JPH11271981A - Substrate with noble metallic colloid dispersed layer and pattern forming method - Google Patents

Substrate with noble metallic colloid dispersed layer and pattern forming method

Info

Publication number
JPH11271981A
JPH11271981A JP10092602A JP9260298A JPH11271981A JP H11271981 A JPH11271981 A JP H11271981A JP 10092602 A JP10092602 A JP 10092602A JP 9260298 A JP9260298 A JP 9260298A JP H11271981 A JPH11271981 A JP H11271981A
Authority
JP
Japan
Prior art keywords
substrate
noble metal
polysilane
silicon
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10092602A
Other languages
Japanese (ja)
Other versions
JP3440815B2 (en
Inventor
Motoo Fukushima
基夫 福島
Shigeru Mori
滋 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP09260298A priority Critical patent/JP3440815B2/en
Publication of JPH11271981A publication Critical patent/JPH11271981A/en
Application granted granted Critical
Publication of JP3440815B2 publication Critical patent/JP3440815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a substrate coated easily and rapidly with a pattern contg. noble metallic colloid and having excellent optical function by disposing a silicon-contg. high molecular compd. layer contg. dispersed noble metallic colloid obtd. by bringing a noble metallic salt into contact and reduction with a silicon- contg. high molecular compd. having reducing property. SOLUTION: A polysilane film 2 is formed on a substrate 1 and selectively irradiated with light to form a pattern having Si-O bonds in the irradiated part and the substrate 1 is immersed in a soln. of a noble metallic salt 5 to form and disperse noble metallic colloid in the unexposed polysilane part. The objective substrate coated with a pattern of a noble metallic colloid dispersed high molecular compd. is obtd. through the easy and rapid steps.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、貴金属コロイドを
分散させたケイ素系高分子化合物層を有する基板、及び
このケイ素系高分子化合物層のパターンを形成する方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate having a silicon-based polymer compound layer in which a noble metal colloid is dispersed, and a method for forming a pattern of the silicon-based polymer compound layer.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】貴金属
コロイドを分散させた高分子化合物でコートした基板
は、特異な電子的・光学的機能性を持つことはよく知ら
れている。例えば、A.W.Olesnらは金コロイド
をジアセチレン系高分子化合物に分散させると3次の非
線形特性が大幅に向上することを報告している(J.A
m.Chem.Soc.,113(1991)775
8)。
2. Description of the Related Art It is well known that a substrate coated with a polymer compound in which a noble metal colloid is dispersed has specific electronic and optical functions. For example, A. W. Olesn et al. Report that when a gold colloid is dispersed in a diacetylene-based polymer compound, the third-order nonlinear characteristics are greatly improved (JA.
m. Chem. Soc. , 113 (1991) 775.
8).

【0003】通常、こうした貴金属コロイドでコートし
た基板は、貴金属塩にコロイドを安定化させ得る高分子
化合物とホルマリンやナトリウムボロハイドレートのよ
うな還元性のある低分子量化合物とを作用させることに
より基板をコートして製造されるが、コロイドの安定化
と塩の還元という2つの作用をそれぞれ高分子化合物と
低分子量化合物という2つの材料で行っているため、し
ばしばコロイドの凝集がおこり、コロイドを良好に分散
させた高分子化合物でコートした基板が得られにくいと
いう欠点があった。まして、パターン化された貴金属コ
ロイドの分散基板を得るためには、レジストのようなパ
ターニング材料を更に組み合わせることが必要となり、
工程も非常に複雑となっていた。
[0003] Usually, a substrate coated with such a noble metal colloid is prepared by reacting a noble metal salt with a polymer compound capable of stabilizing the colloid and a reducing low molecular weight compound such as formalin or sodium borohydrate. It is produced by coating the colloid. However, the two actions of stabilizing the colloid and reducing the salt are performed by two materials, a high molecular compound and a low molecular weight compound, respectively. There is a disadvantage that it is difficult to obtain a substrate coated with the polymer compound dispersed in the polymer. Furthermore, in order to obtain a patterned dispersion substrate of a precious metal colloid, it is necessary to further combine a patterning material such as a resist,
The process was also very complicated.

【0004】ところで、ポリシランは、炭素に比べてそ
のケイ素の持つ金属性と電子非局在性、高い還元性と柔
軟性、良好な薄膜形成特性から非常に興味深いポリマー
である。それらの応用の中で、極微細なパターンを高精
度で形成するフォトレジストの開発を目的として、ポリ
シランを用いた研究が活発に行われていた(例えば、特
開平6−291273号公報)。更に、本発明者らは、
特開平9−327009号公報において、ポリシランの
還元作用を利用して銀塩から金属銀が生成すること、ま
た、このこととポリシランの光回路描画性を応用すれ
ば、導電回路を製造することができることを提案してい
る。しかしながら、高い導電性を発現させるためには生
成した金属銀粒子間の接触が必要で、このため5〜10
重量%という高濃度の銀塩溶液を使用すると、銀コロイ
ドの分散した高分子化合物でコートした基板は得られな
い。また、上記提案では、金コロイドの製造に関しては
開示されていない。
By the way, polysilane is a very interesting polymer because of its metallicity and electron delocalization, high reducibility and flexibility, and good thin-film formation characteristics compared to carbon. Among those applications, researches using polysilanes have been actively conducted for the purpose of developing a photoresist capable of forming an extremely fine pattern with high precision (for example, Japanese Patent Application Laid-Open No. 6-291273). In addition, we have:
In Japanese Patent Application Laid-Open No. 9-327909, the production of metallic silver from a silver salt utilizing the reducing action of polysilane and the application of this and the optical circuit drawing properties of polysilane make it possible to produce a conductive circuit. Suggests what you can do. However, in order to exhibit high conductivity, contact between the generated metallic silver particles is necessary.
When a silver salt solution having a high concentration of weight% is used, a substrate coated with a polymer compound in which silver colloid is dispersed cannot be obtained. Further, the above proposal does not disclose the production of colloidal gold.

【0005】本発明は、上記事情に鑑みなされたもの
で、貴金属コロイドがケイ素系高分子化合物に高度に分
散し、優れた光学的機能を発現する金属コロイド分散層
を有する基板、及びこの金属コロイド分散層のパターン
を形成するパターン形成方法を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and provides a substrate having a metal colloid dispersion layer in which a noble metal colloid is highly dispersed in a silicon-based polymer compound and which exhibits excellent optical functions, and a metal colloid. An object is to provide a pattern forming method for forming a pattern of a dispersion layer.

【0006】[0006]

【課題を解決するための手段及び発明の実施の形態】本
発明者らは、光学的機能性発現のためには、高度に分散
した金属コロイドが必要であることに鑑み鋭意検討を行
った結果、金属塩のなかで特に貴金属塩を還元性を持つ
ケイ素系高分子化合物と接触させると、還元性を持つケ
イ素系高分子化合物はコロイドの安定化と塩の還元とい
う2つの作用を1つの材料で行うことができるため、工
程も制御も簡単となり、しかも、還元性を持つケイ素系
高分子化合物としてポリシランを用いると、光を用いた
パターニングをレジスト等他の材料を用いることなく行
うことができることを知見し、本発明をなすに至った。
Means for Solving the Problems and Embodiments of the Invention The present inventors have conducted intensive studies in view of the fact that highly dispersed metal colloids are necessary for achieving optical functionality. In particular, when a noble metal salt is brought into contact with a silicon-based polymer compound having a reducing property, a silicon-based polymer compound having a reducing property has two effects of stabilizing a colloid and reducing a salt. Process and control are simplified, and when polysilane is used as the silicon-based polymer compound having a reducing property, patterning using light can be performed without using other materials such as a resist. And found the present invention.

【0007】即ち、本発明は、[A]還元性を有するケ
イ素系高分子化合物に貴金属の塩を接触、還元させるこ
とにより得られた上記貴金属のコロイドが分散されたケ
イ素系高分子化合物層を有することを特徴とする基板、
及び、[B](1)基板上にポリシラン膜を形成した
後、選択的光照射を行い、光照射部にSi−O結合を持
つパターンを形成させる工程、(2)貴金属に塩を溶解
させた溶液に工程(1)の基板を浸漬し、未露光部のポ
リシラン部に上記貴金属のコロイドを形成、分散させる
工程を含むことを特徴とする貴金属コロイド分散ポリシ
ランのパターン形成方法を提供する。
That is, the present invention relates to [A] a silicon-based polymer compound layer in which the noble metal colloid obtained by contacting and reducing a noble metal salt with a silicon-based polymer compound having a reducing property is dispersed. A substrate, characterized by having
And [B] (1) a step of performing selective light irradiation after forming a polysilane film on the substrate to form a pattern having a Si—O bond in a light irradiation portion, and (2) dissolving a salt in a noble metal. A step of immersing the substrate in step (1) in a solution obtained by the step (1) to form and disperse the colloid of the noble metal in an unexposed part of the polysilane part.

【0008】本発明を利用すれば、簡便かつ迅速なる工
程により、貴金属コロイドの分散した高分子化合物でコ
ートした基板を得ることができ、特にポリシランを用い
れば、貴金属コロイドのパターンを形成した高分子化合
物でコートした基板を得ることができる。これは、非線
形光学特性等各種光学機能性を持つ光学素子や、センサ
ー等各種電子機能性を持つ電子素子等に応用可能な有用
な貴金属コロイドパターンの形成された高分子化合物で
コートした基板として、電気、電子、通信分野に広く用
い得る。
According to the present invention, a substrate coated with a polymer compound in which a noble metal colloid is dispersed can be obtained by a simple and rapid process. In particular, when polysilane is used, a polymer in which a pattern of a noble metal colloid is formed can be obtained. A substrate coated with the compound can be obtained. This is a substrate coated with a polymer compound with a useful noble metal colloid pattern that can be applied to optical elements with various optical functions such as nonlinear optical characteristics and electronic elements with various electronic functions such as sensors. It can be widely used in electric, electronic and communication fields.

【0009】以下、本発明につき更に詳しく説明する
と、本発明の貴金属コロイドの分散した高分子化合物で
コートした基板は、貴金属の塩と還元性を有するケイ素
系高分子化合物とを接触させることにより形成されたも
のである。
Hereinafter, the present invention will be described in more detail. A substrate coated with a polymer compound in which a noble metal colloid of the present invention is dispersed is formed by contacting a noble metal salt with a reducing silicon-based polymer compound. It was done.

【0010】ここで、基板としては、ガラス、セラミッ
ク、プラスチックのような絶縁体、シリコンのような半
導体、アルミニウムのような導体のものが用いられる。
Here, as the substrate, an insulator such as glass, ceramic or plastic, a semiconductor such as silicon, or a conductor such as aluminum is used.

【0011】また、本発明において、還元性を持つケイ
素系高分子化合物としては、Si−Si結合及び/又は
Si−H結合を有するケイ素系高分子化合物が使用し
得、特にポリシラン又はケイ素原子に直接結合した水素
原子(即ち、SiH基)を有するポリシロキサンが好適
である。
In the present invention, as the silicon-based polymer compound having a reducing property, a silicon-based polymer compound having a Si—Si bond and / or a Si—H bond can be used. Polysiloxanes having directly bonded hydrogen atoms (ie, SiH groups) are preferred.

【0012】ここで、ポリシランとしては、特に下記式
(1)で表わされるものが好ましい。
Here, as the polysilane, those represented by the following formula (1) are particularly preferred.

【0013】 (R1 m2 npSi)q (1) (式中、R1、R2は水素原子又は置換もしくは非置換の
一価炭化水素基、XはR1、アルコキシ基、ハロゲン原
子、酸素原子又は窒素原子を示し、mは0.1≦m≦
2、nは0≦n≦1、pは0≦p≦0.5、1≦m+n
+p≦2.5を満足する数、qは4≦q≦100,00
0を満足する整数である。)
(R 1 m R 2 n X p Si) q (1) (wherein, R 1 and R 2 are a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group, X is R 1 , an alkoxy group, Represents a halogen atom, an oxygen atom or a nitrogen atom, and m is 0.1 ≦ m ≦
2, n is 0 ≦ n ≦ 1, p is 0 ≦ p ≦ 0.5, 1 ≦ m + n
+ P ≦ 2.5, q is 4 ≦ q ≦ 100,00
It is an integer satisfying 0. )

【0014】上記式(1)のポリシランにおいて、
1、R2は、水素原子又は置換もしくは非置換の一価炭
化水素基であり、R1とR2とは互いに同一であっても異
なっていてもよいが、上記一価炭化水素基としては、脂
肪族、脂環式又は芳香族炭化水素基が用いられる。脂肪
族又は脂環式炭化水素基の場合、炭素数1〜12、好ま
しくは1〜6であり、例えばメチル基、エチル基、プロ
ピル基、ブチル基、ペンチル基、ヘキシル基、シクロペ
ンチル基、シクロヘキシル基等が挙げられる。また、芳
香族炭化水素基としては、炭素数6〜14、より好まし
くは6〜10のものが好適であり、例えばフェニル基、
トリル基、キシリル基、ナフチル基、ベンジル基、フェ
ネチル基等が挙げられる。なお、置換炭化水素基として
は、上記に例示した非置換の炭化水素基の水素原子の一
部又は全部をハロゲン原子、アルコキシ基、アミノ基、
アミノアルキル基などで置換したもの、例えばモノフル
オロメチル基、トリフルオロメチル基、m−ジメチルア
ミノフェニル基等が挙げられる。Xは、上記したよう
に、R1と同様の基、アルコキシ基、ハロゲン原子など
であり、アルコキシ基としてはメトキシ基、エトキシ
基、イソプロポキシ基等の炭素数1〜4のもの、ハロゲ
ン原子としてはフッ素原子、塩素原子、臭素原子等が挙
げられ、通常メトキシ基、エトキシ基が用いられる。
In the polysilane of the above formula (1),
R 1 and R 2 are a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group, and R 1 and R 2 may be the same or different from each other; Is an aliphatic, alicyclic or aromatic hydrocarbon group. In the case of an aliphatic or alicyclic hydrocarbon group, it has 1 to 12, preferably 1 to 6 carbon atoms, for example, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclopentyl group, a cyclohexyl group And the like. Further, as the aromatic hydrocarbon group, those having 6 to 14 carbon atoms, more preferably 6 to 10 carbon atoms are suitable, for example, a phenyl group,
Examples include a tolyl group, a xylyl group, a naphthyl group, a benzyl group, and a phenethyl group. In addition, as the substituted hydrocarbon group, part or all of the hydrogen atoms of the unsubstituted hydrocarbon group exemplified above may be a halogen atom, an alkoxy group, an amino group,
Those substituted with an aminoalkyl group include, for example, a monofluoromethyl group, a trifluoromethyl group, an m-dimethylaminophenyl group and the like. X is, as described above, a group similar to R 1 , an alkoxy group, a halogen atom, or the like. As the alkoxy group, those having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group, and an isopropoxy group; Represents a fluorine atom, a chlorine atom, a bromine atom or the like, and usually a methoxy group or an ethoxy group is used.

【0015】mは0.1≦m≦2、特に0.5≦m≦
2、nは0≦n≦1、pは0≦p≦0.5、特に0≦p
≦0.2であり、かつ、1≦m+n+p≦2.5、特に
1.5≦m+n+p≦2を満足する数であり、qは4≦
q≦100,000、特に10≦q≦10,000の範
囲の整数である。
M is 0.1 ≦ m ≦ 2, especially 0.5 ≦ m ≦
2, n is 0 ≦ n ≦ 1, p is 0 ≦ p ≦ 0.5, especially 0 ≦ p
≦ 0.2 and 1 ≦ m + n + p ≦ 2.5, particularly 1.5 ≦ m + n + p ≦ 2, and q is 4 ≦
It is an integer in the range of q ≦ 100,000, particularly 10 ≦ q ≦ 10,000.

【0016】また、Si原子に直接結合した水素原子を
有するポリシロキサンとしては、側鎖にSiH基、主鎖
にSi−O−Si結合を持つ下記式(2)で表わされる
オルガノポリシロキサンが挙げられる。
Examples of the polysiloxane having a hydrogen atom directly bonded to a Si atom include an organopolysiloxane represented by the following formula (2) having a SiH group in a side chain and a Si—O—Si bond in a main chain. Can be

【0017】 (R3 a4 bcSiOde (2) (式中、R3、R4は水素原子、置換もしくは非置換の一
価炭化水素基、アルコキシ基又はハロゲン原子を示し、
aは0.1≦a≦2、bは0≦b≦1、cは0.01≦
c≦1、dは0.5≦d<1.95、2≦a+b+c+
d≦2.5を満足する数、eは4≦e≦100,000
を満足する整数である。)
[0017] (R 3 a R 4 b H c SiO d) e (2) ( wherein, R 3, R 4 represents a hydrogen atom, a substituted or unsubstituted monovalent hydrocarbon group, an alkoxy group or a halogen atom ,
a is 0.1 ≦ a ≦ 2, b is 0 ≦ b ≦ 1, and c is 0.01 ≦
c ≦ 1, d is 0.5 ≦ d <1.95, 2 ≦ a + b + c +
a number satisfying d ≦ 2.5, e is 4 ≦ e ≦ 100,000
Is an integer that satisfies )

【0018】上記式(2)のポリシロキサンにおいて、
3、R4は、水素原子又は置換もしくは非置換の一価炭
化水素基であり、R3とR4とは互いに同一であっても異
なっていてもよいが、上記一価炭化水素基としては、脂
肪族、脂環式又は芳香族炭化水素基が用いられる。脂肪
族又は脂環式炭化水素基の場合、炭素数1〜12、好ま
しくは1〜6であり、例えばメチル基、エチル基、ビニ
ル基、プロピル基、ブチル基、ペンチル基、ヘキシル
基、シクロペンチル基、シクロヘキシル基等が挙げられ
る。芳香族炭化水素基としては、炭素数6〜14、より
好ましくは6〜10のものが好適であり、例えばフェニ
ル基、トリル基、キシリル基、ナフチル基、ベンジル
基、フェネチル基等が挙げられる。なお、置換炭化水素
基としては、上記に例示した非置換の炭化水素基の水素
原子の一部又は全部をハロゲン原子、アルコキシ基、ア
ミノ基、アミノアルキル基などで置換したもの、例えば
モノフルオロメチル基、トリフルオロメチル基、m−ジ
メチルアミノフェニル基等が挙げられる。アルコキシ基
としてはメトキシ基、エトキシ基、イソプロポキシ基等
の炭素数1〜4のもの、ハロゲン原子としてはフッ素原
子、塩素原子、臭素原子等が挙げられ、通常メトキシ
基、エトキシ基が用いられる。
In the polysiloxane of the above formula (2),
R 3 and R 4 are a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group, and R 3 and R 4 may be the same or different from each other; Is an aliphatic, alicyclic or aromatic hydrocarbon group. In the case of an aliphatic or alicyclic hydrocarbon group, it has 1 to 12 carbon atoms, preferably 1 to 6; for example, a methyl group, an ethyl group, a vinyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclopentyl group And a cyclohexyl group. As the aromatic hydrocarbon group, those having 6 to 14, more preferably 6 to 10 carbon atoms are suitable, and examples thereof include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, a benzyl group, and a phenethyl group. Examples of the substituted hydrocarbon group include those obtained by substituting a part or all of the hydrogen atoms of the unsubstituted hydrocarbon groups exemplified above with a halogen atom, an alkoxy group, an amino group, an aminoalkyl group, and the like, for example, monofluoromethyl. Group, trifluoromethyl group, m-dimethylaminophenyl group and the like. Examples of the alkoxy group include those having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group, and an isopropoxy group. Examples of the halogen atom include a fluorine atom, a chlorine atom, and a bromine atom. Usually, a methoxy group and an ethoxy group are used.

【0019】aは0.1≦a≦2、特に0.5≦a≦
2、bは0≦b≦1、cは0.01≦c≦1、特に0.
1≦c≦1、dは0.5≦d<1.95であり、かつ、
2≦a+b+c+d≦2.5、特に2≦a+b+c+d
≦2.2を満足する数である。eは4≦e≦100,0
00、特に10≦e≦10,000の範囲の整数であ
る。
A is 0.1 ≦ a ≦ 2, especially 0.5 ≦ a ≦
2, b is 0 ≦ b ≦ 1, c is 0.01 ≦ c ≦ 1, especially 0 ≦ b ≦ 1.
1 ≦ c ≦ 1, d is 0.5 ≦ d <1.95, and
2 ≦ a + b + c + d ≦ 2.5, especially 2 ≦ a + b + c + d
It is a number that satisfies ≦ 2.2. e is 4 ≦ e ≦ 100,0
00, especially an integer in the range of 10 ≦ e ≦ 10,000.

【0020】このオルガノポリシロキサンとして具体的
には、下記式のものなどが用いられる。これらが一部架
橋していてもよい。
Specific examples of the organopolysiloxane include those of the following formulas. These may be partially crosslinked.

【0021】[0021]

【化1】 (Meはメチル基、Phはフェニル基を示す。)Embedded image (Me represents a methyl group and Ph represents a phenyl group.)

【0022】本発明においては、上記基板上に上記ケイ
素系高分子化合物の膜を形成するが、その形成方法とし
ては、特に限定されず、スピンコート法、ディッピング
法、キャスト法、真空蒸着法、LB法(ラングミュアー
・ブロジット法)などの通常の薄膜形成法が採用でき
る。特に、ケイ素系高分子化合物の溶液を高速で回転さ
せながら成形するスピンコート法が好適に用いられる。
ケイ素系高分子化合物を溶解させる溶媒の例としては、
ベンゼン、トルエン、キシレンなどの芳香族系炭化水
素、テトラヒドロフラン、ジブチルエーテルなどのエー
テル系溶剤が好適に用いられる。成膜後、しばらく乾燥
雰囲気下で静置するとか、減圧下で40〜60℃程度の
温度に放置することにより乾燥することは効果的であ
る。
In the present invention, a film of the above-mentioned silicon-based polymer compound is formed on the above-mentioned substrate, but the formation method is not particularly limited, and a spin coating method, a dipping method, a casting method, a vacuum deposition method, An ordinary thin film forming method such as the LB method (Langmuir-Blodget method) can be employed. In particular, a spin coating method in which a solution of a silicon-based polymer compound is formed while rotating at a high speed is preferably used.
Examples of the solvent for dissolving the silicon-based polymer compound include:
Aromatic hydrocarbons such as benzene, toluene and xylene, and ether solvents such as tetrahydrofuran and dibutyl ether are preferably used. After film formation, it is effective to leave the film in a dry atmosphere for a while or to leave it at a temperature of about 40 to 60 ° C. under reduced pressure for drying.

【0023】なお、ケイ素系高分子化合物の上記溶媒溶
液中の濃度は、1〜20重量%とすることができ、これ
によって0.1〜1,000μmの膜厚のケイ素系高分
子薄膜を形成することができる。
The concentration of the silicon-based polymer compound in the solvent solution can be 1 to 20% by weight, whereby a silicon-based polymer thin film having a thickness of 0.1 to 1,000 μm is formed. can do.

【0024】本発明においては、次いで、貴金属の塩を
このケイ素系高分子膜に接触させる。こうした貴金属の
塩の中でも、特にイオンから金属にするときの標準酸化
還元電位が+0.54V以上であるものが効果的であ
る。より具体的には、白金、金、銀、パラジウムである
ものがよい。
In the present invention, a salt of a noble metal is then brought into contact with the silicon-based polymer film. Among these noble metal salts, those having a standard oxidation-reduction potential of +0.54 V or more, particularly when converting ions into metal, are effective. More specifically, those that are platinum, gold, silver, and palladium are preferable.

【0025】貴金属の塩としては、溶剤に溶解し貴金属
カチオンを生成させ得るもので、通常M−Zn(nはM
の価数によって決まる整数)或いはA−M−Zm(Aは
アルカリ金属又は水素、mはMの価数によって決まる整
数)で表わすことができる。この場合、Zとしては、C
l,Br,Iのようなハロゲン、アセテート、トリフル
オロアセテート、アセチルアセトネート、カーボネー
ト、パークロレート、ナイトレート、スルフェート、シ
アネート、オキサイド等が用いられる。
The noble metal salt can be dissolved in a solvent to form a noble metal cation. Usually, M-Zn (n is M
) Or AM-Zm (A is an alkali metal or hydrogen, and m is an integer determined by the valency of M). In this case, Z is C
Halogen such as l, Br, I, acetate, trifluoroacetate, acetylacetonate, carbonate, perchlorate, nitrate, sulfate, cyanate, oxide and the like are used.

【0026】金塩の例としては、AuCl3,AuB
3,HAuCl4,NaAuCl4,KAuCl4,Li
AuCl4,AuCNKAu(CN)3、銀塩の例として
は、AgBF4,AgClO4,AgPF6,AgBP
4,Ag(CF3SO3),AgNO3、パラジウム塩の
例としては、PdCl2,PdBr2,PdI2,Pd
(OCOCH32,Pd(OCOCF32,PdS
4,Pd(NO32,PdO 、白金塩の例としては、
PtCl2,PtCl4,H2PtCl6,Na2PtC
6,K2PtCl6,Pt(acetylaceton
ate)2等が好適に用いられる。
As an example of the gold salt, AuClThree, AuB
r Three, HAuClFour, NaAuClFour, KAuClFour, Li
AuClFour, AuCNKAu (CN)Three, As an example of silver salt
Is AgBFFour, AgClOFour, AgPF6, AgBP
hFour, Ag (CFThreeSOThree), AgNOThreeThe palladium salt
For example, PdClTwo, PdBrTwo, PdITwo, Pd
(OCOCHThree)Two, Pd (OCOCFThree)Two, PdS
OFour, Pd (NOThree)Two, PdO Examples of platinum salts include:
PtClTwo, PtClFour, HTwoPtCl6, NaTwoPtC
l6, KTwoPtCl6, Pt (acetylacyton
ate)TwoEtc. are preferably used.

【0027】接触方法として、貴金属塩を溶解させた溶
液を上記ケイ素系高分子膜に接触させる溶液法が好適に
用いられる。この溶液法では、この貴金属塩をよく溶解
させ、ケイ素系高分子化合物を溶解させにくい溶媒が用
いられる。このようなものとして、側鎖基の種類により
溶解性が異なるため一概には言えないが、水、或いはア
セトン、メチルエチルケトンのようなケトン類、酢酸エ
チルのようなエステル類、メタノール、エタノールのよ
うなアルコール類、ジメチルホルムアミド、ジメチルス
ルホキシド、ヘキサメチルホスホリックトリアミドのよ
うな非プロトン性極性溶媒、その他、ニトロメタン、ア
セトニトリル等が挙げられる。特に、フェニルメチルポ
リシランの場合、アルコール類が好適に用いられる。
As a contact method, a solution method in which a solution in which a noble metal salt is dissolved is brought into contact with the above-mentioned silicon-based polymer film is suitably used. In this solution method, a solvent that dissolves the noble metal salt well and hardly dissolves the silicon-based polymer compound is used. As such, water solubility or ketones such as acetone, methyl ethyl ketone, esters such as ethyl acetate, methanol, ethanol, etc. Examples of the solvent include aprotic polar solvents such as alcohols, dimethylformamide, dimethylsulfoxide, and hexamethylphosphoric triamide, and nitromethane and acetonitrile. Particularly, in the case of phenylmethylpolysilane, alcohols are preferably used.

【0028】この場合、上記貴金属塩の溶液中の濃度は
0.001〜10重量%、特に0.1〜5重量%とする
ことが好ましい。貴金属塩濃度が高すぎると、表面が貴
金属膜で覆われ、ケイ素系高分子膜に貴金属コロイドが
分散した状態にならない。
In this case, the concentration of the noble metal salt in the solution is preferably 0.001 to 10% by weight, particularly preferably 0.1 to 5% by weight. If the concentration of the noble metal salt is too high, the surface is covered with the noble metal film and the noble metal colloid is not dispersed in the silicon-based polymer film.

【0029】なお、接触後は、必要に応じて50〜60
℃の温度で熱処理することにより、ケイ素系高分子膜表
面での金属塩の吸着及び金属塩から金属コロイドの生成
が促進される。
After the contact, if necessary, 50-60
Heat treatment at a temperature of ° C. promotes adsorption of metal salts on the surface of the silicon-based polymer film and formation of metal colloids from the metal salts.

【0030】次いで、上記溶媒を用いて、上記基板を浸
漬し、不必要な金属塩を洗浄・除去する工程を行う。除
去方法としては、この溶媒に基板を1秒〜10分程度浸
漬して、基板上の不要な貴金属イオンを除去することが
できる。
Next, a step of immersing the substrate in the solvent to wash and remove unnecessary metal salts is performed. As a removing method, the substrate can be immersed in the solvent for about 1 second to 10 minutes to remove unnecessary noble metal ions on the substrate.

【0031】その後必要に応じて高温加熱することで、
ケイ素系高分子表面の貴金属塩から金属コロイドの生成
を促進し、良好に貴金属コロイドを分散した高分子化合
物でコートした基板を得ることができる。加熱温度は、
通常室温〜250℃で1分〜10時間、常圧又は減圧で
行うことが好ましい。250℃を超えると金属コロイド
の凝集がはじまるので望ましくない。通常は80〜20
0℃の温度で1分〜1時間加熱すればよい。
Then, if necessary, by heating at a high temperature,
The formation of a metal colloid from the noble metal salt on the surface of the silicon-based polymer is promoted, and a substrate coated with a polymer compound in which the noble metal colloid is well dispersed can be obtained. The heating temperature is
Usually, it is preferably carried out at room temperature to 250 ° C. for 1 minute to 10 hours at normal pressure or reduced pressure. If the temperature exceeds 250 ° C., aggregation of the metal colloid starts, which is not desirable. Usually 80 to 20
What is necessary is just to heat at the temperature of 0 degreeC for 1 minute to 1 hour.

【0032】本発明において、ケイ素系高分子化合物が
ポリシランの場合は、ポリシランが本来持つ光パターニ
ングの特性を応用できるため、貴金属コロイドのパター
ンを形成した基板を得ることができる。
In the present invention, when the silicon-based polymer compound is polysilane, a substrate formed with a pattern of a noble metal colloid can be obtained because the photopatterning characteristic inherent to polysilane can be applied.

【0033】このポリシランを用いてのパターニング
は、次の工程で行うことができる。 (1)基板上に形成されたポリシラン膜に、選択的光照
射を行い、光照射部にSi−O結合を持つパターンを形
成させる工程。 (2)貴金属塩を溶解させた溶液に工程(1)の基板を
浸漬し、未露光部のポリシラン部に貴金属コロイドを形
成させる工程。
The patterning using this polysilane can be performed in the following steps. (1) A step of selectively irradiating a polysilane film formed on a substrate with light to form a pattern having a Si—O bond in a light-irradiated portion. (2) a step of immersing the substrate of step (1) in a solution in which a noble metal salt is dissolved to form a noble metal colloid in the unexposed portion of the polysilane portion.

【0034】本発明のパターン形成方法としては、まず
基板上にこのポリシランを主成分としてなる薄膜を形成
させる。このポリシラン膜を形成させた基板の上から、
酸素の存在下に非選択的光照射を行い、ポリシランの一
部にSi−O結合を形成させる工程を行う。これによ
り、光が当たった部分の表面は、Si−Si結合がSi
−O−Si結合やSi−OHに変換されて還元性を失
う。
In the pattern forming method of the present invention, first, a thin film containing this polysilane as a main component is formed on a substrate. From above the substrate on which this polysilane film is formed,
A step of performing non-selective light irradiation in the presence of oxygen to form a Si—O bond in part of the polysilane is performed. As a result, the surface of the portion irradiated with light has a Si--Si bond of Si
It is converted to a -O-Si bond or Si-OH and loses its reducing ability.

【0035】この工程は、ポリシランの光酸化パターン
描画工程と同じ装置を用いることができる。通常は1μ
mの膜厚あたり0.01〜100J/cm2の光量が用
いられる。特に、0.1〜10J/cm2の光量が好適
に用いられる。これにより、ポリシランの表面にSi−
O結合が形成された基板が作成され、貴金属の塩を接触
させても、もはや金属コロイドを生成しない。
In this step, the same apparatus as in the step of drawing a photo-oxidation pattern of polysilane can be used. Usually 1μ
A light amount of 0.01 to 100 J / cm 2 per m film thickness is used. In particular, a light amount of 0.1 to 10 J / cm 2 is preferably used. As a result, the Si-
A substrate with an O bond formed is created and no longer produces metal colloids upon contact with a noble metal salt.

【0036】光源としては、水素放電管、希ガス放電
管、タングステンランプ、ハロゲンランプのような連続
スペクトル光源でも、各種レーザー、水銀灯のような不
連続スペクトル光源でもよいが、安価で取り扱いが容易
な水銀灯が好適に用いられる。
The light source may be a continuous spectrum light source such as a hydrogen discharge tube, a rare gas discharge tube, a tungsten lamp, a halogen lamp, or a discontinuous spectrum light source such as various lasers and a mercury lamp, but is inexpensive and easy to handle. A mercury lamp is preferably used.

【0037】次に貴金属塩を溶解させた溶液にこの基板
を浸漬し、未露光部のポリシラン部に貴金属コロイドを
形成させる。これにより、貴金属コロイドのパターンで
コートされた基板を容易に得ることができるが、この工
程及び後処理は上記と同様に行うことができる。
Next, this substrate is immersed in a solution in which a noble metal salt is dissolved, and a noble metal colloid is formed in the unexposed portion of the polysilane portion. Thus, a substrate coated with the pattern of the noble metal colloid can be easily obtained, but this step and post-treatment can be performed in the same manner as described above.

【0038】図1は、ポリシランパターニングの一例を
示すもので、基板1上にポリシラン膜2を形成し、マス
ク3を介してポリシラン膜2に紫外線4を照射する露光
工程を行う(図1(A))。これにより、露光部分のポ
リシランはポリシロキサン2aに変換し、未露光部はポ
リシラン2bのまま残る。次いで、上記露光後のポリシ
ラン膜に貴金属塩5を接触させる工程を行う(図1
(B))。これにより、貴金属塩は、ポリシロキサン部
2aにおいては貴金属塩5としてそのまま付着乃至は吸
着される一方、ポリシラン部2bでは、このポリシラン
の作用により貴金属イオンが貴金属に還元され、貴金属
コロイド6が生成する(図1(C))。次いで、ポリシ
ロキサン部2aの貴金属塩を溶剤により除去し(図1
(D))、更に加熱することにより、ポリシラン部2b
に貴金属コロイド6が分散したパターンが得られる(図
1(E))。なお、図に示す例では、貴金属塩を除去す
る際、ポリシロキサンを溶解可能な溶剤を用いて同時に
ポリシロキサン部を除去するようにした。
FIG. 1 shows an example of polysilane patterning. An exposure step of forming a polysilane film 2 on a substrate 1 and irradiating the polysilane film 2 with ultraviolet rays 4 via a mask 3 is performed (FIG. 1A). )). As a result, the exposed portion of polysilane is converted into polysiloxane 2a, and the unexposed portion remains as polysilane 2b. Next, a step of bringing the noble metal salt 5 into contact with the exposed polysilane film is performed (FIG. 1).
(B)). As a result, the noble metal salt is attached or adsorbed as it is as the noble metal salt 5 in the polysiloxane portion 2a, while the noble metal ion is reduced to the noble metal by the action of the polysilane in the polysilane portion 2b, and the noble metal colloid 6 is formed. (FIG. 1 (C)). Next, the noble metal salt of the polysiloxane portion 2a is removed with a solvent (FIG. 1).
(D)), and by further heating, the polysilane portion 2b
Thus, a pattern in which the noble metal colloid 6 is dispersed is obtained (FIG. 1 (E)). In the example shown in the figure, when removing the noble metal salt, the polysiloxane portion was simultaneously removed using a solvent capable of dissolving the polysiloxane.

【0039】本発明の貴金属コロイド分散ケイ素系高分
子化合物層を有する基板は、特開平9−327009号
公報の場合は高導電体から半導電体としての特性を示す
のに対して、上記高分子化合物層の表面の電気伝導度が
106〜1017Ωcm/□、特に109〜1015Ωcm/
□であり、絶縁物としての特性を示しながら可視領域の
光吸収を示し、かつ高い3次の非線形光学特性を示す。
The substrate having a noble metal colloid-dispersed silicon-based polymer compound layer of the present invention exhibits characteristics from a high conductor to a semiconductor in Japanese Patent Application Laid-Open No. 9-327909, whereas The electric conductivity of the surface of the compound layer is 10 6 to 10 17 Ωcm / □, particularly 10 9 to 10 15 Ωcm /
□ indicates light absorption in the visible region while exhibiting characteristics as an insulator, and exhibits high third-order nonlinear optical characteristics.

【0040】[0040]

【発明の効果】本発明の貴金属コロイド分散ケイ素系高
分子化合物層を有する基板は、優れた光学的機能を有す
るものであり、本発明によれば、簡便かつ迅速なる工程
により、貴金属コロイドを含有したパターンをコートし
た基板を得ることができ、非線形光学特性等各種光学機
能性を持つ光学素子やセンサー等各種電子機能性を持つ
電子素子等に応用可能な有用な高分子コート基板を得る
ことができる。
The substrate having a noble metal colloid-dispersed silicon-based polymer compound layer of the present invention has an excellent optical function. According to the present invention, the precious metal colloid-dispersed silicon polymer A substrate coated with a patterned pattern can be obtained, and a useful polymer-coated substrate applicable to electronic elements having various electronic functionalities such as sensors and various electronic functionalities such as non-linear optical characteristics can be obtained. it can.

【0041】[0041]

【実施例】以下、合成例、実施例と比較例を示し、本発
明の態様を具体的に説明するが、本発明は下記の実施例
に制限されるものではない。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to Synthesis Examples, Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0042】[合成例]ポリシランの製造方法 窒素気流下に、金属ナトリウムをトルエン中に添加し、
高速で撹拌しながら100〜120℃に加熱し分散させ
る。これにジクロルジオルガノシランを撹拌下にゆっく
り滴下する。添加量は金属ナトリウム2〜3モルに対
し、ケイ素化合物1モルである。原料が消失するまで4
時間撹拌し、反応を完結させた。次いで放冷後塩を濾過
し濃縮して、ポリシランを簡単に得ることができる。
[Synthesis Example] Production method of polysilane Metal sodium was added to toluene under a nitrogen stream.
Heat to 100-120 ° C while stirring at high speed to disperse. To this, dichlorodiorganosilane is slowly added dropwise with stirring. The addition amount is 1 mol of the silicon compound with respect to 2 to 3 mol of metallic sodium. 4 until the ingredients disappear
The mixture was stirred for an hour to complete the reaction. Then, after allowing to cool, the salt is filtered and concentrated, so that the polysilane can be easily obtained.

【0043】例えば、フェニルメチルポリシランの製造
方法は以下のように行った。窒素気流下に、金属ナトリ
ウム5.06g(220mmol)をトルエン60ml
中に添加し、高速で撹拌しながら110℃に加熱し分散
させた。これにフェニルメチルジクロルシラン19.1
g(100mmol)を撹拌下にゆっくり滴下した。原
料が消失するまで4時間撹拌し、反応を完結させた。次
いで放冷後、塩を濾過し濃縮してポリシラン粗生成物1
0.0g(粗収率83%)を得ることができた。このポ
リマーは再度30mlのトルエンに溶解させ、その溶液
にヘキサン120mlを添加し析出分離して、重量平均
分子量45,000のフェニルメチルポリシラン6.6
g(収率55%)を得た。
For example, a method for producing phenylmethylpolysilane was performed as follows. Under a nitrogen stream, 5.06 g (220 mmol) of metallic sodium was added to 60 ml of toluene.
The mixture was heated at 110 ° C. while stirring at a high speed to disperse. This was added to phenylmethyldichlorosilane 19.1.
g (100 mmol) was slowly added dropwise with stirring. The mixture was stirred for 4 hours until the raw materials disappeared to complete the reaction. Then, after cooling, the salt was filtered and concentrated to obtain a polysilane crude product 1.
0.0 g (83% crude yield) could be obtained. This polymer was dissolved again in 30 ml of toluene, 120 ml of hexane was added to the solution, and the solution was separated by precipitation to obtain phenylmethylpolysilane 6.6 having a weight average molecular weight of 45,000.
g (55% yield).

【0044】こうして合成したポリマーのトルエン溶液
を用いて、スピンコート法による成膜を行い、所望の膜
厚のポリマーを得ることができる。
Using the toluene solution of the polymer synthesized in this way, a film is formed by spin coating to obtain a polymer having a desired film thickness.

【0045】[実施例、比較例1,2]ポリシラン(合
成例で製造したフェニルメチルポリシラン)をトルエン
に溶解させ、7%の溶液にした。ガラス板上にこのポリ
シラン溶液を、3,000rpm、10秒でスピンコー
トし、2mmHg/50℃で乾燥させて、厚さ0.4μ
mの薄膜を作り、パターン形成用基板とした。
[Examples and Comparative Examples 1 and 2] Polysilane (phenylmethylpolysilane produced in Synthesis Example) was dissolved in toluene to form a 7% solution. This polysilane solution was spin-coated on a glass plate at 3,000 rpm for 10 seconds, and dried at 2 mmHg / 50 ° C. to a thickness of 0.4 μm.
m was formed as a substrate for pattern formation.

【0046】この基板上にフォトマスクを重ね、20W
の低圧水銀灯を用いて254nmの紫外線を10J/c
2の光量で照射し、図1のような方法でパターン形成
を行い、ポリシランの未露光層とポリシロキサンの露光
層のパターン形成された膜を持つガラス基板を作成し
た。
A photomask is superimposed on this substrate,
UV light of 254 nm using a low pressure mercury lamp of 10 J / c
Irradiation was performed at a light amount of m 2 , and a pattern was formed by the method as shown in FIG. 1 to prepare a glass substrate having a film on which an unexposed layer of polysilane and an exposed layer of polysiloxane were patterned.

【0047】次に、塩化金酸ナトリウムの1.0%エタ
ノール溶液を作成し、以下(1)、(2)の方法で、ポ
リシラン基板と接触させ、金コロイドパターン層の形成
を行った。この基板の吸収スペクトルのデータを表1に
まとめた。 (1):潜像が形成されたポリシラン膜を持つガラス基
板を、塩化金酸ナトリウムの1.0%エタノール溶液に
1分間浸漬し、溶液から取り出し、2mmHg/50℃
で乾燥させた。これにより、ポリシラン層上に金塩が吸
着され、次いで還元され、550nmに特徴的な極大吸
収スペクトルを持つ金コロイドの分散した高分子化合物
でコートされたガラス基板が得られた。次いで、エタノ
ールに1分間浸漬し、未露光部にも付着した金塩を除い
た。 (2):(1)のガラス基板を、100℃で10分間加
熱した。この(1)及び(2)のガラス基板の吸収スペ
クトルの測定を行ったところ、以下のとおり、金コロイ
ドに特徴的な波長550nmでの高い吸収強度が観察さ
れた。このことから、基板上には金コロイドを分散した
高分子化合物のパターンが形成されていることは明らか
である。
Next, a 1.0% ethanol solution of sodium chloroaurate was prepared and brought into contact with a polysilane substrate by the following methods (1) and (2) to form a gold colloid pattern layer. Table 1 summarizes the data of the absorption spectrum of this substrate. (1): A glass substrate having a polysilane film on which a latent image is formed is immersed in a 1.0% ethanol solution of sodium chloroaurate for 1 minute, taken out of the solution, and 2 mmHg / 50 ° C.
And dried. As a result, the gold salt was adsorbed on the polysilane layer, then reduced, and a glass substrate coated with a polymer compound in which gold colloid was dispersed and having a characteristic maximum absorption spectrum at 550 nm was obtained. Next, it was immersed in ethanol for 1 minute to remove the gold salt which also adhered to the unexposed portion. (2): The glass substrate of (1) was heated at 100 ° C. for 10 minutes. When the absorption spectra of the glass substrates (1) and (2) were measured, a high absorption intensity at a wavelength of 550 nm characteristic of gold colloid was observed as described below. From this, it is clear that a pattern of a polymer compound in which gold colloid is dispersed is formed on the substrate.

【0048】比較のため金塩のかわりにエタノールを用
いて同様の操作を行った場合やポリシランのかわりにフ
ェニルメチルポリシロキサンを用いて同様の操作を行っ
た場合は、波長550nmでの高い吸収強度は観察され
ず、金コロイドでコートした基板を得ることはできなか
った。
For comparison, when the same operation was performed using ethanol instead of the gold salt or when the same operation was performed using phenylmethylpolysiloxane instead of polysilane, the high absorption intensity at a wavelength of 550 nm was obtained. Was not observed, and a substrate coated with colloidal gold could not be obtained.

【0049】[0049]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of the drawings]

【図1】貴金属コロイドパターンを持つ基板の製造工程
の説明図で、(A)は露光工程、(B)は貴金属塩処理
工程、(C)は貴金属コロイド生成の状態、(D)は貴
金属塩除去工程、(E)は貴金属コロイドパターンの形
成状態を示す。
FIG. 1 is an explanatory view of a manufacturing process of a substrate having a noble metal colloid pattern, wherein (A) is an exposure process, (B) is a noble metal salt treatment process, (C) is a noble metal colloid generation state, and (D) is a noble metal salt. The removal step (E) shows the state of formation of the noble metal colloid pattern.

【符号の説明】[Explanation of symbols]

1 基板 2 ポリシラン膜 2a ポリシロキサン部 2b ポリシラン部 3 マスク 4 紫外線 5 貴金属塩 6 貴金属コロイド DESCRIPTION OF SYMBOLS 1 Substrate 2 Polysilane film 2a Polysiloxane part 2b Polysilane part 3 Mask 4 Ultraviolet 5 Noble metal salt 6 Noble metal colloid

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01B 5/14 H01B 5/14 Z 13/00 503 13/00 503A H01L 51/00 H01L 29/28 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01B 5/14 H01B 5/14 Z 13/00 503 13/00 503A H01L 51/00 H01L 29/28

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 還元性を有するケイ素系高分子化合物に
貴金属の塩を接触、還元させることにより得られた上記
貴金属のコロイドが分散されたケイ素系高分子化合物層
を有することを特徴とする基板。
1. A substrate having a silicon-based polymer compound layer in which a noble metal colloid obtained by contacting and reducing a noble metal salt with a reducing silicon-based polymer compound is dispersed. .
【請求項2】 上記還元性を有するケイ素系高分子化合
物が、Si−Si結合及び/又はSi−H結合を有する
ケイ素系高分子化合物である請求項1記載の基板。
2. The substrate according to claim 1, wherein the silicon polymer compound having a reducing property is a silicon polymer compound having a Si—Si bond and / or a Si—H bond.
【請求項3】 上記Si−Si結合及び/又はSi−H
結合を有するケイ素系高分子化合物が、ポリシラン又は
ケイ素原子に結合した水素原子を有するポリシロキサン
である請求項1又は2記載の基板。
3. The Si—Si bond and / or Si—H
3. The substrate according to claim 1, wherein the silicon-based polymer compound having a bond is polysilane or polysiloxane having a hydrogen atom bonded to a silicon atom.
【請求項4】 ポリシランが、下記式(1)で表わされ
るものである請求項3記載の基板。 (R1 m2 npSi)q (1) (式中、R1、R2は水素原子又は置換もしくは非置換の
一価炭化水素基、XはR1、アルコキシ基、ハロゲン原
子、酸素原子又は窒素原子を示し、mは0.1≦m≦
2、nは0≦n≦1、pは0≦p≦0.5、1≦m+n
+p≦2.5を満足する数、qは4≦q≦100,00
0を満足する整数である。)
4. The substrate according to claim 3, wherein the polysilane is represented by the following formula (1). (R 1 m R 2 n X p Si) q (1) (wherein, R 1 and R 2 are a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group, X is R 1 , an alkoxy group, a halogen atom, Represents an oxygen atom or a nitrogen atom, m is 0.1 ≦ m ≦
2, n is 0 ≦ n ≦ 1, p is 0 ≦ p ≦ 0.5, 1 ≦ m + n
+ P ≦ 2.5, q is 4 ≦ q ≦ 100,00
It is an integer satisfying 0. )
【請求項5】 ポリシロキサンが、下記式(2)で表わ
されるものである請求項3記載の基板。 (R3 a4 bcSiOde (2) (式中、R3、R4は水素原子、置換もしくは非置換の一
価炭化水素基、アルコキシ基又はハロゲン原子を示し、
aは0.1≦a≦2、bは0≦b≦1、cは0.01≦
c≦1、dは0.5≦d<1.95、2≦a+b+c+
d≦2.5を満足する数、eは4≦e≦100,000
を満足する整数である。)
5. The substrate according to claim 3, wherein the polysiloxane is represented by the following formula (2). (R 3 a R 4 b Hc SiO d ) e (2) (wherein R 3 and R 4 represent a hydrogen atom, a substituted or unsubstituted monovalent hydrocarbon group, an alkoxy group or a halogen atom,
a is 0.1 ≦ a ≦ 2, b is 0 ≦ b ≦ 1, and c is 0.01 ≦
c ≦ 1, d is 0.5 ≦ d <1.95, 2 ≦ a + b + c +
a number satisfying d ≦ 2.5, e is 4 ≦ e ≦ 100,000
Is an integer that satisfies )
【請求項6】 貴金属の塩が、イオンから金属に還元す
るときの標準酸化還元電位が+0.54V以上のもので
ある請求項1乃至5のいずれか1項記載の基板。
6. The substrate according to claim 1, wherein the noble metal salt has a standard oxidation-reduction potential of +0.54 V or more when reducing ions to metal.
【請求項7】 貴金属の塩が、白金、金、銀又はパラジ
ウムの塩である請求項6記載の基板。
7. The substrate according to claim 6, wherein the noble metal salt is a platinum, gold, silver or palladium salt.
【請求項8】 (1)基板上にポリシラン膜を形成した
後、選択的光照射を行い、光照射部にSi−O結合を持
つパターンを形成させる工程、(2)貴金属の塩を溶解
させた溶液に工程(1)の基板を浸漬し、未露光部のポ
リシラン部に上記貴金属のコロイドを形成、分散させる
工程を含むことを特徴とする貴金属コロイド分散ポリシ
ランのパターン形成方法。
8. A step of (1) forming a polysilane film on a substrate and then selectively irradiating light to form a pattern having a Si—O bond in a light-irradiated portion; and (2) dissolving a salt of a noble metal. A step of immersing the substrate in step (1) in a solution obtained in step (1), and forming and dispersing the noble metal colloid in the unexposed part of the polysilane part.
【請求項9】 ポリシランが、下記式(1)で表わされ
るものである請求項8記載の方法。 (R1 m2 npSi)q (1) (式中、R1、R2は水素原子又は置換もしくは非置換の
一価炭化水素基、XはR1、アルコキシ基、ハロゲン原
子、酸素原子又は窒素原子を示し、mは0.1≦m≦
2、nは0≦n≦1、pは0≦p≦0.5、1≦m+n
+p≦2.5を満足する数、qは4≦q≦100,00
0を満足する整数である。)
9. The method according to claim 8, wherein the polysilane is represented by the following formula (1). (R 1 m R 2 n X p Si) q (1) (wherein, R 1 and R 2 are a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group, X is R 1 , an alkoxy group, a halogen atom, Represents an oxygen atom or a nitrogen atom, m is 0.1 ≦ m ≦
2, n is 0 ≦ n ≦ 1, p is 0 ≦ p ≦ 0.5, 1 ≦ m + n
+ P ≦ 2.5, q is 4 ≦ q ≦ 100,00
It is an integer satisfying 0. )
JP09260298A 1998-03-20 1998-03-20 Noble metal colloid dispersed polysilane pattern formation method Expired - Fee Related JP3440815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09260298A JP3440815B2 (en) 1998-03-20 1998-03-20 Noble metal colloid dispersed polysilane pattern formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09260298A JP3440815B2 (en) 1998-03-20 1998-03-20 Noble metal colloid dispersed polysilane pattern formation method

Publications (2)

Publication Number Publication Date
JPH11271981A true JPH11271981A (en) 1999-10-08
JP3440815B2 JP3440815B2 (en) 2003-08-25

Family

ID=14059009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09260298A Expired - Fee Related JP3440815B2 (en) 1998-03-20 1998-03-20 Noble metal colloid dispersed polysilane pattern formation method

Country Status (1)

Country Link
JP (1) JP3440815B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129211A (en) * 1998-10-22 2000-05-09 Shin Etsu Chem Co Ltd Film-forming polysilane composition for metallic pattern and method for forming metallic pattern
JP2002097414A (en) * 2000-09-25 2002-04-02 Jsr Corp Film-forming composition and insulating film-forming material
WO2003039793A1 (en) * 2001-11-09 2003-05-15 Japan Science And Technology Agency Preparation of metallic nanoparticle with shell-crosslinked micelle as mold
JP2004152884A (en) * 2002-10-29 2004-05-27 Shinko Electric Ind Co Ltd Semiconductor device, substrate therefor and its manufacturing method
JP2004152883A (en) * 2002-10-29 2004-05-27 Shinko Electric Ind Co Ltd Capacitor element, its manufacturing method, semiconductor device, and substrate therefor
WO2006057242A1 (en) * 2004-11-25 2006-06-01 Mitsui Chemicals, Inc. Method for reducing transition metal, and method for treating surface of silicon-containing polymer, method for preparing fine transition metal particles and method for producing article and wiring board, using the reducing method
JP2006307084A (en) * 2005-04-28 2006-11-09 Osaka Gas Co Ltd Composition containing metal fine particle and inorganic fine particle and method for producing the same
JP2010284603A (en) * 2009-06-12 2010-12-24 Kyushu Univ Multilayer film substrate having multilayer formed from metal fine particles and method of manufacturing the same
US8349928B2 (en) 2007-10-11 2013-01-08 Dow Corning Toray Co., Ltd. Metal particle dispersion structure, microparticles comprising this structure, articles coated with this structure, and methods of producing the preceding

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129211A (en) * 1998-10-22 2000-05-09 Shin Etsu Chem Co Ltd Film-forming polysilane composition for metallic pattern and method for forming metallic pattern
JP2002097414A (en) * 2000-09-25 2002-04-02 Jsr Corp Film-forming composition and insulating film-forming material
WO2003039793A1 (en) * 2001-11-09 2003-05-15 Japan Science And Technology Agency Preparation of metallic nanoparticle with shell-crosslinked micelle as mold
US7241814B2 (en) * 2001-11-09 2007-07-10 Japan Science And Technology Agency Preparation of metallic nanoparticles with shell-crosslinked micelle as mold
JP2004152884A (en) * 2002-10-29 2004-05-27 Shinko Electric Ind Co Ltd Semiconductor device, substrate therefor and its manufacturing method
JP2004152883A (en) * 2002-10-29 2004-05-27 Shinko Electric Ind Co Ltd Capacitor element, its manufacturing method, semiconductor device, and substrate therefor
WO2006057242A1 (en) * 2004-11-25 2006-06-01 Mitsui Chemicals, Inc. Method for reducing transition metal, and method for treating surface of silicon-containing polymer, method for preparing fine transition metal particles and method for producing article and wiring board, using the reducing method
JPWO2006057242A1 (en) * 2004-11-25 2008-06-05 三井化学株式会社 Transition metal reduction method, silicon-containing polymer surface treatment method using the same, transition metal fine particle production method, article, and wiring board production method
JP2006307084A (en) * 2005-04-28 2006-11-09 Osaka Gas Co Ltd Composition containing metal fine particle and inorganic fine particle and method for producing the same
US8349928B2 (en) 2007-10-11 2013-01-08 Dow Corning Toray Co., Ltd. Metal particle dispersion structure, microparticles comprising this structure, articles coated with this structure, and methods of producing the preceding
JP2010284603A (en) * 2009-06-12 2010-12-24 Kyushu Univ Multilayer film substrate having multilayer formed from metal fine particles and method of manufacturing the same

Also Published As

Publication number Publication date
JP3440815B2 (en) 2003-08-25

Similar Documents

Publication Publication Date Title
JP3503546B2 (en) Method of forming metal pattern
US6344309B2 (en) Polysilane composition for forming a coating suitable for bearing a metal pattern, metal pattern forming method, wiring board preparing method
JP2007182547A (en) Highly electroconductive ink composition and method for producing metallic electroconductive pattern
JP3440815B2 (en) Noble metal colloid dispersed polysilane pattern formation method
JP3533935B2 (en) Circuit board manufacturing method
EP1375699A1 (en) Method for forming metal pattern
EP1376234A1 (en) Method for forming metal pattern
JP3379420B2 (en) Pattern formation method
JP2002068782A (en) Pattern-plating method for glass substrate surface and glass substrate pattern-plated by using the same
JP3731632B2 (en) Wiring board manufacturing method
JP3539234B2 (en) Polysilane composition for forming metal pattern coating and metal pattern forming method
JP2004018962A (en) Method of forming metal colloid pattern
JPH11306855A (en) Metal-coated powder and its manufacture
JP4010832B2 (en) Method for forming metal pattern
KR20070086354A (en) Method for reducing transition metal, and method for treating surface of silicon-containing polymer, method for preparing fine transition metal particles and method for producing article and wiring board, using the reducing method
JP3675708B2 (en) Method for forming metal layer
JPS62215944A (en) Heat resistant photosensitive resin composition and formation of insulating layer
JP3666545B2 (en) Method for manufacturing conductive circuit board
JP7130631B2 (en) Method for producing conductor, method for producing wiring board, and method for producing composition for forming conductor
Fukushima et al. Polysilanes as conducting material producers and their application to metal pattern formation by UV light and electroless metallization
US5254439A (en) Light-sensitive polymer, method for preparing the same and method for forming patterns
JP2000009955A (en) Pattern forming method of metal oxide thin film and composition for formation of metal oxide thin film pattern
JPH10209585A (en) Conductive circuit board and manufacturing method thereof
JP2002356782A (en) Method of forming metallic pattern
JP2000319541A (en) Production of metal-coated powder

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees