JPH11274123A - Method of cleaning wafer - Google Patents

Method of cleaning wafer

Info

Publication number
JPH11274123A
JPH11274123A JP9408698A JP9408698A JPH11274123A JP H11274123 A JPH11274123 A JP H11274123A JP 9408698 A JP9408698 A JP 9408698A JP 9408698 A JP9408698 A JP 9408698A JP H11274123 A JPH11274123 A JP H11274123A
Authority
JP
Japan
Prior art keywords
ultrapure water
wafer
cleaning
rinsing
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9408698A
Other languages
Japanese (ja)
Other versions
JP3505998B2 (en
Inventor
Hideki Munakata
秀樹 宗像
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP09408698A priority Critical patent/JP3505998B2/en
Publication of JPH11274123A publication Critical patent/JPH11274123A/en
Application granted granted Critical
Publication of JP3505998B2 publication Critical patent/JP3505998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a method of cleaning wafer by which the amount of heavy metals adsorbed to a wafer is small, and particularly heavy metal contaminants are reduced to a wafer adsorbing amount of 5×10<8> atoms/cm<2> or less suitable to a finely processed 64 M DRAM device. SOLUTION: A method of cleaning a wafer, of a combination of a plurality of chemical cleaning steps and ultrapure water rinsing steps so as to removing the contaminant on a surface of a wafer, is characterized in that the temperature of ultrapure water is set at 0-20 deg.C. The ultrapure water is used in at least one of the ultrapure rinsing steps. Cooled ultrapure water of 0-20 deg.C, preferably 5-15 deg.C is used in at least one of the rinsing steps after an HCl/H2 O2 cleaning step of removing the metal contaminants.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超純水を用いたウエ
ーハ洗浄方法に係り、特に超純水を用いたウエーハリン
スの工夫に特徴を有するウエーハ洗浄方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer cleaning method using ultrapure water, and more particularly to a wafer cleaning method characterized by a device for wafer harness using ultrapure water.

【0002】[0002]

【従来の技術】LSI製造ではウエーハ表面汚染物がデ
バイス特性を劣化させ、不良の大きな原因となる。従っ
てLSIを高歩留り、且つ信頼性高く製造するために
は、ウエーハ製造プロセスにおいてクリーン化してウエ
ーハを汚染させないことが重要である。しかしながら、
LSIは数百の単位工程を経て製造されるものである為
に、ウエーハ表面はクリーンルーム雰囲気、人、製造装
置などからの種々の汚染を受ける。このため汚染された
ウエーハ表面を清浄化するための洗浄工程としてウエッ
ト洗浄工程とドライ洗浄工程が存在するが、現在のLS
I製造業界では依然としてウエット洗浄が主流であり、
具体的にはアンモニア(NH4OH )、過酸化水素(H
22)、塩化水素(HCl)及びこれに純水リンス工程
を組合せた、いわゆるRCA洗浄と呼ばれる洗浄プロセ
スを用いているものが多い。
2. Description of the Related Art In LSI manufacturing, wafer surface contaminants degrade device characteristics and become a major cause of defects. Therefore, in order to manufacture an LSI with high yield and high reliability, it is important to clean the wafer in the wafer manufacturing process and not to contaminate the wafer. However,
Since an LSI is manufactured through several hundred unit processes, the wafer surface is subjected to various kinds of contamination from a clean room atmosphere, people, manufacturing equipment, and the like. For this reason, there are a wet cleaning process and a dry cleaning process as cleaning processes for cleaning the contaminated wafer surface.
I Wet cleaning is still the mainstream in the manufacturing industry,
Specifically, ammonia (NH 4 OH), hydrogen peroxide (H
In many cases, a cleaning process called so-called RCA cleaning is used in which 2 O 2 ), hydrogen chloride (HCl) and a pure water rinsing step are combined.

【0003】すなわちウエーハ洗浄技術は、従来のブラ
ッシングやスクラバ等の機械的洗浄方法に代り、これら
と薬品による表面の異物除去、純水によるリンスの組合
せからなるRCA等の洗浄プロセスが多く用いられてい
る。
That is, in the wafer cleaning technology, a cleaning process such as RCA, which is a combination of conventional mechanical cleaning methods such as brushing and scrubber, and removal of foreign substances on the surface with chemicals and rinsing with pure water, is often used. I have.

【0004】かかるRCA洗浄プロセスの代表的な工程
手順を下記に示す。 1)NH4OH/H22/H2O(1:1:5) 2)純水リンス 3)HF浸漬 4)純水リンス 5)HCl/H22/H2O(1:1:6) 6)純水リンス 7)スピンドライ そして前記純水リンス工程は複数回繰り返す場合もあ
る。
[0004] A typical procedure of such an RCA cleaning process is shown below. 1) NH 4 OH / H 2 O 2 / H 2 O (1: 1: 5) 2) Pure water rinse 3) HF immersion 4) Pure water rinse 5) HCl / H 2 O 2 / H 2 O (1: 1) 1: 6) 6) Rinse with pure water 7) Spin dry And the rinse step with pure water may be repeated a plurality of times.

【0005】かかるRCA洗浄工程において使用される
純水には超純水が用いられ、超純水は、例えばUV(紫
外線殺菌工程)→RO(逆浸透膜透過工程)→UV(紫
外線殺菌工程)→CP(イオン交換樹脂膜透過工程)→
UF(ウルトラフィルタ透過工程)を経て製造され、こ
の様に製造された超純水を純水リンス等に導入して超純
水洗浄が行なわれる。
[0005] Ultrapure water is used as the pure water used in the RCA cleaning step, for example, UV (ultraviolet sterilization step) → RO (reverse osmosis membrane transmission step) → UV (ultraviolet sterilization step). → CP (Ion exchange resin membrane permeation process) →
It is manufactured through a UF (ultrafilter permeation step), and the ultrapure water thus produced is introduced into a pure water rinse or the like to perform ultrapure water cleaning.

【0006】[0006]

【発明が解決しようとする課題】さて、デバイス特性を
劣化させるウエーハ表面上汚染物として、微粒子、重金
属などの金属不純物、有機物、自然酸化膜などがあり、
前記洗浄プロセスはこれらを除去するのが目的である
が、デバイスの高集積化に伴って微細加工が進むにつ
れ、これらの汚染物の影響も大きくなっており、洗浄能
力を上げてウエーハ表面を高清浄化する必要がある。
As the contaminants on the wafer surface that degrade the device characteristics, there are fine particles, metal impurities such as heavy metals, organic substances, natural oxide films, and the like.
The purpose of the cleaning process is to remove these.However, as fine processing advances as devices become more highly integrated, the effects of these contaminants also increase. It needs to be purified.

【0007】ウエーハ表面をどの程度清浄化すればよい
かは、必ずしも明確化されていないが、16MDRAM
のデバイス製造時に重金属は1010原子/cm2 で少数
のキャリアライフを低下させる為に重金属汚染物は更に
低く、例えば109 原子/cm2(atoms/cm2 )以下に
する必要がある。又、更により微細加工の64MDRA
Mのデバイスでは更に5×108 原子/cm2(atoms/
cm2 )以下にする必要がある。
Although it is not always clear how much the surface of the wafer should be cleaned, a 16 MDRAM
In manufacturing the device, the heavy metal is 10 10 atoms / cm 2 and the carrier life of the minority is reduced. Therefore, the heavy metal contaminants need to be lower, for example, 10 9 atoms / cm 2 (atoms / cm 2 ) or less. Also, 64MDRA of even finer processing
For the M device, 5 × 10 8 atoms / cm 2 (atoms /
cm 2 ).

【0008】この為、前記純水リンスの洗浄液として超
純水を用いているが、超純水といってもpptレベルの
濃度で不純物(重金属)が含まれている。このような超純
水を用いてウエーハを洗浄した場合、超純水中にウエー
ハを長時間浸漬すればするほど不純物の吸着が増加して
しまう。
For this reason, ultrapure water is used as the cleaning solution for the pure water rinse. However, even ultrapure water contains impurities (heavy metals) at a ppt level concentration. When a wafer is washed using such ultrapure water, the longer the wafer is immersed in the ultrapure water, the more the adsorption of impurities increases.

【0009】一方、工業調査会発行の電子材料1993
年別冊号試験装置編「超純水製造装置」の項の140〜
141頁において「高集積度化によるサブミクロントレ
ンチ洗浄の必要性と洗浄工程を少量純水で早く洗う、い
わばコストダウンの必要性から従来の常温超純水洗浄
(25℃)からスチーム若しくは電熱ヒータ等で加温さ
れた高温超純水洗浄を行なっている。しかしながら、こ
のような高温水超純水洗浄や常温超純水洗浄の何れにお
いても、重金属汚染物が微細加工の64MDRAMのデ
バイスに対応する5×108原子/cm2(atoms/cm
2 )以下のウエーハ吸着量まで低減させることが出来な
かった。
On the other hand, an electronic material 1993 issued by the Industrial Research Council
140 ~ in the section "Ultra pure water production equipment"
On page 141, "The necessity of submicron trench cleaning due to high integration and rapid cleaning of the cleaning process with a small amount of pure water, so-called steam or electric heater from conventional ordinary temperature ultrapure water cleaning (25 ° C) due to the need for cost reduction. High-temperature ultra-pure water cleaning is performed by heating, etc. However, in both of such high-temperature water ultra-pure water cleaning and room-temperature ultra-pure water cleaning, heavy metal contaminants are compatible with micromachined 64MDRAM devices. 5 × 10 8 atoms / cm 2 (atoms / cm
2 ) It was not possible to reduce the amount of wafer adsorption below.

【0010】本発明はかかる技術的課題に鑑み、重金属
汚染物が、微細加工の64MDRAMのデバイスに対応
する5×108原子/cm2(atoms/cm2)以下のウエー
ハ吸着量まで低減させることが出来るウエーハ洗浄方法
を提供することを目的とする。
In view of the above technical problem, the present invention reduces heavy metal contaminants to a wafer adsorption amount of 5 × 10 8 atoms / cm 2 (atoms / cm 2 ) or less, which corresponds to a micromachined 64M DRAM device. It is an object of the present invention to provide a wafer cleaning method capable of performing the following.

【0011】[0011]

【課題を解決するための手段】本発明者は、重金属のウ
エーハへの吸着スピードは高温である程増加する傾向が
あることを知見した。金属不純物には、Na,Al,C
r,Fe,Ni,Cu,Zn,Ca等があるが、特に酸
化還元電位の関係によりFe,Al,Znは吸着しやす
くなる(他の金属は長時間リンス洗浄してもそれほど増
加(吸着)する傾向が見られない)。よって低温にする
ことでこれらの金属の吸着が抑制できる。
The present inventors have found that the adsorption speed of heavy metals on a wafer tends to increase as the temperature increases. Metal impurities include Na, Al, C
Although there are r, Fe, Ni, Cu, Zn, Ca, etc., in particular, Fe, Al, and Zn are easily adsorbed due to the relationship of oxidation-reduction potential (other metals increase so much even after long-time rinsing (adsorption)). No tendency to do so). Therefore, by lowering the temperature, adsorption of these metals can be suppressed.

【0012】本発明は、複数の薬液洗浄工程と超純水リ
ンス工程を組合せてウエーハ表面上の汚染物を除去し、
清浄化するウエーハ洗浄方法において、前記複数の超純
水リンス工程の内少なくとも一つの超純水リンス工程に
使用する超純水を0℃〜20℃、好ましくは5℃〜15
℃に設定したことを特徴とするものである。かかる洗浄
工程によれば、重金属汚染物が微細加工の64MDRA
Mのデバイスに対応する5×108原子/cm2(atoms
/cm2)以下のウエーハ吸着量まで低減させることが出
来る。また本発明はRCA洗浄プロセス以外にも、他の
ウエット洗浄プロセスにも適用可能である。特に、重金
属除去を目的とした薬液洗浄工程に用いることが好まし
い。
According to the present invention, contaminants on a wafer surface are removed by combining a plurality of chemical cleaning steps and an ultrapure water rinsing step.
In the wafer cleaning method for cleaning, ultrapure water used in at least one ultrapure water rinsing step of the plurality of ultrapure water rinsing steps is 0 ° C to 20 ° C, preferably 5 ° C to 15 ° C.
° C. According to such a cleaning process, heavy metal contaminants are reduced to 64MDRA of fine processing.
5 × 10 8 atoms / cm 2 (atoms
/ Cm 2 ) or less. Further, the present invention is applicable to other wet cleaning processes other than the RCA cleaning process. In particular, it is preferably used in a chemical cleaning step for removing heavy metals.

【0013】この場合、超純水を0℃〜20℃、好まし
くは5℃〜15℃に維持してリンスを行なうリンス工程
は、金属汚染物除去を行なうHCl/H22洗浄工程後
の一つ又は複数の超純水リンス工程の内、少なくとも一
つのリンス工程に使用するのが好ましい。HCl/H2
2洗浄はウエーハ表面の金属を除去するものであり、
この洗浄後にリンスを行なうとリンス槽にもウエーハ上
に残っていた金属濃度が増える可能性が大きい。このリ
ンス槽(工程)ではウエーハに再度、重金属が吸着しやす
くなり問題である。超純水の温度を0℃〜20℃、好ま
しくは5℃〜15℃と、常温より低くすることで吸着し
づらくなる。
In this case, the rinsing step of rinsing while maintaining the ultrapure water at 0 ° C. to 20 ° C., preferably 5 ° C. to 15 ° C., is performed after the HCl / H 2 O 2 cleaning step for removing metal contaminants. It is preferably used in at least one of the one or more ultrapure water rinsing steps. HCl / H 2
O 2 cleaning removes the metal on the wafer surface,
If rinsing is performed after this cleaning, there is a high possibility that the metal concentration remaining on the wafer in the rinsing tank will increase. In this rinsing bath (process), there is a problem that the heavy metal is easily adsorbed on the wafer again. By making the temperature of the ultrapure water 0 ° C. to 20 ° C., preferably 5 ° C. to 15 ° C., lower than room temperature, it becomes difficult to adsorb.

【0014】尚、下限を0℃又は5℃に設定した理由
は、超純水が凍らない温度と熱交換器(冷却器)の能力等
を考慮したためである。上限を20℃に設定した理由
は、重金属汚染物が微細加工の64MDRAMのデバイ
スに対応する5×108原子/cm2(atoms/cm2)以下
のウエーハ吸着量まで有効に低減できる温度の上限であ
る。ただし、15℃以下にすることで2×108原子/
cm2以下となり、さらに安定した洗浄が行なえる。
The reason why the lower limit is set to 0 ° C. or 5 ° C. is that the temperature at which ultrapure water does not freeze and the capacity of a heat exchanger (cooler) are taken into consideration. The reason why the upper limit is set to 20 ° C. is that the upper limit of the temperature at which heavy metal contaminants can be effectively reduced to a wafer adsorption amount of 5 × 10 8 atoms / cm 2 (atoms / cm 2 ) or less corresponding to a micromachined 64M DRAM device. It is. However, if the temperature is set to 15 ° C. or less, 2 × 10 8 atoms /
cm 2 or less, and more stable cleaning can be performed.

【0015】尚、前記超純水を冷却する場所は、リンス
する前で冷却してもよく、又リンス槽中で冷却してもよ
い。またチラー水(氷混合水)や冷媒と熱交換する等の
いずれの冷却方法を用いてもよいが、熱交換時に汚染す
るのを阻止し得る部位がよい。 そこで本発明は、請求
項3記載のように、超純水製造時において、前記超純水
を製造するイオン交換樹脂膜透過工程の前に超純水の熱
交換工程を配置し、イオン交換前の超純水を前記熱交換
工程で、0℃〜20℃、好ましくは5℃〜15℃に冷却
することを特徴としている。
The place where the ultrapure water is cooled may be cooled before rinsing, or may be cooled in a rinsing tank. Further, any cooling method such as heat exchange with chiller water (ice mixed water) or a refrigerant may be used, but a portion capable of preventing contamination during heat exchange is preferable. Therefore, according to the present invention, as described in claim 3, during the production of ultrapure water, a heat exchange step of ultrapure water is arranged before the permeation step of the ion exchange resin membrane for producing the ultrapure water. Is cooled to 0 ° C. to 20 ° C., preferably 5 ° C. to 15 ° C. in the heat exchange step.

【0016】超純水は熱交換時のトラブル等により汚染
される可能性がある。そこで汚染されてもイオン交換樹
脂で重金属を除去できるように、熱交換器の後にイオン
交換樹脂透過工程を備えている。即ちリンス工程で5℃
〜15℃の超純水で洗浄しても、超純水中に重金属があ
まりにも多く含まれていては効果が少ない。従って熱交
換時に超純水の汚染があった場合の対策として、イオン
交換樹脂透過工程等の前に熱交換工程を配置している。
Ultrapure water may be contaminated by troubles during heat exchange. Therefore, an ion-exchange resin permeation step is provided after the heat exchanger so that heavy metals can be removed by the ion-exchange resin even if the metal is contaminated. That is, 5 ° C in the rinsing process
Washing with ultrapure water at 1515 ° C. has little effect if the ultrapure water contains too much heavy metal. Therefore, as a countermeasure when ultrapure water is contaminated during heat exchange, a heat exchange step is arranged before the ion exchange resin permeation step or the like.

【0017】[0017]

【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る構成部品の寸法、形状、その相対配置などは特に特定
的な記載がない限り、この発明の範囲をそれのみに限定
する趣旨ではなく単なる説明例に過ぎない。図1は本発
明の実施形態に係る多槽式のウエーハ洗浄装置と超純水
製造装置の組合せシステム構成図を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment shown in the drawings. However, unless otherwise specified, dimensions, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the invention, but are merely illustrative examples. FIG. 1 shows a combined system configuration diagram of a multi-tank type wafer cleaning apparatus and an ultrapure water production apparatus according to an embodiment of the present invention.

【0018】多槽式のウエーハ洗浄装置Aは、ウエーハ
カセットのトランスファシステム1の最上流側のローダ
2と最下流側のアンローダ7の間に、例えばSC−1洗
浄槽(NH4OH /H22)3→超純水リンス槽11→
HF洗浄槽4→超純水リンス槽12→超純水リンス槽1
3→SC−2洗浄槽(HCl/H22)5→超純水リン
ス槽14→超純水リンス槽15→超純水リンス槽16→
乾燥6という工程を配置し、該トランスファシステム1
のロボットアームにより順次下流側の槽にウエーハカセ
ットを搬送しながらウエーハ洗浄が行なわれる。(単な
る例示)
The multi-tank type wafer cleaning apparatus A is, for example, an SC-1 cleaning tank (NH 4 OH / H 2) between a loader 2 at the most upstream side and an unloader 7 at the most downstream side of the wafer cassette transfer system 1. O 2 ) 3 → Ultrapure water rinsing tank 11 →
HF cleaning tank 4 → ultrapure water rinse tank 12 → ultrapure water rinse tank 1
3 → SC-2 cleaning tank (HCl / H 2 O 2 ) 5 → ultra pure water rinsing tank 14 → ultra pure water rinsing tank 15 → ultra pure water rinsing tank 16 →
A process of drying 6 is arranged, and the transfer system 1
Wafer cleaning is performed while sequentially transporting the wafer cassette to the downstream tank by the robot arm. (Just an example)

【0019】特に金属不純物の洗浄はSC−1洗浄槽
(NH4OH /H22)3又はHF洗浄槽4とSC−2
洗浄槽(HCl/H22)5とにより繰り返し除去され
るが、ここでは水洗が重要な意味を持っているために、
超純水リンス槽を夫々の洗浄槽の間に必要に応じて2段
若しくは3段設け、繰り返し水洗が行なわれる。超純水
製造装置Bは、UV21(紫外線殺菌工程)→RO22
(逆浸透膜透過工程)→UV23(紫外線殺菌工程)を
経た純水を、CP(イオン交換樹脂膜透過工程)24B
→UF(ウルトラフィルタ透過工程)25Bを経て製造
される常温(25℃)超純水製造工程B1と、UV23
(紫外線殺菌工程)を経た純水を、チラー30より導入
されたチラー水(氷混合水)と熱交換器31で熱交換し
た後、CP(イオン交換樹脂膜透過工程)24A→UF
(ウルトラフィルタ透過工程)25Aを経て製造される
低温(15℃)超純水製造工程B2からなる。
In particular, for cleaning of metal impurities, the SC-1 cleaning tank (NH 4 OH / H 2 O 2 ) 3 or the HF cleaning tank 4 and SC-2 are used.
It is repeatedly removed by the washing tank (HCl / H 2 O 2 ) 5, but here, since washing with water has an important meaning,
Two or three ultrapure water rinsing tanks are provided between the respective cleaning tanks as necessary, and the water washing is repeatedly performed. Ultrapure water production equipment B is UV21 (ultraviolet sterilization process) → RO22
(Reverse osmosis membrane permeation step) → pure water that has passed through UV23 (ultraviolet sterilization step) is passed through CP (ion exchange resin membrane permeation step) 24B
→ Room temperature (25 ° C.) ultrapure water production process B1 produced through UF (ultra filter transmission process) 25B, and UV23
The pure water that has passed through the (ultraviolet sterilization step) is heat-exchanged with chiller water (ice mixed water) introduced from the chiller 30 in the heat exchanger 31, and then the CP (ion exchange resin membrane transmission step) 24A → UF.
(Ultra-filter permeation step) A low-temperature (15 ° C.) ultrapure water production step B2 produced through 25A.

【0020】前記熱交換器31は、超純水を流している
管の周りを覆うようにチラー水の管を配置して熱交換す
るように構成し、熱交換を良くする為、超純水の配管を
細くしたり、該配管を薄くしたりする。この時、トラブ
ル等により汚染される可能性がある。そこで汚染されて
もイオン交換樹脂で重金属を除去できるように熱交換器
31の後にイオン交換樹脂膜透過工程24Aを備えてい
る。
The heat exchanger 31 is constructed such that a chiller water pipe is disposed so as to cover a pipe around which ultrapure water flows, and heat is exchanged. The pipes are thinned or the pipes are thinned. At this time, there is a possibility of contamination due to trouble or the like. Therefore, an ion-exchange resin membrane permeation step 24A is provided after the heat exchanger 31 so that heavy metals can be removed by the ion-exchange resin even if contaminated.

【0021】そして、本実施例において、15℃の冷却
超純水はSC−2洗浄槽(HCl/H22)5で洗浄後
に設置された3段の超純水リンス槽の内の第1段の超純
水リンス槽14のみに導入され、他の超純水リンス槽に
は25℃の常温超純水を使用した。尚、これらのリンス
槽でウエーハを超純水中に浸漬した時間は効果を確認し
やすくするため、いずれも45分と長時間で行なった。
この洗浄時間も単なる例示であり、時間を短くしても同
様な傾向が見られ、洗浄時間は工程に応じて適宜決めれ
ば良い。
In the present embodiment, the cooled ultrapure water at 15 ° C. is washed in the SC-2 cleaning tank (HCl / H 2 O 2 ) 5 and then placed in the three-stage ultrapure water rinsing tank. The water was introduced only into the one-stage ultrapure water rinsing tank 14, and the other ultrapure water rinsing tank used was room-temperature ultrapure water at 25 ° C. The time during which the wafer was immersed in ultrapure water in each of these rinsing tanks was as long as 45 minutes in order to easily confirm the effect.
This cleaning time is also a mere example, and the same tendency is observed even if the time is shortened. The cleaning time may be appropriately determined according to the process.

【0022】かかる実施形態で、8インチのポリッシン
グウエーハを10枚該洗浄フローで洗浄し、乾燥後、ウ
エーハ上の重金属、本実施例ではFeの評価を原子吸光
法により検出した所、Feの濃度は検出下限以下であっ
た。なお、本評価方法のFeの検出下限は2×108
子/cm2(atoms/cm2)である。
In this embodiment, ten 8-inch polishing wafers were washed by the washing flow, and after drying, heavy metals on the wafers, in this embodiment, Fe were detected by atomic absorption method. Was below the lower limit of detection. The lower limit of detection of Fe in this evaluation method is 2 × 10 8 atoms / cm 2 (atoms / cm 2 ).

【0023】従って本実施形態によれば、重金属汚染物
が微細加工の64MDRAMのデバイスに対応する5×
108原子/cm2(atoms/cm2)以下のウエーハ吸着量
まで低減させることが出来ることが確認された。又リン
ス後の乾燥DとしてIPA Vapor(イソプロピルアルコ
ールベーパー)乾燥を80℃前後の温度で行なったが、
15℃と低温で洗浄したものを高温の乾燥器に入れる
と、温度差の効果により従来(25℃)の洗浄より乾燥
時間が短くなることも確認された。ただし、これは15
℃の冷却超純水を超純水リンス槽14、15、16に導
入した、別の実施例により確認したものである。
Therefore, according to the present embodiment, the heavy metal contaminants have a size of 5 × corresponding to a micromachined 64 MDRAM device.
It was confirmed that the wafer adsorption amount could be reduced to 10 8 atoms / cm 2 (atoms / cm 2 ) or less. IPA Vapor (isopropyl alcohol vapor) drying was performed at a temperature of about 80 ° C. as drying D after rinsing.
It was also confirmed that when the thing washed at a low temperature of 15 ° C. was put into a high-temperature dryer, the drying time was shorter than that of the conventional (25 ° C.) washing due to the effect of the temperature difference. However, this is 15
This was confirmed by another example in which cooling ultrapure water at a temperature of ° C was introduced into ultrapure water rinsing tanks 14, 15, and 16.

【0024】次に、熱交換器31で5℃に冷却した冷却
超純水を、前記実施形態と同様にSC−2洗浄槽(HC
l/H22)5で洗浄直後の第1段の超純水リンス槽1
4のみに導入した他の実施形態において、8インチのポ
リッシングウエーハを10枚を洗浄乾燥後、Feの評価
を原子吸光法により検出した所、Feの濃度は実施例1
と同様に、検出下限以下であった。
Next, the cooled ultrapure water cooled to 5 ° C. in the heat exchanger 31 is supplied to the SC-2 cleaning tank (HC
1 / H 2 O 2 ) First-stage ultrapure water rinse tank 1 immediately after washing with 5
In another embodiment where only 10 wafers were introduced, 10 8-inch polishing wafers were washed and dried, and Fe evaluation was detected by an atomic absorption method.
Similarly to the above, it was below the lower limit of detection.

【0025】(比較例1) [常温]実施例と同じ工程で熱交換を行なわず、B1の
工程で製造された超純水(25℃)を全ての超純水リン
ス槽に用いて、同じ洗浄フローによりウエーハを洗浄し
た所、Feの不純物濃度は8×108原子/cm2(atom
s/cm2)と金属汚染物が微細加工の64MDRAMのデ
バイスに対応する5×108 原子/cm2(atoms/cm
2 )を超えていることが確認された。
(Comparative Example 1) [Normal temperature] The same process as in the example was performed, except that heat exchange was not performed, and the ultrapure water (25 ° C.) produced in the process B1 was used in all the ultrapure water rinsing tanks. When the wafer was cleaned by the cleaning flow, the impurity concentration of Fe was 8 × 10 8 atoms / cm 2 (atom
s / cm 2 ) and metal contaminants are 5 × 10 8 atoms / cm 2 (atoms / cm 2 ) corresponding to a micromachined 64M DRAM device.
2 ) It was confirmed that it exceeded.

【0026】(比較例2) [温水:45℃]実施例と同じ工程で熱交換を行なわ
ず、且つUF(ウルトラフィルタ)25後に加熱手段を
設け、作成した加熱超純水(45℃)を用いて、同じ洗
浄フローによりウエーハを洗浄したところ、Feの不純
物濃度は15×108原子/cm2(atoms/cm2)と金属
汚染物が微細加工の64MDRAMのデバイスに対応す
る5×108原子/cm2(atoms/cm2)を超えているこ
とが確認された。このように少なくとも25℃〜45℃
の範囲では、温度が高くなるにつれ吸着量も増えること
がわかる。
(Comparative Example 2) [Hot water: 45 ° C.] Heating was not performed in the same process as in the example, and a heating means was provided after the UF (ultra filter) 25. When the wafer was cleaned using the same cleaning flow as above, the impurity concentration of Fe was 15 × 10 8 atoms / cm 2 (atoms / cm 2 ), and the metal contaminants were 5 × 10 8 corresponding to the 64MDRAM device of fine processing. It was confirmed that it exceeded atoms / cm 2 (atoms / cm 2 ). Thus at least 25 ° C to 45 ° C
It can be seen that in the range, the adsorption amount increases as the temperature increases.

【0027】これらの実施例および比較例の結果より、
超純水の温度と不純物濃度の関係をプロットしてみると
図2のようになる。この結果から20℃以下の超純水を
用いることで、64MDRAM等で要望される5×10
8 atoms/cm2レベル以下の洗浄を行なうことができる。
また、15℃以下では更に好ましく、不純物は検出下限
以下のレベルとなり、更に安定した洗浄が行なえ、今後
要求される更に低い不純物レベルの洗浄にまで対応が可
能である。
From the results of these Examples and Comparative Examples,
FIG. 2 shows a plot of the relationship between the temperature of the ultrapure water and the impurity concentration. From this result, by using ultrapure water of 20 ° C. or less, 5 × 10
Cleaning at a level of 8 atoms / cm 2 or less can be performed.
Further, the temperature is more preferably 15 ° C. or lower, and the impurity is at a level lower than the detection lower limit, so that more stable cleaning can be performed, and it is possible to cope with the cleaning of a lower impurity level required in the future.

【0028】[0028]

【発明の効果】以上記載のごとく本発明によれば、ウエ
ーハに吸着する重金属の量が低減可能になるとともに、
特に、重金属汚染物が微細加工の64MDRAMのデバ
イスに対応する5×108原子/cm2(atoms/cm2)以
下のウエーハ吸着量まで低減させることが出来るウエー
ハ洗浄方法を得ることが出来る。更に本発明によればリ
ンス後のIPA Vapor乾燥が、温度差の効果により従来
(25℃)の洗浄より乾燥時間が短くなる。等の種々の
著効を有す。
As described above, according to the present invention, the amount of heavy metal adsorbed on the wafer can be reduced,
In particular, it is possible to obtain a wafer cleaning method capable of reducing heavy metal contaminants to a wafer adsorption amount of 5 × 10 8 atoms / cm 2 (atoms / cm 2 ) or less corresponding to a micromachined 64M DRAM device. Further, according to the present invention, the drying time of IPA Vapor after rinsing is shorter than that of the conventional (25 ° C.) washing due to the effect of the temperature difference. And so on.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施形態に係る多槽式のウエーハ洗
浄装置と超純水製造装置の組合せシステム構成図を示
す。
FIG. 1 shows a combined system configuration diagram of a multi-tank type wafer cleaning apparatus and an ultrapure water production apparatus according to an embodiment of the present invention.

【図2】 超純水の温度とウエーハに吸着する重金属不
純物(Fe)の関係を示す。
FIG. 2 shows the relationship between the temperature of ultrapure water and heavy metal impurities (Fe) adsorbed on a wafer.

【符号の説明】[Explanation of symbols]

A 多槽式のウエーハ洗浄装置 B 超純水製造装置 11〜16 超純水リンス槽 3 SC−1洗浄槽(NH4OH/H22) 4 HF洗浄槽 5 SC−2洗浄槽(HCl/H22) 24 CP(イオン交換樹脂膜透過工程) 31 熱交換器A Multi-wafer type wafer cleaning apparatus B Ultrapure water production apparatus 11-16 Ultrapure water rinsing tank 3 SC-1 cleaning tank (NH 4 OH / H 2 O 2 ) 4 HF cleaning tank 5 SC-2 cleaning tank (HCl) / H 2 O 2 ) 24 CP (ion exchange resin membrane permeation step) 31 heat exchanger

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の薬液洗浄工程と超純水リンス工程
を組合せてウエーハ表面上の汚染物を除去するウエーハ
洗浄方法において、 前記複数の超純水リンス工程の内、少なくとも一つのリ
ンス工程に使用する超純水を0℃〜20℃に維持してリ
ンスを行なうことを特徴とするウエーハ洗浄方法。
1. A wafer cleaning method for removing contaminants on a wafer surface by combining a plurality of chemical solution cleaning steps and an ultrapure water rinsing step, wherein at least one of the plurality of ultrapure water rinsing steps is a rinsing step. A wafer cleaning method, wherein rinsing is performed while maintaining ultrapure water to be used at 0 ° C to 20 ° C.
【請求項2】 複数の薬液洗浄工程と超純水リンス工程
を組合せてウエーハ表面上の汚染物を除去するウエーハ
洗浄方法において、 金属汚染物除去を行なうHCl/H22洗浄工程後の一
つ又は複数の超純水リンス工程の内、少なくとも一つの
リンス工程に使用する超純水を0℃〜20℃に維持して
リンスを行なうことを特徴とするウエーハ洗浄方法。
2. A wafer cleaning method for removing contaminants on a wafer surface by combining a plurality of chemical cleaning steps and an ultrapure water rinsing step, wherein the wafer is cleaned after a HCl / H 2 O 2 cleaning step for removing metal contaminants. A wafer cleaning method, wherein rinsing is performed while maintaining ultrapure water used in at least one of the one or more ultrapure water rinsing steps at 0 ° C to 20 ° C.
【請求項3】 イオン交換樹脂膜透過工程を経て製造さ
れた超純水を前記リンス工程に導入する請求項1若しく
は2記載のウエーハ洗浄方法において、 前記イオン交換樹脂膜透過工程の前に超純水の熱交換工
程を配置し、イオン交換前の超純水を前記熱交換工程
で、0℃〜20℃に冷却することを特徴とするウエーハ
洗浄方法。
3. The wafer cleaning method according to claim 1, wherein ultrapure water produced through the ion exchange resin membrane permeating step is introduced into the rinsing step. A wafer cleaning method, wherein a water heat exchange step is provided, and ultrapure water before ion exchange is cooled to 0 ° C. to 20 ° C. in the heat exchange step.
JP09408698A 1998-03-23 1998-03-23 Wafer cleaning method Expired - Fee Related JP3505998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09408698A JP3505998B2 (en) 1998-03-23 1998-03-23 Wafer cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09408698A JP3505998B2 (en) 1998-03-23 1998-03-23 Wafer cleaning method

Publications (2)

Publication Number Publication Date
JPH11274123A true JPH11274123A (en) 1999-10-08
JP3505998B2 JP3505998B2 (en) 2004-03-15

Family

ID=14100671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09408698A Expired - Fee Related JP3505998B2 (en) 1998-03-23 1998-03-23 Wafer cleaning method

Country Status (1)

Country Link
JP (1) JP3505998B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011527080A (en) * 2008-06-30 2011-10-20 ラム リサーチ コーポレーション Process for regenerating multi-element electrodes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011527080A (en) * 2008-06-30 2011-10-20 ラム リサーチ コーポレーション Process for regenerating multi-element electrodes

Also Published As

Publication number Publication date
JP3505998B2 (en) 2004-03-15

Similar Documents

Publication Publication Date Title
US6508258B1 (en) Method and apparatus for cleaning flat workpieces within a semiconductor manufacturing system
TW310452B (en)
EP0982765B1 (en) Cleaning method of semiconductor substrate
KR101431615B1 (en) Silicon surface preparation
KR100220926B1 (en) A cleaning method for hydrophobic silicon wafers
JP2005244179A (en) Wet cleaning method of material surface and manufacturing process of electronic, optical or optoelectronic device using the same
KR20090036715A (en) Method for cleaning silicon wafer
US6620743B2 (en) Stable, oxide-free silicon surface preparation
JP4367587B2 (en) Cleaning method
US5806543A (en) Wet station, and method of and apparatus for wet cleaning using said wet station
JP2000290693A (en) Cleaning of electronic parts and members
JPH11274123A (en) Method of cleaning wafer
JPH10209106A (en) Method and equipment for cleaning semiconductor substrate
JP2576409B2 (en) Method and apparatus for removing metal impurities
WO2000033367A1 (en) Wet cleaning apparatus
JP2006073747A (en) Method and device for treating semiconductor wafer
Osaka et al. Influence of initial wafer cleanliness on metal removal efficiency in immersion SC-1 cleaning: Limitation of immersion-type wet cleaning
JPH104074A (en) Method of cleaning substrate or film and method of fabricating semiconductor device
CN1676192A (en) Cleaning device for use in cleaning liquid circulating system for increasing filter life
KR20060059785A (en) 3 bath 1 batch type wafer cleaning apparatus
CN116759295B (en) Silicon wafer cleaning method and silicon wafer cleaning equipment
JPH0919661A (en) Method and apparatus for washing electronic parts and the like
JP4011176B2 (en) Completely sealed gas-liquid cleaning device and cleaning method
JP3642552B2 (en) Gas dissolved water production equipment
JP2001213696A (en) Manufacturing method of epitaxyial wafer and its semiconductor manufacturing equipment

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031208

LAPS Cancellation because of no payment of annual fees