JP2576409B2 - Method and apparatus for removing metal impurities - Google Patents

Method and apparatus for removing metal impurities

Info

Publication number
JP2576409B2
JP2576409B2 JP14223594A JP14223594A JP2576409B2 JP 2576409 B2 JP2576409 B2 JP 2576409B2 JP 14223594 A JP14223594 A JP 14223594A JP 14223594 A JP14223594 A JP 14223594A JP 2576409 B2 JP2576409 B2 JP 2576409B2
Authority
JP
Japan
Prior art keywords
silicon
particles
chemical solution
chlorine
metal impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14223594A
Other languages
Japanese (ja)
Other versions
JPH07335608A (en
Inventor
良徳 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP14223594A priority Critical patent/JP2576409B2/en
Publication of JPH07335608A publication Critical patent/JPH07335608A/en
Application granted granted Critical
Publication of JP2576409B2 publication Critical patent/JP2576409B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、薬液中の金属不純物除
去方法およびその装置に関し、特に、フッ酸系薬液中の
金属不純物をシリコンを主成分とする粒子を吸着剤とし
て除去する金属不純物除去方法およびその装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for removing metal impurities in a chemical solution, and more particularly to a method for removing metal impurities in a hydrofluoric acid-based solution using particles containing silicon as a main component as an adsorbent. A method and an apparatus therefor.

【0002】[0002]

【従来の技術】フッ酸系薬液は、半導体製造工程におい
て、主にシリコン酸化膜のエッチングに用いられるもの
であり、これにはHF溶液、HF/NH4 F混合溶液等
が含まれる。このエッチング処理は、普通シリコン基板
を薬液中に浸漬することによりあるいはシリコン基板に
薬液をスプレイすることによってなされる。
2. Description of the Related Art Hydrofluoric acid chemicals are mainly used for etching a silicon oxide film in a semiconductor manufacturing process, and include an HF solution, an HF / NH 4 F mixed solution and the like. This etching process is usually performed by immersing the silicon substrate in a chemical solution or spraying the silicon substrate with the chemical solution.

【0003】薬液の寿命は論理的にはエッチング速度の
劣化により決まるが、実際は処理を重ねることにより薬
液中に金属やゴミが蓄積されるため、むしろこの影響の
方が重大である。薬液中の金属やゴミがシリコン基板に
付着すると、酸化膜の絶縁耐圧の劣化や微細パターンの
形成不良の原因となり、半導体素子の性能を著しく劣化
させることになる。したがって、薬液の交換はエッチン
グ速度によって決まる本来の寿命よりはるかに短い周期
で行われている。
The life of the chemical is logically determined by the deterioration of the etching rate. However, in practice, metal and dust are accumulated in the chemical due to repeated processing, and this effect is more significant. If metal or dust in the chemical liquid adheres to the silicon substrate, it causes deterioration of the dielectric strength of the oxide film and poor formation of a fine pattern, which significantly deteriorates the performance of the semiconductor element. Therefore, the exchange of the chemical is performed at a cycle much shorter than the original life determined by the etching rate.

【0004】上記の問題を解決するために、フッ酸系薬
液を循環させながら金属やゴミを吸着濾過し、これらを
除去する手段が採用されている。而して、この種手段に
よりゴミは比較的簡単に除去されるが金属の除去につい
て問題が多い。図5に、この種従来の金属不純物除去装
置の断面図を示す。同図に示されるように、樹脂製容器
2内に吸着剤であるシリコン粒子4が充填されている。
そして、このフィルタにフッ酸系薬液3を循環させるこ
とによって、薬液中の金属不純物を選択的に除去する。
[0004] In order to solve the above-mentioned problem, a means for removing metals and dusts by adsorption and filtration while circulating a hydrofluoric acid-based chemical solution is employed. Thus, dust is relatively easily removed by this type of means, but there are many problems with metal removal. FIG. 5 shows a cross-sectional view of a conventional metal impurity removing apparatus of this type. As shown in FIG. 1, a resin container 2 is filled with silicon particles 4 as an adsorbent.
By circulating the hydrofluoric acid-based chemical solution 3 through the filter, metal impurities in the chemical solution are selectively removed.

【0005】吸着剤であるシリコン粒子は薬液中の金属
不純物を除去することによって汚染される。従来は、ア
ンモニア水や過酸化水素水で洗浄することにより再生さ
せ再利用していた。そのため、従来のシリコン粒子では
表面のシリコンが酸素または水素で終端されていた(以
下、第1の従来例という)。このような酸素あるいは水
素で終端されたシリコンをもつ粒子では金属不純物を吸
着させる核になるものが存在していないため、吸着効率
が低くまた吸着能力の低下が速いという欠点があった。
[0005] Silicon particles, which are adsorbents, are contaminated by removing metal impurities in a chemical solution. Conventionally, they have been regenerated and reused by washing with ammonia water or hydrogen peroxide water. Therefore, in the conventional silicon particles, the silicon on the surface is terminated with oxygen or hydrogen (hereinafter, referred to as a first conventional example). Since there is no nucleus for adsorbing metal impurities in such particles having silicon terminated with oxygen or hydrogen, there is a drawback that the adsorption efficiency is low and the adsorption capacity is rapidly lowered.

【0006】そこで、この点に対処して、粒子表面に吸
着核を形成する提案がいくつかなされている。特開平4
−286328号公報には、シリコン粒子に加速された
Arイオン等の希ガスイオンを照射して粒子表面に欠陥
を形成し、これにより金属(Cu)イオンを効率よく吸
着させることが提案されている(以下、第2の従来例と
いう)。また、特願平4−157199号では、シリコ
ン粒子にAuを析出させこれを吸着核とすることが提案
されている(以下、第3の従来例という)。
[0006] In view of this, several proposals have been made to form an adsorption nucleus on the particle surface in order to cope with this point. JP 4
Japanese Patent Publication No. -286328 proposes that silicon particles are irradiated with accelerated rare gas ions such as Ar ions to form defects on the particle surfaces, thereby efficiently adsorbing metal (Cu) ions. (Hereinafter, referred to as a second conventional example). Japanese Patent Application No. 4-157199 proposes that Au is precipitated on silicon particles and used as an adsorption nucleus (hereinafter, referred to as a third conventional example).

【0007】[0007]

【発明が解決しようとする課題】上述した第1の従来例
では、シリコン粒子表面は酸素または水素で終端されて
おり、金属の吸着核として作用するものが存在しないた
め、金属除去能力が小さい。また、加速されたArイオ
ン等を照射する第2の従来例では、粒子表面の構造が物
理的に脆弱なものとなるため、フッ酸によりシリコン粒
子のエッチングが進みやすくなり、薬液中のシリコン濃
度が高くなる外パーティクルの発生等ゴミの増加の原因
になりやすい。さらに、析出Auを吸着核とする第3の
従来例では、使用中にこのAuが粒子表面より剥離しあ
るいは溶液中に溶解する可能性があり、これらが被処理
ウェハに付着して不良発生の原因となる。本願発明は上
記の諸点に対処すべくなされたものであって、その目的
とするところは、新たな汚染物質を与えることなく金属
不純物の除去能力を飛躍的に向上させることのできる方
法および装置を提供することである。
In the first conventional example described above, the surface of the silicon particles is terminated with oxygen or hydrogen, and there is no metal that acts as an adsorption nucleus of the metal, so that the metal removing ability is small. Further, in the second conventional example of irradiating accelerated Ar ions or the like, since the surface of the particles becomes physically weak, the etching of the silicon particles is facilitated by hydrofluoric acid, and the silicon concentration in the chemical solution is increased. This is likely to cause an increase in dust, such as the generation of external particles, which increase the particle size. Further, in the third conventional example in which precipitated Au is used as an adsorption nucleus, there is a possibility that this Au may peel off from the particle surface or dissolve in the solution during use, and these may adhere to the wafer to be processed and cause defects. Cause. The present invention has been made to address the above-mentioned problems, and an object of the present invention is to provide a method and an apparatus capable of dramatically improving the ability to remove metal impurities without giving new contaminants. To provide.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明によれば、(1)シリコンを主成分とする粒
子を塩素を含む流体に曝して粒子表面のシリコンを塩素
で終端させる工程と、(2)表面のシリコンが塩素で終
端している粒子が充填されてなる容器内にフッ酸系薬液
を通過させ該薬液中の金属不純物を前記粒子に吸着させ
る工程と、を含む金属不純物除去方法、が提供される。
According to the present invention, in order to achieve the above object, (1) a step of exposing particles containing silicon as a main component to a fluid containing chlorine to terminate silicon on the surface of the particles with chlorine. And (2) passing a hydrofluoric acid-based chemical solution into a container filled with particles whose surface silicon is terminated with chlorine to adsorb metal impurities in the chemical solution to the particles. A removal method is provided.

【0009】また、本発明によれば、薬液の流入口と流
出口とを備えた容器内にシリコンを主成分とする粒子が
吸着剤として充填されているフッ酸系薬液中の金属不純
物を除去する装置において、前記粒子表面のシリコンが
塩素にて終端されていることを特徴とする金属不純物除
去装置、が提供される。
According to the present invention, metal impurities in a hydrofluoric acid-based chemical solution in which particles containing silicon as a main component are filled as an adsorbent in a container having an inlet and an outlet for the chemical solution are removed. In the above apparatus, there is provided a metal impurity removing apparatus, wherein silicon on the surface of the particles is terminated with chlorine.

【0010】[0010]

【作用】シリコン粒子を塩素を含む流体に晒すと、シリ
コンを終端していた酸素および水素は塩素に置換され
る。シリコン粒子表面を終端した塩素は、同様な終端基
である酸素や水素に比較して格段に強い金属不純物吸着
核として作用する。金属不純物の吸着は生成されたこの
金属不純物吸着核に律速される。そのため、フッ酸系薬
液中に含まれる金属不純物は、速やかにそして多量にシ
リコン粒子表面に吸着される。そして、塩素により終端
したシリコン粒子では、薬液中のシリコン濃度や金濃度
が増加することがなくまたパーティクルの発生もないた
め、高い歩留りで半導体装置を製造することが可能とな
る。
When the silicon particles are exposed to a fluid containing chlorine, oxygen and hydrogen terminating the silicon are replaced by chlorine. Chlorine which has terminated the surface of silicon particles acts as a metal impurity adsorption nucleus which is much stronger than oxygen and hydrogen which are similar termination groups. The adsorption of metal impurities is limited by the generated metal impurity adsorption nuclei. Therefore, metal impurities contained in the hydrofluoric acid-based chemical solution are quickly and abundantly adsorbed on the silicon particle surface. The silicon particles terminated with chlorine do not increase the silicon concentration or the gold concentration in the chemical solution and do not generate particles, so that a semiconductor device can be manufactured with a high yield.

【0011】[0011]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は、本発明の実施例において用いられ
る金属不純物除去装置の断面図である。塩素で終端され
たシリコンを表面に持つシリコン粒子1を樹脂製容器2
に充填しフッ酸系薬液3を循環させる。フッ酸系薬液に
含まれるCu等の金属不純物は、シリコン粒子表面形成
されているの塩素核に容易に捕獲され液中から除去され
る。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view of a metal impurity removing apparatus used in an embodiment of the present invention. Silicon particles 1 with chlorine-terminated silicon on the surface
And the hydrofluoric acid chemical solution 3 is circulated. Metal impurities such as Cu contained in the hydrofluoric acid-based chemical are easily captured by chlorine nuclei formed on the surface of the silicon particles and removed from the liquid.

【0012】図2は、本発明の第1の実施例による薬液
中の金属不純物の除去方法を示すフローチャートであ
る。まず、金属不純物やゴミによって汚染されたシリコ
ン粒子1および樹脂製容器2をアンモニア水および過酸
化水素水を用いた通常の洗浄方法によって洗浄し汚染物
質を除去する。次に、シリコン粒子を塩酸中に浸漬する
ことによって表面のシリコンを金属不純物の吸着核とな
る塩素で終端させる。この塩素で表面を終端したシリコ
ン粒子1を清浄化された樹脂製容器2中に充填すること
によって図1に示される金属不純物除去装置が作成乃至
再生される。この金属不純物除去装置内にフッ酸系薬液
を通過させ金属不純物の除去を行う。
FIG. 2 is a flowchart showing a method for removing metal impurities in a chemical solution according to a first embodiment of the present invention. First, the silicon particles 1 and the resin container 2 contaminated by metal impurities and dust are cleaned by a normal cleaning method using aqueous ammonia and hydrogen peroxide to remove contaminants. Next, by immersing the silicon particles in hydrochloric acid, the silicon on the surface is terminated with chlorine which is an adsorption nucleus of a metal impurity. By filling the silicon particles 1 whose surfaces have been terminated with chlorine into a cleaned resin container 2, the metal impurity removing apparatus shown in FIG. 1 is produced or reproduced. The metal impurity is removed by passing a hydrofluoric acid-based chemical solution through the metal impurity removing device.

【0013】図3は、本発明の第2の実施例の薬液中の
金属不純物の除去方法を示すフローチャートである。ま
ず、シリコン粒子と樹脂製容器からゴミや金属不純物を
通常の洗浄により除去する。次に、シリコン粒子をフッ
酸中に浸漬することにより、粒子表面の酸化膜を除去す
る。続いて、シリコン粒子を塩酸にて処理して表面のシ
リコンを金属不純物の吸着核となる塩素で終端させる。
塩素で表面を終端したシリコン粒子を樹脂製容器中に充
填することによって金属不純物除去装置が作成される。
この金属不純物除去装置内にフッ酸系薬液を通過させ金
属不純物の除去を行う。本実施例の方法では、酸化膜を
完全に除去した非常に活性な表面に塩素終端処理を施し
ているため、一層強力な金属不純物除去能力が発揮され
る。
FIG. 3 is a flowchart showing a method for removing metal impurities in a chemical solution according to a second embodiment of the present invention. First, dust and metal impurities are removed from the silicon particles and the resin container by ordinary washing. Next, the silicon film is immersed in hydrofluoric acid to remove the oxide film on the particle surface. Subsequently, the silicon particles are treated with hydrochloric acid to terminate the silicon on the surface with chlorine which is an adsorption nucleus of a metal impurity.
By filling silicon particles whose surface is terminated with chlorine into a resin container, a metal impurity removing device is produced.
The metal impurity is removed by passing a hydrofluoric acid-based chemical solution through the metal impurity removing device. In the method of the present embodiment, the extremely active surface from which the oxide film has been completely removed is subjected to the chlorine termination treatment, so that a stronger metal impurity removing ability is exhibited.

【0014】図4は、フッ酸中に1ppmの銅を添加
し、この薬液を各従来例および本発明の金属不純物除去
装置に循環させたときの、フッ酸中の様々な不純物濃度
の時間変化を示したグラフである。吸着剤として核の形
成されていない、酸素または水素で終端されたシリコン
粒子を用いた場合[(a)第1の従来例]では、本発明
の実施例の方法に比較して銅の除去率が低い。
FIG. 4 shows the change over time of various impurity concentrations in hydrofluoric acid when 1 ppm of copper is added to hydrofluoric acid and this chemical is circulated through the metal impurity removing apparatus of each of the conventional example and the present invention. FIG. In the case of using silicon particles having no nucleus and terminated with oxygen or hydrogen as the adsorbent [(a) First Conventional Example], the copper removal rate was lower than that of the method of the embodiment of the present invention. Is low.

【0015】希ガスイオン照射により、シリコン粒子表
面に吸着核となる物理的欠陥を形成したもの[(b)第
2の従来例]では、シリコンの溶出が激しく、銅の除去
率も初期段階では良好なもののシリコンの溶出の増加に
伴い劣化している。また、シリコン粒子表面に吸着核と
して金を析出させたもの[(c)第3の従来例]では、
大きな金の溶出が観測される。基板表面に付着した金は
リーク電流の原因となり、また結晶中に取り込まれた金
はシリコン中に深い準位を形成しデバイス特性を著しく
劣化させる。
In the case of forming a physical defect serving as an adsorption nucleus on the silicon particle surface by irradiation of rare gas ions [(b) second conventional example], silicon is eluted vigorously, and the copper removal rate is low at the initial stage. Although good, it deteriorated with the increase of silicon elution. In the case of depositing gold as adsorption nuclei on the surface of silicon particles [(c) Third Conventional Example],
Large gold elution is observed. Gold adhering to the substrate surface causes a leakage current, and gold taken into the crystal forms a deep level in silicon, which significantly degrades device characteristics.

【0016】シリコン粒子表面を塩素で終端した本発明
の第1の実施例[(d)]では、銅の除去率は金を析出
核に用いた第3の実施例の場合とほぼ同等であり、ま
た、シリコン濃度およびその経時変化はもっとも少な
い。さらに、酸化膜除去を行った第2の実施例
[(e)]では、第1の実施例の効果に加え、銅の除去
がさらに速やかに達成されている。
In the first embodiment ((d)) of the present invention in which the surface of the silicon particles is terminated with chlorine, the copper removal rate is almost the same as that of the third embodiment using gold as a deposition nucleus. The silicon concentration and its change with time are the least. Further, in the second embodiment [(e)] in which the oxide film was removed, in addition to the effect of the first embodiment, the removal of copper was more quickly achieved.

【0017】以上好ましい実施例について説明したが、
本発明はこれら実施例に限定されるされるものではな
く、本願発明の要旨を逸脱しない範囲内において各種の
変更が可能である。例えば、塩素による終端処理は塩酸
中への浸漬方法に代え、塩素雰囲気での処理、塩化水素
雰囲気での処理、塩素を含むプラズマ雰囲気での処理等
によって行うこともできる。また、吸着剤となるシリコ
ン粒子は単結晶、多結晶あるいはアモルファスのいずれ
のものを用いてもよい。
While the preferred embodiment has been described above,
The present invention is not limited to these embodiments, and various changes can be made without departing from the gist of the present invention. For example, the terminal treatment with chlorine can be performed by a treatment in a chlorine atmosphere, a treatment in a hydrogen chloride atmosphere, a treatment in a plasma atmosphere containing chlorine, or the like, instead of the method of immersion in hydrochloric acid. In addition, silicon particles serving as an adsorbent may be any of single crystal, polycrystal, and amorphous.

【0018】[0018]

【発明の効果】以上説明したように、本発明による薬液
中の金属不純物の除去方法は、吸着剤として用いるシリ
コン粒子の表面を、強力な金属不純物吸着核として作用
する塩素で終端し、これにより作製された金属不純物除
去装置によりフッ酸系薬液についてフィルタリングをお
こなうものであるので、金やシリコンの濃度を増加させ
たりパーティクルの増加を招いたりすることなく、薬液
中の金属不純物の濃度を十分に低下させることができ
る。したがって、本発明によれば、安定した特性の半導
体装置を高い歩留りで製造することができるようにな
る。
As described above, in the method for removing metal impurities in a chemical solution according to the present invention, the surface of silicon particles used as an adsorbent is terminated with chlorine acting as a strong metal impurity adsorption nucleus. Since the hydrofluoric acid-based chemical solution is filtered by the manufactured metal impurity removal device, the concentration of metal impurities in the chemical solution can be sufficiently increased without increasing the concentration of gold or silicon or increasing the number of particles. Can be reduced. Therefore, according to the present invention, a semiconductor device having stable characteristics can be manufactured with a high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例に用いられる金属不純物除去
装置の断面図。
FIG. 1 is a sectional view of a metal impurity removing apparatus used in an embodiment of the present invention.

【図2】 本発明の第1の実施例を説明するためのフロ
ーチャート。
FIG. 2 is a flowchart for explaining a first embodiment of the present invention.

【図3】 本発明の第2の実施例を説明するためのフロ
ーチャート。
FIG. 3 is a flowchart for explaining a second embodiment of the present invention.

【図4】 各従来例および本発明の各実施例における各
種材料の薬液中の濃度を示すグラフ。
FIG. 4 is a graph showing the concentration of various materials in a chemical solution in each of the conventional examples and the examples of the present invention.

【図5】 従来の金属不純物除去装置の断面図。FIG. 5 is a cross-sectional view of a conventional metal impurity removing device.

【符号の説明】[Explanation of symbols]

1 表面が塩素で終端されたシリコン粒子 2 樹脂製容器 3 フッ酸系薬液 4 表面が酸素または水素で終端されたシリコン粒子 DESCRIPTION OF SYMBOLS 1 Silicon particle whose surface was terminated by chlorine 2 Resin container 3 Hydrofluoric acid chemical solution 4 Silicon particle whose surface was terminated by oxygen or hydrogen

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (1)シリコンを主成分とする粒子を塩
素を含む流体に曝して粒子表面のシリコンを塩素で終端
させる工程と、 (2)表面のシリコンが塩素で終端している粒子が充填
されている容器内にフッ酸系薬液を通過させ該薬液中の
金属不純物を前記粒子に吸着させる工程と、を含むこと
を特徴とする金属不純物除去方法。
1. A step of (1) exposing particles containing silicon as a main component to a fluid containing chlorine to terminate silicon on the surface of the particles with chlorine; Passing a hydrofluoric acid-based chemical solution through a filled container to adsorb metal impurities in the chemical solution to the particles.
【請求項2】 前記(1)の工程に先立って、前記粒子
表面のシリコン酸化膜を除去する工程が付加されること
を特徴とする請求項1記載の金属不純物除去方法。
2. The method according to claim 1, wherein a step of removing a silicon oxide film on the surface of the particles is added prior to the step (1).
【請求項3】 前記(1)の工程における塩素を含む流
体が塩酸であることを特徴とする請求項1記載の金属不
純物除去方法。
3. The method according to claim 1, wherein the fluid containing chlorine in the step (1) is hydrochloric acid.
【請求項4】 薬液の流入口と流出口とを備えた容器内
にシリコンを主成分とする粒子が吸着剤として充填され
ているフッ酸系薬液中の金属不純物を除去する装置にお
いて、前記粒子表面のシリコンは塩素にて終端されてい
ることを特徴とする金属不純物除去装置。
4. An apparatus for removing metal impurities in a hydrofluoric acid-based chemical solution in which particles mainly composed of silicon are filled as an adsorbent in a container provided with an inlet and an outlet for the chemical solution. A metal impurity removing apparatus, wherein silicon on the surface is terminated with chlorine.
JP14223594A 1994-06-02 1994-06-02 Method and apparatus for removing metal impurities Expired - Fee Related JP2576409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14223594A JP2576409B2 (en) 1994-06-02 1994-06-02 Method and apparatus for removing metal impurities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14223594A JP2576409B2 (en) 1994-06-02 1994-06-02 Method and apparatus for removing metal impurities

Publications (2)

Publication Number Publication Date
JPH07335608A JPH07335608A (en) 1995-12-22
JP2576409B2 true JP2576409B2 (en) 1997-01-29

Family

ID=15310577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14223594A Expired - Fee Related JP2576409B2 (en) 1994-06-02 1994-06-02 Method and apparatus for removing metal impurities

Country Status (1)

Country Link
JP (1) JP2576409B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10145103B2 (en) 2010-06-08 2018-12-04 Innovative Building Technologies, Llc Premanufactured structures for constructing buildings
US10190309B2 (en) 2010-06-08 2019-01-29 Innovative Building Technologies, Llc Slab construction system and method for constructing multi-story buildings using pre-manufactured structures
US10260250B2 (en) 2014-08-30 2019-04-16 Innovative Building Technologies, Llc Diaphragm to lateral support coupling in a structure
US10329764B2 (en) 2014-08-30 2019-06-25 Innovative Building Technologies, Llc Prefabricated demising and end walls
US10364572B2 (en) 2014-08-30 2019-07-30 Innovative Building Technologies, Llc Prefabricated wall panel for utility installation
US10487493B2 (en) 2017-05-12 2019-11-26 Innovative Building Technologies, Llc Building design and construction using prefabricated components
US11054148B2 (en) 2014-08-30 2021-07-06 Innovative Building Technologies, Llc Heated floor and ceiling panel with a corrugated layer for modular use in buildings

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10145103B2 (en) 2010-06-08 2018-12-04 Innovative Building Technologies, Llc Premanufactured structures for constructing buildings
US10190309B2 (en) 2010-06-08 2019-01-29 Innovative Building Technologies, Llc Slab construction system and method for constructing multi-story buildings using pre-manufactured structures
US10260250B2 (en) 2014-08-30 2019-04-16 Innovative Building Technologies, Llc Diaphragm to lateral support coupling in a structure
US10329764B2 (en) 2014-08-30 2019-06-25 Innovative Building Technologies, Llc Prefabricated demising and end walls
US10364572B2 (en) 2014-08-30 2019-07-30 Innovative Building Technologies, Llc Prefabricated wall panel for utility installation
US11054148B2 (en) 2014-08-30 2021-07-06 Innovative Building Technologies, Llc Heated floor and ceiling panel with a corrugated layer for modular use in buildings
US10487493B2 (en) 2017-05-12 2019-11-26 Innovative Building Technologies, Llc Building design and construction using prefabricated components

Also Published As

Publication number Publication date
JPH07335608A (en) 1995-12-22

Similar Documents

Publication Publication Date Title
US6146467A (en) Treatment method for semiconductor substrates
US5837662A (en) Post-lapping cleaning process for silicon wafers
JP2007165935A (en) Method of removing metals in scrubber
JPH0794458A (en) Cleaning solvent and method for cleaning semiconductor substrate
JPH0684875A (en) Method and apparatus for reduction of fine- particle concentration in working fluid
EP0936268A2 (en) Cleaning solution for electromaterials and method for using the same
JP2576409B2 (en) Method and apparatus for removing metal impurities
JPH1064867A (en) Method and device for cleaning a variety of electronic component members
JP2002517090A (en) Alkali treatment after etching
JP4933071B2 (en) Cleaning method of silicon wafer
JP3239998B2 (en) Semiconductor substrate cleaning method
JPH0817776A (en) Method for washing silicon wafer
JPH07283182A (en) Cleaning method of semiconductor substrate
JP2006073747A (en) Method and device for treating semiconductor wafer
JP2001326209A (en) Method for treating surface of silicon substrate
JPH05109683A (en) Removal of metallic impurity in semiconductor silicon wafer cleaning fluid
JPH0831781A (en) Washing chemicals
JPH0731810A (en) Purification of filter in washing process
JP4026384B2 (en) Semiconductor substrate cleaning method
JP2893493B2 (en) Silicon wafer cleaning method
JPH08148456A (en) Method and device for semiconductor treatment using treatment solution
JP2833944B2 (en) Ultrapure water production method
JPH09237774A (en) Method for washing semiconductor substrates
JPH06151402A (en) Wet processor
JP3353477B2 (en) Pure water rinsing method and semiconductor device manufacturing method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20081107

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20101107

LAPS Cancellation because of no payment of annual fees