. To obtain these effects, addition of 0.05% or more is necessary. Since addition of a large amount causes hot cracking of the slab, its upper limit is set to 1.50%. Ni
Has the effect of improving both strength and toughness. To obtain this effect, it is necessary to add 0.05% or more. Since addition of a large amount significantly impairs the economic efficiency, the upper limit is set to 1.50%.
And Cr has an effect of increasing quenching properties, an effect of increasing temper softening resistance, and an effect of improving corrosion resistance.
To obtain these effects, addition of 0.05% or more is necessary. Since addition of a large amount deteriorates the toughness of the weld heat affected zone, the upper limit is made 1.00%. Mo has an effect of increasing the hardenability and an effect of increasing the tempering softening resistance. In order to obtain these effects, addition of 0.05% or more is necessary. Since addition of a large amount deteriorates the toughness of the heat affected zone, the upper limit is made 1.00%. B has the effect of significantly improving hardenability and increasing strength. In order to obtain this effect, 0.0003% or more of addition is necessary, and the addition of a large amount hardens the heat affected zone by welding to greatly deteriorate the weldability, so the upper limit is 0.003%.

【0018】更に、本発明においては、鋼は、上記元素
に加えて、又は上記元素とは別に、主として靭性の向上
のために、 Ca :0.0003〜0.010%、及び REM:0.001〜0.030% よりなる群から選ばれる少なくとも1種の元素を含有す
ることができる。
Further, in the present invention, in addition to the above-mentioned elements or separately from the above-mentioned elements, steel is mainly used for improving toughness. It can contain at least one element selected from the group consisting of 001 to 0.030%.

【0019】Ca及びREMは、鋼材の機械的性質の異
方性の改善と耐ラメラティア特性の向上の効果を有す
る。これらの効果を得るには、Caは0.0003%以
上、REMは0.001%以上の添加が必要であり、両
元素ともに、多量添加は靭性を劣化させるため、その上
限をCaは0.010%、REMは0.030%とす
る。
Ca and REM have the effect of improving the anisotropy of the mechanical properties of the steel and improving the lamella tear resistance. To obtain these effects, Ca must be added in an amount of 0.0003% or more, and REM must be added in an amount of 0.001% or more. For both elements, the addition of a large amount deteriorates the toughness. 010% and REM are 0.030%.

【0020】次に、鋼片又は鋳片の加熱条件と圧延条件
について述べる。圧延時のスケールの破砕を防止し赤ス
ケールの発生を抑制するために880℃以上の高温での
圧延が必要であり、これを可能とするために1050℃
以上の温度での加熱が必要である。スケール押し込み疵
の発生を抑制するために加熱温度の上限を1300℃と
する。加熱時のスラブの在炉時間については、スラブ温
度を均一に1050℃以上とするために120分程度が
必要であり、長時間の加熱は製造コストの増加を招くた
め、300分程度までとするのが望ましい。
Next, the heating condition and the rolling condition of the steel slab or the cast slab will be described. Rolling at a high temperature of 880 ° C. or higher is required to prevent scale crushing during rolling and to suppress the generation of red scale. In order to enable this, 1050 ° C.
Heating at the above temperature is required. The upper limit of the heating temperature is set to 1300 ° C. in order to suppress the occurrence of scale indentation flaws. The heating time of the slab at the time of heating requires about 120 minutes in order to make the slab temperature uniformly 1050 ° C. or more, and since heating for a long time causes an increase in manufacturing cost, it is limited to about 300 minutes. It is desirable.

【0021】圧延条件については 圧延時のスケール破
砕を防止するために、圧延の最終パスのロール噛み込み
温度(以下、圧延仕上温度とする)をTF (℃)、仕上
圧延での最終3パスの平均圧下率(以下、仕上圧下率と
する)をRF (%)とした時に、 880≦TF ≦1020 (℃) 21≦RF ≦40 (%) RF ≧155−3TF /20 (%) の3式を同時に満足する条件にて圧延する必要がある。
上記の3式を同時に満足しない条件にて圧延した場合、
圧延後の冷却時に積重ね徐冷を行なっても、すでに破砕
されてしまっているスケールの密着性は改善されずスケ
ールは容易に剥離する。圧延仕上温度を安定して102
0℃より高くすることは難しいため、圧延仕上温度の上
限を1020℃とする。圧延仕上温度が980℃を超え
ると圧延後の空冷中にスケールに微小なフクレが発生し
鋼板表面外観が劣化する場合があるが、圧延終了後30
秒以内に5℃/ sec以上の冷却速度にて加速冷却を開
始し、鋼板表面温度が500℃以上750℃以下の温度
範囲にて加速冷却を停止し、空冷することでスケールの
フクレ発生は抑制可能である。
Regarding the rolling conditions, in order to prevent scale crushing during rolling, the roll biting temperature (hereinafter referred to as a rolling finish temperature) in the final pass of rolling is T F (° C.), and the final three passes in finish rolling are performed. When the average reduction ratio (hereinafter referred to as the finish reduction ratio) of R is defined as R F (%), 880 ≦ T F ≦ 1020 (° C.) 21 ≦ R F ≦ 40 (%) R F ≧ 155-3T F / 20 (%) It is necessary to perform rolling under conditions that simultaneously satisfy the three equations.
When rolling under the conditions that do not simultaneously satisfy the above three equations,
Even if the stack is gradually cooled at the time of cooling after rolling, the adhesiveness of the already crushed scale is not improved and the scale is easily peeled. Rolling finish temperature stably 102
Since it is difficult to make the temperature higher than 0 ° C., the upper limit of the rolling finish temperature is set to 1020 ° C. If the rolling finish temperature exceeds 980 ° C., fine blisters may be generated on the scale during air cooling after rolling and the surface appearance of the steel sheet may be deteriorated.
Accelerated cooling is started within 5 seconds at a cooling rate of 5 ° C / sec or more, and accelerated cooling is stopped when the surface temperature of the steel sheet is 500 ° C or more and 750 ° C or less. It is possible.

【0022】積重ね徐冷の条件は、ウスタイトからマグ
ネタイトへの変態を十分に可能としスケール密着性を向
上させるため鋼板表面の温度にて、350℃以下での冷
却速度が0.1℃/sec以下となるように鋼板を積重
ねて徐冷する。鋼板を積重ねる時の温度や積重ねる鋼板
枚数については、積重ねられた各鋼板の表面温度にて3
50℃以下での冷却速度が0.1℃/sec以下となる
ように制御する以外には特に限定する必要はない。積重
ねを終了する温度はウスタイトからマグネタイトへの変
態を十分に可能とするため150℃以下とする。350
℃以下での冷却速度については、0.1℃/secより
大きいと、ウスタイトからマグネタイトへの変態が十分
に起こらずスケールの密着性が不十分となるためその上
限を0.1℃/secとする。より好ましくは0.05
℃/sec以下となるように積重ねることでより安定し
たスケール密着性が得られる。冷却速度の下限は特に限
定する必要はないが生産性を低下させないために0.0
01℃/sec以上とすることが望ましい。
The condition of the slow cooling in stacking is that the cooling rate at a temperature of 350 ° C. or less at a temperature of 350 ° C. or less is 0.1 ° C./sec or less at a temperature of the steel sheet surface in order to sufficiently enable transformation from wustite to magnetite and improve the scale adhesion. The steel sheets are stacked and gradually cooled so that Regarding the temperature at the time of stacking steel sheets and the number of steel sheets to be stacked, the surface temperature of each stacked steel sheet is 3
There is no particular limitation except that the cooling rate at 50 ° C. or lower is controlled to be 0.1 ° C./sec or lower. The temperature at which the stacking is completed is set to 150 ° C. or less in order to sufficiently enable the transformation from wustite to magnetite. 350
With respect to the cooling rate below 0.1 ° C., if the cooling rate is greater than 0.1 ° C./sec, the transformation from wustite to magnetite does not occur sufficiently and the adhesion of the scale becomes insufficient, so the upper limit is 0.1 ° C./sec. I do. More preferably 0.05
A more stable scale adhesion can be obtained by stacking at a temperature of at most ° C / sec. The lower limit of the cooling rate does not need to be particularly limited, but may be 0.0 to avoid lowering the productivity.
It is desirable that the temperature be not lower than 01 ° C./sec.

【0023】本発明は、圧延条件の制御と圧延後に鋼板
を積重ねるだけで実現できる。このため、特殊な合金元
素の添加や高価な圧延中の超高圧水デスケーリング装置
あるいは圧延後の熱処理等による、製造コストの増大や
生産性低下を招くことなく、安価に、安定して耐スケー
ル剥離性に優れる厚鋼板が製造可能である。
The present invention can be realized only by controlling rolling conditions and stacking steel sheets after rolling. For this reason, the addition of special alloying elements, expensive high-pressure ultra-high-pressure water descaling equipment during rolling, or heat treatment after rolling, etc., does not cause an increase in production cost or a decrease in productivity, and enables a stable, low-cost scale. It is possible to manufacture thick steel plates with excellent peelability.

【0024】本発明の方法は、鋼の強度によらず有効で
あり、例えば降伏強さが200〜700MPaであって
も、例えば、鋼のミクロ組織がフェライト、パーライ
ト、ベイナイト、マルテンサイト、残留オーステナイ
ト、及びそれらの焼戻し組織の単相又は混合組織であっ
てもかまわない。
The method of the present invention is effective irrespective of the strength of the steel. For example, even if the yield strength is 200 to 700 MPa, for example, the microstructure of the steel is ferrite, pearlite, bainite, martensite, retained austenite. And a single phase or a mixed structure of the tempered structures thereof.

【0025】[0025]

【実施例】表1に示す鋼番A〜Hの化学成分を有する供
試鋼を用いて、表2に示す条件で加熱、圧延後に空冷
し、空冷の途中で鋼板を積重ねて徐冷を行った厚鋼板に
つき、鋼板表面のスケールの色調とコールドレベラー処
理時の耐スケール剥離性を調査した。積重ね温度は、厚
鋼板を積重ねた時の鋼板表面の温度を示す。350℃以
下での冷却速度は、350℃以下での鋼板表面の冷却速
度の最大値を示す。
EXAMPLE Using test steels having the chemical components of steel numbers A to H shown in Table 1, air-cooling was performed after heating and rolling under the conditions shown in Table 2, and steel sheets were stacked in the middle of air-cooling and gradually cooled. Regarding the thick steel plate, the color tone of the scale on the steel plate surface and the scale peeling resistance during the cold leveler treatment were investigated. The stacking temperature indicates the temperature of the steel sheet surface when the thick steel sheets are stacked. The cooling rate at 350 ° C. or lower indicates the maximum value of the cooling rate of the steel sheet surface at 350 ° C. or lower.

【0026】スケールの色調はJISZ8722に準拠
して色彩色差計にて測定した、鋼板表面の任意の5〜1
0箇所のa* 値(色の表示方法はJISZ8729に準
拠)の最大値が0.5以下の場合を黒、0.5を超える
場合を赤と表現した。コールドレベラーでの耐スケール
剥離性は、コールドレベラー処理後の厚鋼板につきスケ
ール剥離の度合を面積率で評価し、剥離した面積率が5
%未満の場合を○、5%以上の場合を×とした。
The color tone of the scale was measured using a colorimeter in accordance with JISZ8722.
The case where the maximum value of the a * value at zero (the color display method conforms to JISZ8729) is 0.5 or less is expressed as black, and the case where it exceeds 0.5 is expressed as red. The scale peeling resistance in the cold leveler was evaluated by evaluating the degree of scale peeling by the area ratio of the thick steel plate after the cold leveler treatment.
% When it was less than 5%, and x when it was 5% or more.

【0027】供試鋼番号1〜13は、本発明に基づき製
造された鋼であり、黒スケールでかつコールドレベラー
処理時の耐スケール剥離性にも優れる。一方、供試鋼番
号14〜18は、圧延条件が本発明の条件範囲から逸脱
しており、赤スケール厚鋼板となっている。供試鋼番号
19〜20は圧延後の徐冷を行わなかったため、コール
ドレベラー処理時の耐スケール剥離性が劣る。供試鋼番
号21〜24は圧延後の徐冷条件が本発明の条件範囲か
ら逸脱したため、コールドレベラー処理時の耐スケール
剥離性が劣る。
Test Steel Nos. 1 to 13 are steels manufactured in accordance with the present invention and have a black scale and excellent scale peeling resistance during cold leveler treatment. On the other hand, the test steel numbers 14 to 18 have rolling conditions outside the condition range of the present invention, and are red scale thick steel plates. Test steel Nos. 19 and 20 were not subjected to slow cooling after rolling, and thus had poor scale peel resistance during cold leveler treatment. The test steel Nos. 21 to 24 have inferior scale peeling resistance during cold leveler treatment because the annealing conditions after rolling deviate from the condition range of the present invention.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【発明の効果】以上述べたように、本発明によれば、建
設機械、コンクリート型枠、造船、橋梁の分野の大きな
課題である、製造コスト削減、製品外観の改善、
職場の衛生状態改善に大きく貢献することができる、耐
スケール剥離性に優れる厚鋼板を、安価に、安定して供
給することが可能となるため、産業上極めて有用なもの
である。
As described above, according to the present invention, the major problems in the fields of construction machinery, concrete formwork, shipbuilding, and bridges are to reduce manufacturing costs and improve product appearance.
It is extremely useful in industry because it is possible to supply inexpensively and stably a thick steel plate having excellent scale peeling resistance, which can greatly contribute to improving the hygiene condition of the workplace.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 38/58 C22C 38/58 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 38/58 C22C 38/58

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%にて、 C :0.03〜0.25% Si:0.05〜0.50%未満 Mn:0.05〜1.60% Al:0.005〜0.10% 残部がFe及び不可避的不純物からなる鋼片又は鋳片
を、1050〜1300℃に加熱し、圧延の最終パスの
ロール噛み込み温度をTF (℃)、仕上圧延での最終3
パスの平均圧下率をRF (%)とした時に、 880≦TF ≦1020 (℃) 21≦RF ≦40 (%) RF ≧155−3TF /20(%) の3式を同時に満足する条件にて圧延した後、350℃
以下での冷却速度が0.1℃/sec以下となるように
鋼板を積重ねて徐冷することを特徴とする、耐スケール
剥離性に優れる厚鋼板の製造方法。
C: 0.03 to 0.25% Si: 0.05 to less than 0.50% Mn: 0.05 to 1.60% Al: 0.005 to 0.10% by weight % A steel slab or a slab consisting of Fe and unavoidable impurities is heated to 1050 to 1300 ° C., and the roll bite temperature in the final pass of rolling is T F (° C.).
The average rolling reduction path when the R F (%), 880 ≦ T F ≦ 1020 (℃) 21 ≦ R F ≦ 40 (%) R F ≧ 155-3T F / 20 3 Expressions (%) at the same time 350 ° C after rolling under satisfactory conditions
A method for producing a thick steel sheet having excellent scale peeling resistance, comprising stacking steel sheets and gradually cooling them so that the cooling rate below is 0.1 ° C./sec or less.
【請求項2】 重量%にて、 (a) C :0.03〜0.25% Si:0.05〜0.50%未満 Mn:0.05〜1.60% Al:0.005〜0.10%を含有し、さらに、 (b) Nb:0.001〜0.20% V :0.001〜0.30% Ti:0.001〜0.20% Cu:0.05〜1.50% Ni:0.05〜1.50% Cr:0.05〜1.00% Mo:0.05〜1.00% B :0.0003〜0.003% よりなる群から選ばれる少なくとも1種の元素を含有
し、残部がFe及び不可避的不純物からなる鋼片又は鋳
片を、1050〜1300℃に加熱し、圧延の最終パス
のロール噛み込み温度をTF (℃)、仕上圧延での最終
3パスの平均圧下率をRF (%)とした時に、 880≦TF ≦1020 (℃) 21≦RF ≦40 (%) RF ≧155−3TF /20(%) の3式を同時に満足する条件にて圧延した後、350℃
以下での冷却速度が0.1℃/sec以下となるように
鋼板を積重ねて徐冷することを特徴とする、耐スケール
剥離性に優れる厚鋼板の製造方法。
2. In weight%, (a) C: 0.03 to 0.25% Si: 0.05 to less than 0.50% Mn: 0.05 to 1.60% Al: 0.005 to 0.10%, and (b) Nb: 0.001 to 0.20% V: 0.001 to 0.30% Ti: 0.001 to 0.20% Cu: 0.05 to 1 .50% Ni: 0.05 to 1.50% Cr: 0.05 to 1.00% Mo: 0.05 to 1.00% B: 0.0003 to 0.003% At least selected from the group consisting of: A steel slab or cast slab containing one element and the balance consisting of Fe and inevitable impurities is heated to 1050 to 1300 ° C., and the roll bite temperature of the final pass of rolling is T F (° C.), and finish rolling Last 3 average rolling reduction path when the R F (%), 880 ≦ T F ≦ 1020 (℃) 21 ≦ with After rolling under the condition that simultaneously satisfies the following three formulas: R F ≦ 40 (%) R F ≧ 155-3T F / 20 (%), and then 350 ° C.
A method for producing a thick steel sheet having excellent scale peeling resistance, comprising stacking steel sheets and gradually cooling them so that the cooling rate below is 0.1 ° C./sec or less.
【請求項3】 重量%にて、 (a) C :0.03〜0.25% Si:0.05〜0.50%未満 Mn:0.05〜1.60% Al:0.005〜0.10%を含有し、さらに、 (b) Nb:0.001〜0.20% V :0.001〜0.30% Ti:0.001〜0.20% Cu:0.05〜1.50% Ni:0.05〜1.50% Cr:0.05〜1.00% Mo:0.05〜1.00% B :0.0003〜0.003% よりなる群から選ばれる少なくとも1種の元素と、 (c) Ca:0.0003〜0.010% REM:0.001〜0.030% よりなる群から選ばれる少なくとも1種の元素とを含有
し、残部がFe及び不可避的不純物からなる鋼片又は鋳
片を、1050〜1300℃に加熱し、圧延の最終パス
のロール噛み込み温度をTF (℃)、仕上圧延での最終
3パスの平均圧下率をRF (%)とした時に、 880≦TF ≦1020 (℃) 21≦RF ≦40 (%) RF ≧155−3TF /20(%) の3式を同時に満足する条件にて圧延した後、350℃
以下での冷却速度が0.1℃/sec以下となるように
鋼板を積重ねて徐冷することを特徴とする、耐スケール
剥離性に優れる厚鋼板の製造方法。
3. In% by weight: (a) C: 0.03 to 0.25% Si: 0.05 to less than 0.50% Mn: 0.05 to 1.60% Al: 0.005 to 0.10%, and (b) Nb: 0.001 to 0.20% V: 0.001 to 0.30% Ti: 0.001 to 0.20% Cu: 0.05 to 1 .50% Ni: 0.05 to 1.50% Cr: 0.05 to 1.00% Mo: 0.05 to 1.00% B: 0.0003 to 0.003% At least selected from the group consisting of: Contains one element and (c) at least one element selected from the group consisting of: Ca: 0.0003 to 0.010% REM: 0.001 to 0.030%, with the balance being Fe and inevitable Slabs or cast slabs consisting of natural impurities are heated to 1050 to 1300 ° C and rolled in the final pass of rolling. The biting temperature T F (℃), the average reduction ratio of the final 3 passes in finish rolling when the R F (%), 880 ≦ T F ≦ 1020 (℃) 21 ≦ R F ≦ 40 (%) R After rolling under the condition that simultaneously satisfies the three equations of F ≧ 155-3T F / 20 (%), 350 ° C.
A method for producing a thick steel sheet having excellent scale peeling resistance, comprising stacking steel sheets and gradually cooling them so that the cooling rate below is 0.1 ° C./sec or less.
JP8111298A 1998-03-27 1998-03-27 Manufacture of thick steel plate excellent in resistance to scale peeling Withdrawn JPH11277105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8111298A JPH11277105A (en) 1998-03-27 1998-03-27 Manufacture of thick steel plate excellent in resistance to scale peeling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8111298A JPH11277105A (en) 1998-03-27 1998-03-27 Manufacture of thick steel plate excellent in resistance to scale peeling

Publications (1)

Publication Number Publication Date
JPH11277105A true JPH11277105A (en) 1999-10-12

Family

ID=13737306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8111298A Withdrawn JPH11277105A (en) 1998-03-27 1998-03-27 Manufacture of thick steel plate excellent in resistance to scale peeling

Country Status (1)

Country Link
JP (1) JPH11277105A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013248629A (en) * 2012-05-31 2013-12-12 Jfe Steel Corp Method for producing steel plate having excellent laser cutting property and steel plate having excellent laser cutting property
WO2023204109A1 (en) * 2022-04-20 2023-10-26 Jfeスチール株式会社 Steel sheet and method for producing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013248629A (en) * 2012-05-31 2013-12-12 Jfe Steel Corp Method for producing steel plate having excellent laser cutting property and steel plate having excellent laser cutting property
WO2023204109A1 (en) * 2022-04-20 2023-10-26 Jfeスチール株式会社 Steel sheet and method for producing same

Similar Documents

Publication Publication Date Title
JPH10130782A (en) Ultrahigh strength cold rolled steel sheet and its production
JP2007177318A (en) High-tension steel sheet and method for producing the same
US20150218684A1 (en) Cold-Rolled Flat Steel Product and Method for the Production Thereof
JP2005320561A (en) High-strength hot-dip galvanized steel sheet superior in spot weldability and quality stability of material
JP2008308717A (en) High-strength steel sheet, and method for producing the same
JP2000256795A (en) Continuously cast slab free from surface cracking and production of non-refining high tensile strength steel material using the slab
JP2962038B2 (en) High tensile strength steel sheet and its manufacturing method
JP2013129885A (en) Method of producing high-strength thick steel plate excellent in brittle crack propagation arrest property
JP2005350737A (en) Thin steel sheet for can provided with strong can body strength and press workability and its production method
JP2004162085A (en) Steel plate with excellent fatigue crack propagation resistance, and its manufacturing method
JP2004218081A (en) Method for producing high-tension steel plate
JPH11277105A (en) Manufacture of thick steel plate excellent in resistance to scale peeling
JP2005298962A (en) Method for manufacturing high-strength steel plate superior in workability
JP2011080103A (en) Method for manufacturing high toughness steel
JPS6320414A (en) Production of high-toughness high-tensile steel plate
JP2004010971A (en) Method for producing steel sheet having excellent strength and toughness and satisfactory flatness at high efficiency
JP4715179B2 (en) Manufacturing method of high-tensile steel plate with excellent workability
JPS63118012A (en) Production of low yield ratio high tensile thick steel plate
JPH07216451A (en) Production of stainless steel material having high welding softening resistance, high strength, and high ductility
JPS63183123A (en) Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating
JP6135595B2 (en) High-efficiency manufacturing method for steel plates with excellent impact resistance
JPH0813030A (en) Production of steel plate for metal saw base plate
JPS63179019A (en) Manufacture of high tension steel plate having low yield ratio
JP3233836B2 (en) Method of manufacturing thick steel plate with excellent scale peel resistance
JP2004197155A (en) Cold-rolled steel sheet having excellent bake hardenability and small inter-plane anisotropy and its producing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607