JPH11269590A - High strength aluminum alloy fin material for heat exchanger, excellent in brazability - Google Patents

High strength aluminum alloy fin material for heat exchanger, excellent in brazability

Info

Publication number
JPH11269590A
JPH11269590A JP9080498A JP9080498A JPH11269590A JP H11269590 A JPH11269590 A JP H11269590A JP 9080498 A JP9080498 A JP 9080498A JP 9080498 A JP9080498 A JP 9080498A JP H11269590 A JPH11269590 A JP H11269590A
Authority
JP
Japan
Prior art keywords
brazing
content
fin
fin material
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9080498A
Other languages
Japanese (ja)
Inventor
Yoshifusa Shoji
美房 正路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP9080498A priority Critical patent/JPH11269590A/en
Publication of JPH11269590A publication Critical patent/JPH11269590A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an aluminum alloy fin material having superior brazability, excellent in strength after brazing, thermal conductivity, and sacrificial anode effect, and capable of reducing the thickness of a fin. SOLUTION: This material has a composition which consists of 0.8-2.0% Mn, 0.4-1.3% Si, Mg and Cu as impurities in the amounts limited to <0.01% and <0.02%, respectively, and the balance Al with inevitable impurities and in which the ratio between Mn content and Si content (Mn/Si) is specified to 1.0-3.5. Further, either or both of 0.06-0.25% Zr and 0.06-0.25% Cr can be added.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ろう付け性に優れた熱
交換器用高強度アルミニウム合金フィン材、詳しくは、
ラジエータ、カーヒータ、カーエアコンなどのようにフ
ィンと作動流体通路構成材料とがろう付けにより接合さ
れる熱交換器に用いられるアルミニウム合金フィン材、
とくにフッ化物系フラックスろう付けにおけるろう付け
性に優れ、ろう付け後の熱伝導度と強度が高く、且つ犠
牲陽極効果に優れた熱交換器用アルミニウム合金フィン
材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength aluminum alloy fin material for a heat exchanger having excellent brazing properties.
Aluminum alloy fin material used for heat exchangers in which fins and working fluid path constituent materials are joined by brazing, such as radiators, car heaters, car air conditioners, etc.
In particular, the present invention relates to an aluminum alloy fin material for a heat exchanger which is excellent in brazing property in a fluoride flux brazing, has high thermal conductivity and strength after brazing, and has excellent sacrificial anode effect.

【0002】[0002]

【従来の技術】自動車のラジエータ、エアコン、インタ
ークーラー、オイルクーラーなどの熱交換器は、Al−
Cu系合金、Al−Mn系合金、Al−Mn−Cu系合
金などからなる作動流体構成材料と、Al−Mn系合金
フィンとをろう付けすることにより組立てられている。
フィン材には、作動流体構成材料を防食するために犠牲
陽極効果が要求されるとともに、ろう付け時の高温加熱
により変形したり、ろうが浸透したりしないように優れ
た耐高温座屈性が要求される。また、フィンと作動流体
構成材料とのろう付けには、無公害、低コストの観点か
らフッ化物系フラックスを用いるろう付けを適用する場
合が多く、この場合のろう付け性に優れていることも重
要な要素となる。
2. Description of the Related Art Heat exchangers such as automobile radiators, air conditioners, intercoolers, oil coolers, etc.
It is assembled by brazing a working fluid constituent material such as a Cu-based alloy, an Al-Mn-based alloy, an Al-Mn-Cu-based alloy, and an Al-Mn-based alloy fin.
The fin material is required to have a sacrificial anode effect in order to prevent corrosion of the working fluid constituent material, and has excellent high-temperature buckling resistance so that it does not deform due to high-temperature heating during brazing and does not penetrate the braze. Required. In addition, in order to braze the fin and the working fluid constituent material, brazing using a fluoride-based flux is often applied from the viewpoint of no pollution and low cost, and in this case, the brazing property is excellent. It is an important factor.

【0003】フィン材としてJIS 3003、JIS 3203などの
Al−Mn系アルミニウム合金が使用されるのは、Mn
がろう付け時の変形やろうの浸食を防ぐために有効に作
用するためである。Al−Mn系合金フィン材に犠牲陽
極効果を付与するためには、この合金にZn、Sn、I
nなどを添加して電気化学的に卑にする方法(特開昭62
-120455 号公報など) があり、耐高温座屈性( 耐高温サ
グ性) をさらに向上させるためには、Al−Mn系合金
にCr、Ti、Zrなどを含有させる方法(特開昭50-1
18919 号公報) がある。
[0003] Al-Mn based aluminum alloys such as JIS 3003 and JIS 3203 are used as fin materials.
This is because it works effectively to prevent deformation during brazing and erosion of the brazing. In order to impart a sacrificial anode effect to the Al-Mn alloy fin material, Zn, Sn, I
a method of electrochemically lowering the concentration by adding n
In order to further improve the high-temperature buckling resistance (high-temperature sag resistance), a method of incorporating Cr, Ti, Zr, etc. into an Al-Mn alloy (Japanese Patent Laid-Open No. 1
No. 18919).

【0004】しかし、最近では、熱交換器の軽量化、コ
スト低減がますます強く要求され、作動流体通路材料、
フィン材などの熱交換器構成材料をさらに薄肉化するこ
とが必要となってきているが、例えばフィンを薄肉化す
ると伝熱断面積が小さくなるために熱交換性能が低下
し、製品としての熱交換器の強度、耐久性にも問題が生
じるところから、伝熱性能とろう付け後の強度の一層の
改善が望まれている。
However, recently, weight reduction and cost reduction of heat exchangers have been increasingly required, and materials for working fluid passages,
It is necessary to further reduce the thickness of the heat exchanger constituent materials such as fin materials.For example, if the fins are made thinner, the heat transfer cross-sectional area becomes smaller, resulting in a decrease in heat exchange performance. Since the strength and durability of the exchanger also have problems, further improvement in heat transfer performance and strength after brazing is desired.

【0005】従来のAl−Mn系合金では、ろう付け時
の加熱によりMnが固溶するため、熱伝導度が低下する
という問題点がある。この難点を解決するフィン材とし
て、Mn含有量を0.8 %以下に制限し、Zr0.02〜0.2
%およびSi0.1 〜0.8 %を含むアルミニウム合金が提
案されている。(特公昭63-23260号公報) この合金は改
善された熱伝導度を有するが、Mnが少ないためろう付
け後の強度が十分でなく、熱交換器として使用中にフィ
ン倒れや変形が生じ易く、また電位が十分に卑でないた
めに犠牲陽極効果が小さいという欠点がある。
[0005] In the conventional Al-Mn alloy, there is a problem that Mn is dissolved by heating at the time of brazing, so that the thermal conductivity is reduced. As a fin material that solves this difficulty, the Mn content is limited to 0.8% or less, and Zr 0.02 to 0.2
Aluminum alloys containing 0.1% to 0.8% Si and 0.1 to 0.8% Si have been proposed. (Japanese Patent Publication No. 63-23260) Although this alloy has improved thermal conductivity, the strength after brazing is not sufficient due to the small amount of Mn, and the fins are likely to collapse or deform during use as a heat exchanger. In addition, there is a disadvantage that the sacrificial anode effect is small because the potential is not sufficiently low.

【0006】Mn0.3 〜2.5 %、Si0.5 〜1.5 %、M
g0.01〜1 %、Zr0.01〜0.3 %、Zn0.1 〜3 %を含
有するAl合金フィンも提案されている(特開平8-1439
98号公報) が、このフィン材はフッ化物系フラックスろ
う付けにおけるろう付け性が劣る。Mn0.01〜0.3 %、
Zr0.01〜0.4 %の1種または2種を含有し、Si0.03
〜0.3 %、Fe0.05〜0.6 %を含むフィン用アルミニウ
ム合金も提案されている(特開昭63-45352号公報) が、
この合金も電位が十分卑でないために犠牲陽極効果が小
さい。また、熱伝導度が高い純アルミニウム(JIS 1050,
1070など) にZn、Sn、Inを含有させて犠牲陽極効
果を付与させたり、Cr、Ti、Zrなどを添加して耐
高温座屈性を改善する試みも行われているが、これらの
合金も伝熱性能は優れているもののろう付け後の強度が
必ずしも十分でない。
Mn 0.3-2.5%, Si 0.5-1.5%, M
Al alloy fins containing g 0.01 to 1%, Zr 0.01 to 0.3%, and Zn 0.1 to 3% have also been proposed (JP-A-8-1439).
However, this fin material is inferior in brazing property in fluoride flux brazing. Mn 0.01-0.3%,
One or two kinds of Zr 0.01-0.4%, Si 0.03
Aluminum alloys for fins containing 0.3 to 0.3% Fe and 0.05 to 0.6% Fe have also been proposed (JP-A-63-45352).
This alloy also has a small sacrificial anode effect because the potential is not sufficiently low. In addition, pure aluminum with high thermal conductivity (JIS 1050,
Attempts to improve the high temperature buckling resistance by adding Zn, Sn, In to ZnO or adding Cr, Ti, Zr, etc. have been made. Although the heat transfer performance is excellent, the strength after brazing is not always sufficient.

【0007】ろう付け後の強度を改善したフィン材とし
て、Al−Mn−Si−Mg−Fe系合金にIn、Zn
を添加したアルミニウム合金やGa、Snなどを添加し
たアルミニウム合金も開発されており(特開平4-128337
号公報、特開平3-20436 号公報) 、ある程度の薄肉化は
可能であるが、フィン材に対する最近の薄肉化の要求を
十分満足させるまでには至っていない。また、フッ化物
系フラックスを用いるろう付けを適用する場合、Mgを
含有する合金材はろう付け性が劣るため、フィン接合率
が低下し、熱交換器としての伝熱特性に問題が生じると
いう問題点もある。
[0007] As a fin material with improved strength after brazing, Al, Mn-Si-Mg-Fe-based alloys are added to In and Zn.
Aluminum alloys added with Ga and Sn added with Ga, Sn, etc. have also been developed (JP-A-4-128337).
Japanese Patent Application Laid-Open No. Hei 3-20436), it is possible to reduce the thickness to some extent, but it has not yet sufficiently satisfied the recent demand for thinner fin materials. In addition, when brazing using a fluoride-based flux is applied, the alloy material containing Mg is inferior in brazing properties, so that the fin joining rate is reduced, which causes a problem in heat transfer characteristics as a heat exchanger. There are points.

【0008】[0008]

【発明が解決しようとする課題】本発明は、熱交換器用
フィン材に対する薄肉化の要求を満足し、且つろう付け
性とくにフッ化物系フラックスを用いるろう付け性にも
優れたアルミニウム合金フィン材を開発するために、強
度特性、伝熱性能、犠牲陽極効果およびろう付け性に対
する合金成分の影響、合金成分の組合せの効果について
多角的に検討した結果としてなされたものであり、その
目的は、ろう付け後において高い強度と熱伝導度を有
し、犠牲陽極効果に優れ、ろう付け性とくにフッ化物系
フラックスを用いるろう付けにおけるろう付け性が良好
な熱交換器用アルミニウム合金フィン材を提供すること
にある。
SUMMARY OF THE INVENTION The present invention provides an aluminum alloy fin material which satisfies the demand for thinner fin materials for heat exchangers and which is excellent in brazing properties, in particular, brazing properties using a fluoride flux. The purpose of the development was to examine the effects of alloy components on the strength characteristics, heat transfer performance, sacrificial anode effect and brazing properties, and the effects of combinations of alloy components from various perspectives. To provide an aluminum alloy fin material for heat exchangers that has high strength and thermal conductivity after brazing, has an excellent sacrificial anode effect, and has good brazing properties, particularly in brazing using a fluoride-based flux. is there.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の熱交換器用高強度アルミニウム合金フィン
材は、Mn0.8 〜2.0 %、Si0.4 〜1.3 %を含有し、
Mn含有量とSi含有量との比(Mn/Si)を1.0 〜
3.5 とし、不純物としてのMgを0.01%未満、Cuを0.
02%未満に制限し、残部Alと不可避的不純物からなる
ことを第1の特徴とし、Mn0.8 〜2.0 %、Si0.4 〜
1.3 %を含有し、さらにZr0.06〜0.25%、Cr0.06〜
0.25%のうちの1種または2種を含み、Mn含有量とS
i含有量との比(Mn/Si)を1.0 〜3.5 とし、不純
物としてのMgを0.01%未満、Cuを0.02%未満に制限
し、残部Alと不可避的不純物からなることを第2の特
徴とする。
The high-strength aluminum alloy fin material for a heat exchanger according to the present invention for achieving the above object contains 0.8 to 2.0% of Mn and 0.4 to 1.3% of Si,
The ratio of the Mn content to the Si content (Mn / Si) is 1.0 to
3.5, Mg as an impurity is less than 0.01%, and Cu is 0.1%.
The first feature is that the content is limited to less than 02%, the balance being Al and unavoidable impurities, Mn 0.8-2.0%, Si 0.4-
1.3%, Zr 0.06-0.25%, Cr 0.06-
Mn content and S content including one or two of 0.25%
The second feature is that the ratio (Mn / Si) to the i content is 1.0 to 3.5, Mg as an impurity is limited to less than 0.01%, Cu is limited to less than 0.02%, and the balance consists of Al and unavoidable impurities. I do.

【0010】[0010]

【発明の実施の形態】本発明の熱交換器用アルミニウム
合金フィン材における合金成分の意義および限定理由に
ついて説明すると、Mnは、Siと共存させることによ
りAl−Mn−Si系の化合物を生成して、ろう付け前
およびろう付け後の合金材の強度を向上し、耐高温座屈
性および成形加工性を改良する。Mnが0.8 %未満では
その効果が十分でなく、2.0 %を越えると合金の鋳造時
に粗大な晶出物が生成して板材の製造が困難となり、M
nの固溶量が増加して熱伝導度が低下する。従って、好
ましい含有範囲は0.8 〜2.0 %とする。Mnのさらに好
ましい含有範囲は1.0 〜1.6 %である。
BEST MODE FOR CARRYING OUT THE INVENTION The significance of alloy components in an aluminum alloy fin material for a heat exchanger of the present invention and the reasons for limitation will be described. Mn forms an Al-Mn-Si-based compound by coexisting with Si. In addition, the strength of the alloy material before and after brazing is improved, and the high-temperature buckling resistance and the formability are improved. If the Mn content is less than 0.8%, the effect is not sufficient. If the Mn content is more than 2.0%, coarse crystals are formed during casting of the alloy, making it difficult to produce a sheet material.
The amount of solid solution of n increases and the thermal conductivity decreases. Therefore, a preferable content range is 0.8 to 2.0%. A more preferred content range of Mn is 1.0 to 1.6%.

【0011】Siは、Mnと共存してAl−Mn−Si
系の化合物を生成し、強度を向上させるとともに、Mn
の固溶量を減少させて熱伝導度を向上させる。Siの含
有量が0.4 %未満ではその効果が十分でなく、1.3 %を
越えるとろう付け時にフィン材の溶融が生じるおそれが
ある。従って、好ましい含有範囲は0.4 〜1.3 %とす
る。Siのさらに好ましい含有量は0.6 %を越え1.2 %
以下の範囲である。
Si is coexisted with Mn and Al—Mn—Si
System compounds to improve the strength and improve the Mn
To improve the thermal conductivity by reducing the amount of solid solution. If the Si content is less than 0.4%, the effect is not sufficient, and if it exceeds 1.3%, the fin material may be melted at the time of brazing. Therefore, the preferred content range is 0.4 to 1.3%. A more preferred content of Si is more than 0.6% and 1.2%
The range is as follows.

【0012】MnとSiは、前記のように、Al−Mn
−Si系の化合物を生成してMnおよびSiの固溶量を
減少させ、熱伝導度を向上させる機能を有するが、Mn
含有量とSi含有量との比(Mn/Si)が1.0 未満で
はSiの固溶量が増加して熱伝導度が低下し、3.5 を越
えるとMnの固溶量が増加して熱伝導度が低下する。従
って、Mn含有量とSi含有量との比(Mn/Si)は
1.0 〜3.5 の範囲が好ましい。Mn/Siのさらに好ま
しい範囲は1.3 〜2.5 である。
Mn and Si are, as described above, Al-Mn.
-Has a function of generating a Si-based compound to reduce the solid solution amount of Mn and Si, and to improve thermal conductivity.
When the ratio (Mn / Si) between the content and the Si content is less than 1.0, the amount of solid solution of Si increases and the thermal conductivity decreases, and when it exceeds 3.5, the amount of solid solution of Mn increases and the thermal conductivity increases. Decrease. Therefore, the ratio of the Mn content to the Si content (Mn / Si) is
A range of 1.0 to 3.5 is preferred. The more preferable range of Mn / Si is 1.3 to 2.5.

【0013】Zr、Crは、フィン材の耐高温座屈性の
向上に機能する元素であるが、含有量がそれぞれ0.06%
未満ではその効果が小さく、それぞれ0.25%を越えると
加工性を低下させ、板材の製造が困難となる。従って、
ZrおよびCrの好ましい含有量は、それぞれ0.06〜0.
25%の範囲である。
Zr and Cr are elements that function to improve the high temperature buckling resistance of the fin material.
If it is less than 0.25%, the effect is small, and if it exceeds 0.25%, the workability is reduced and the production of the plate material becomes difficult. Therefore,
The preferred contents of Zr and Cr are respectively 0.06 to 0.
It is in the range of 25%.

【0014】Mgは、ろう付け性に影響し、含有量が0.
01%以上になるとろう付け性を害するおそれがある。と
くにフッ化物系フラックスろう付けの場合、フラックス
の成分であるフッ素(F)と合金中のMgとが反応し易
くなり、MgF2 などの化合物が生成することに起因し
てろう付け時に有効に作用するフラックスの絶対量が不
足し、ろう付け不良が生じ易くなる。従って、不純物と
してのMgの含有量は0.01%未満に限定する。
[0014] Mg affects the brazing property, and the content of Mg is 0.
If it exceeds 01%, brazing properties may be impaired. In particular, in the case of the brazing of a flux based on a fluoride, the fluorine (F) as a component of the flux easily reacts with Mg in the alloy, so that a compound such as MgF 2 is formed, which effectively acts at the time of brazing. Insufficient amount of flux is generated, and poor brazing is likely to occur. Therefore, the content of Mg as an impurity is limited to less than 0.01%.

【0015】Cuは、材料の電位を貴にして犠牲陽極効
果を低下させる。とくに、電位を卑にして犠牲陽極効果
を付与するZn、In、Sn、Gaなどの元素が添加さ
れていない場合には、Cuが微量に含有されていても電
位を貴にする効果が著しいため、材料の電位を卑に保持
して犠牲陽極効果をもたせるためには、Cuの含有量を
0.02%未満に制限するのが好ましく、さらに好ましくは
0.01%未満とする。
Cu makes the potential of the material noble and reduces the sacrificial anode effect. In particular, when elements such as Zn, In, Sn, and Ga that give a sacrificial anode effect by making the potential low are not added, the effect of making the potential noble even when Cu is contained in a small amount is remarkable. In order to maintain the potential of the material low and to have a sacrificial anode effect, the Cu content must be reduced.
Preferably it is limited to less than 0.02%, more preferably
It shall be less than 0.01%.

【0016】Mg、Cu以外の不純物成分については、
Zn、In、Sn、Gaは材料の電位を卑にして自己腐
食性を増加し、リサイクル性を劣化させるため、Znは
0.1%未満、In、Sn、Gaはそれぞれ0.01%未満に
制限するのが好ましい。またFeは自己腐食性を増加さ
せるため0.4 %以下とするのが好ましい。
Regarding impurity components other than Mg and Cu,
Zn, In, Sn, and Ga make the potential of the material low, increase the self-corrosion, and deteriorate the recyclability.
It is preferable to limit the content of In, Sn, and Ga to less than 0.1%, respectively. Further, Fe is preferably set to 0.4% or less to increase self-corrosion.

【0017】本発明のアルミニウム合金フィン材は、通
常の溶解、鋳造方式に従って鋳塊とし、均質化処理後、
熱間圧延、冷間圧延、中間焼鈍および仕上げ冷間圧延を
経て製造され、通常厚さ0.1mm 以下の板材とする。この
板材は、所定幅にスリッティングした後コルゲート加工
して、作動流体通路用材料、例えば、ろう材を被覆した
3003合金などからなるクラッド板からなる偏平管と交互
に積層し、ろう付け接合することにより熱交換器ユニッ
トとする。
The aluminum alloy fin material of the present invention is formed into an ingot according to a usual melting and casting method, and after homogenization,
It is manufactured through hot rolling, cold rolling, intermediate annealing and finish cold rolling, and is usually a sheet material having a thickness of 0.1 mm or less. This plate material was corrugated after slitting to a predetermined width, and was coated with a working fluid passage material, for example, a brazing material.
A heat exchanger unit is formed by alternately stacking flat tubes made of clad plates made of 3003 alloy or the like and brazing them.

【0018】本発明の構成によれば、MnとSiを共存
させることによりAl−Mn−Si系化合物を生成さ
せ、(Mn/Si)比を調整することによりMnおよび
Siの固溶量を減少させ、Zr、Crの1種以上を含有
させることによって材料の耐高温座屈性を向上させ、こ
れら合金元素の相互作用により、ろう付け後の強度、熱
伝導度を高め、犠牲陽極効果を優れたものとする。ま
た、Cu含有量を制限することにより犠牲陽極効果を維
持し、Mg含有量を制限することによりMgとフラック
スの反応を防ぎ、ろう付けにおいて有効に作用するフラ
ックスの割合を増やしてフィン接合率を向上させ、伝熱
性能、耐久性の優れた熱交換器とすることができる。
According to the structure of the present invention, the coexistence of Mn and Si produces an Al—Mn—Si compound, and the (Mn / Si) ratio is adjusted to reduce the amount of solid solution of Mn and Si. By adding at least one of Zr and Cr, the high-temperature buckling resistance of the material is improved, and the strength and thermal conductivity after brazing are enhanced by the interaction of these alloy elements, and the sacrificial anode effect is improved. It shall be assumed. In addition, the sacrificial anode effect is maintained by limiting the Cu content, the reaction between Mg and flux is prevented by limiting the Mg content, and the ratio of the flux that effectively acts in brazing is increased to increase the fin joint rate. It is possible to improve the heat transfer performance and durability of the heat exchanger.

【0019】[0019]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1 表1に示す組成のアルミニウム合金鋳塊を常法に従って
均質化処理、熱間圧延、冷間圧延、中間焼鈍、仕上げ冷
間圧延し、0.07mm厚さのフィン材とした。得られたフィ
ン材について、フッ化物系フラックス( 濃度1 %)を塗
布した後、ろう付けと同じ条件、すなわち、窒素ガス雰
囲気中で600 ℃で3 分間の加熱を行い、加熱後の試験材
について引張試験を行った。
Hereinafter, examples of the present invention will be described in comparison with comparative examples. Example 1 An aluminum alloy ingot having a composition shown in Table 1 was homogenized, hot-rolled, cold-rolled, intermediately annealed, and finish-cold-rolled according to a conventional method to obtain a fin material having a thickness of 0.07 mm. After applying the fluoride flux (concentration 1%) to the obtained fin material, heat it at 600 ° C for 3 minutes in the same condition as brazing, that is, in a nitrogen gas atmosphere. A tensile test was performed.

【0020】また、加熱後の試験材について、25℃で電
気伝導度を測定することにより熱伝導度を評価した。本
発明のフィン材においては、一般の金属材と同様、熱伝
導度と電気伝導度との間には比例関係があり、電気伝導
度を測定することにより熱伝導度を評価できることが認
められている。さらに、犠牲陽極効果を評価するため
に、pH 3に調整した3 %NaCl水溶液中に8 時間浸漬
した後、自然電極電位を測定した。
The thermal conductivity of the test material after heating was evaluated by measuring the electrical conductivity at 25 ° C. In the fin material of the present invention, similarly to general metal materials, it is recognized that there is a proportional relationship between thermal conductivity and electrical conductivity, and that thermal conductivity can be evaluated by measuring electrical conductivity. I have. Further, in order to evaluate the sacrificial anode effect, the electrode was immersed in a 3% NaCl aqueous solution adjusted to pH 3 for 8 hours, and then the natural electrode potential was measured.

【0021】つぎに、フィン材にコルゲート加工を施
し、Al−1.2 %Mn−0.5 %Cu合金を心材とし4045
合金を皮材( ろう材) とする厚さ0.4mm のプレート材の
上に載置して、フッ化物系フラックスろう付けを行い、
コルゲートフィン材とプレート材がろう付け接合してい
る割合を調べ、フィン接合率からろう付け性を評価し、
フィンとプレートの接合部について、CASS試験を、JIS
H8681 に基づいて1か月間実施して、プレートの最大腐
食深さの測定と、フィンの腐食状況の観察を行った。ま
た、ろう付け前後におけるフィン山高さの変化率を測定
し、フィンの耐高温座屈性を評価した。試験、測定、評
価結果を表2に示す。
Next, the fin material is subjected to corrugation, and a core material of Al-1.2% Mn-0.5% Cu alloy is used.
Placed on a 0.4 mm thick plate material with the alloy as a skin material (brazing material), and performing a flux flux brazing,
Investigate the percentage of the brazing joint between the corrugated fin material and the plate material, evaluate the brazing properties from the fin joining rate,
The CASS test for the joint between the fin and the plate
The test was conducted for one month based on H8681 to measure the maximum corrosion depth of the plate and to observe the corrosion state of the fin. The rate of change in fin height before and after brazing was measured to evaluate the fin's high-temperature buckling resistance. Table 2 shows the test, measurement, and evaluation results.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 《表注》耐高温座屈性:ろう付け前後のフィン山高さの変化率が 4.0 %未満は◎、4.0 〜8.0 %は○[Table 2] << Table Note >> High temperature buckling resistance: ◎: less than 4.0% change in fin height before and after brazing; ○: 4.0 to 8.0%

【0024】表2に示されるように、本発明に従う試験
材No.1〜No.11 は、ろう付け後に相当する引張強度(以
下、単に引張強度)がいずれも120MPa以上の優れた強度
を示し、従来のJIS 3005フィン材の電気伝導度が36%IA
CSであるのに対していずれも電気伝導度が40%IACS以上
であり、熱伝導度が良好なことを示した。また、フィン
接合率も98%以上でろう付け性が優れていることを示し
た。自然電極電位も−730 〜−745mV vs SCEの範囲で、
プレート心材合金( Mn1.2 %、Cu0.5 %、残部Al
および不純物)の自然電位−675mV に対して50mV以上卑
になっており、また、CASS試験後のプレートの最大腐食
深さは0.13〜0.19mmと浅く、フィンの犠牲陽極効果が優
れていることが認められた。
As shown in Table 2, all of the test materials No. 1 to No. 11 according to the present invention have excellent tensile strengths equivalent to 120 MPa or more after brazing. The electric conductivity of conventional JIS 3005 fin material is 36% IA
In all cases, the electrical conductivity was 40% IACS or more, whereas the CS was CS, indicating that the thermal conductivity was good. The fin bonding ratio was 98% or more, indicating that the brazing property was excellent. The natural electrode potential is also in the range of -730 to -745 mV vs SCE,
Plate core alloy (Mn 1.2%, Cu 0.5%, balance Al
And the impurity) have a base potential of at least 50 mV with respect to the natural potential of -675 mV. The maximum corrosion depth of the plate after the CASS test is as shallow as 0.13 to 0.19 mm, indicating that the fin has an excellent sacrificial anode effect. Admitted.

【0025】比較例 表3に示す組成のアルミニウム合金鋳塊を、実施例1と
同一の条件で、均質化処理、熱間圧延、冷間圧延、中間
焼鈍および仕上げ冷間圧延し、0.07mm厚さのフィン材を
得た。得られたフィン材について、実施例1と同様、引
張強度、電気伝導度、自然電極電位を測定し、フィン材
の耐高温座屈性、ろう付け性を評価し、フィンとプレー
トの接合部についてCASS試験後の最大腐食深さを測定し
た。結果を表4に示す。
Comparative Example An aluminum alloy ingot having a composition shown in Table 3 was homogenized, hot rolled, cold rolled, intermediately annealed and finish cold rolled under the same conditions as in Example 1 to obtain a 0.07 mm thickness. Fin material was obtained. For the obtained fin material, the tensile strength, electric conductivity, and natural electrode potential were measured, and the high-temperature buckling resistance and brazing resistance of the fin material were evaluated. The maximum corrosion depth after the CASS test was measured. Table 4 shows the results.

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 《表注》耐高温座屈性:ろう付け前後のフィン山高さの変化率が 4.0 %未満は◎、4.0 〜8.0 %は○[Table 4] << Table Note >> High temperature buckling resistance: ◎: less than 4.0% change in fin height before and after brazing; ○: 4.0 to 8.0%

【0028】表4に示されるように、本発明の条件を満
たさないアルミニウム合金フィン材は、いずれも熱交換
器用フィン材として十分な性能を有しない。試験材No.1
2 は、Mnの含有量が少ないため引張強度が十分でな
く、また、(Mn/Si)比が小さいためSiの固溶量
が増加して電気伝導度が低下し、熱伝導度が不十分とな
った。No.13 は、Mn含有量が多過ぎるため、熱間圧延
が困難となり健全なフィン材の製造ができなかった。
As shown in Table 4, none of the aluminum alloy fins satisfying the conditions of the present invention has sufficient performance as heat exchanger fins. Test material No.1
In the case of 2, the tensile strength is not sufficient because the content of Mn is small, and the solid solubility of Si increases because the (Mn / Si) ratio is small, the electrical conductivity decreases, and the thermal conductivity is insufficient. It became. In No. 13, since the Mn content was too large, hot rolling was difficult and a sound fin material could not be produced.

【0029】試験材No.14 は、Siの含有量が少ないた
め、引張強度が十分でなく、また、(Mn/Si)比が
大きいため、Mnの固溶量が増加して電気伝導度を低下
させ、熱伝導度が不十分なものとなるとともに、自然電
位も貴となり、プレートとの電位差が不十分で犠牲陽極
効果が劣るためCASS試験後のプレート材の腐食深さが0.
29mmと深くなった。No.15 は、Siの含有量が多過ぎる
ために、ろう付け時の加熱においてフィン材の局部溶融
が生じた。No.16 、No.17 、No.18 、No.19 はMgの含
有量が多いため、ろう付け性が劣り、フィンの接合率が
低くなり、熱交換器に組み込んだ場合、熱交換器の熱特
性が低下する。
Test material No. 14 had a low Si content and thus had insufficient tensile strength, and a large (Mn / Si) ratio, which increased the solid solution amount of Mn and increased the electrical conductivity. As the thermal conductivity becomes insufficient, the natural potential becomes noble, the potential difference from the plate is insufficient, and the sacrificial anode effect is inferior, so the corrosion depth of the plate material after the CASS test is 0.
29mm deep. In No. 15, since the content of Si was too large, local melting of the fin material occurred during heating during brazing. No.16, No.17, No.18 and No.19 have a high Mg content, so their brazing properties are inferior, the joining ratio of the fins is low, and when incorporated into a heat exchanger, Thermal properties are degraded.

【0030】No.17 、No.18 、No.19 は、それぞれJIS
3203、3003、3005合金材に相当し、いずれもCu含有量
が多いため自然電位が貴となってプレート材との電位差
が不十分で犠牲陽極効果が劣り、いずれもCASS試験後の
腐食深さが大きくなっている。また、No.19 はSi含有
量が少ないため引張強度が十分でなく、また(Mn/S
i)比が大きいためMnの固溶量が増加して電気伝導度
を低下させ、熱伝導度が不十分なものとなった。No.20
、No.21 は、それぞれZrおよびCrの含有量が多い
ため、熱間圧延が困難となり健全なフィン材が製造でき
なかった。
No. 17, No. 18 and No. 19 are JIS
Corresponds to 3203, 3003, and 3005 alloy materials, all of which have a high Cu content, and the natural potential is noble, the potential difference with the plate material is insufficient, and the sacrificial anode effect is inferior, and the corrosion depth after the CASS test Is getting bigger. In addition, No. 19 had insufficient tensile strength due to low Si content, and (Mn / S
i) Since the ratio was large, the amount of solid solution of Mn was increased and the electric conductivity was lowered, and the heat conductivity became insufficient. No.20
, No. 21 each had a large content of Zr and Cr, so that hot rolling was difficult and a sound fin material could not be produced.

【0031】[0031]

【発明の効果】以上のとおり、本発明によれば、ろう付
け性に優れ、ろう付け後の強度、熱伝導度および犠牲陽
極効果に優れたアルミニウム合金フィン材が提供され、
従って、フィン材の薄肉化が可能となり、熱交換器の軽
量化、長寿命化が達成される。
As described above, according to the present invention, there is provided an aluminum alloy fin material having excellent brazing properties, excellent strength after brazing, excellent thermal conductivity, and excellent sacrificial anode effect.
Therefore, the thickness of the fin material can be reduced, and the weight and the life of the heat exchanger can be reduced.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Mn0.8 〜2.0 %(質量%、以下同
じ)、Si0.4 〜1.3 %を含有し、Mn含有量とSi含
有量との比(Mn/Si)を1.0 〜3.5 とし、不純物と
してのMgを0.01%未満、Cuを0.02%未満に制限し、
残部Alと不可避的不純物からなることを特徴とするろ
う付け性に優れた熱交換器用高強度アルミニウム合金フ
ィン材。
1. An alloy containing Mn 0.8 to 2.0% (mass%, the same applies hereinafter) and Si 0.4 to 1.3%, wherein the ratio of Mn content to Si content (Mn / Si) is 1.0 to 3.5, Limiting Mg as an impurity to less than 0.01% and Cu to less than 0.02%,
A high-strength aluminum alloy fin material for heat exchangers having excellent brazing properties, comprising a balance of Al and unavoidable impurities.
【請求項2】 Mn0.8 〜2.0 %、Si0.4 〜1.3 %を
含有し、さらにZr0.06〜0.25%、Cr0.06〜0.25%の
うちの1種または2種を含み、Mn含有量とSi含有量
との比(Mn/Si)を1.0 〜3.5 とし、不純物として
のMgを0.01%未満、Cuを0.02%未満に制限し、残部
Alと不可避的不純物からなることを特徴とするろう付
け性に優れた熱交換器用高強度アルミニウム合金フィン
材。
2. Mn content: 0.8 to 2.0% of Mn, 0.4 to 1.3% of Si, and one or two of 0.06 to 0.25% of Zr and 0.06 to 0.25% of Cr. And the content of Si and Si content (Mn / Si) is set to 1.0 to 3.5, Mg as an impurity is limited to less than 0.01%, Cu is limited to less than 0.02%, and the balance consists of Al and unavoidable impurities. High strength aluminum alloy fin material for heat exchangers with excellent attachment properties.
JP9080498A 1998-03-19 1998-03-19 High strength aluminum alloy fin material for heat exchanger, excellent in brazability Pending JPH11269590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9080498A JPH11269590A (en) 1998-03-19 1998-03-19 High strength aluminum alloy fin material for heat exchanger, excellent in brazability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9080498A JPH11269590A (en) 1998-03-19 1998-03-19 High strength aluminum alloy fin material for heat exchanger, excellent in brazability

Publications (1)

Publication Number Publication Date
JPH11269590A true JPH11269590A (en) 1999-10-05

Family

ID=14008788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9080498A Pending JPH11269590A (en) 1998-03-19 1998-03-19 High strength aluminum alloy fin material for heat exchanger, excellent in brazability

Country Status (1)

Country Link
JP (1) JPH11269590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110042050A1 (en) * 2008-01-18 2011-02-24 Hydro Aluminium Deutschland Gmbh Composition Having a Corrosion Protection Layer and Process for the Production Thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110042050A1 (en) * 2008-01-18 2011-02-24 Hydro Aluminium Deutschland Gmbh Composition Having a Corrosion Protection Layer and Process for the Production Thereof
US9790599B2 (en) * 2008-01-18 2017-10-17 Hydro Aluminum Deutschland GmbH Composition having a corrosion protection layer and process for the production thereof

Similar Documents

Publication Publication Date Title
JP3276790B2 (en) Method for producing aluminum alloy brazing sheet, heat exchanger using the brazing sheet, and method for producing the heat exchanger
JP3847077B2 (en) Aluminum alloy fin material for heat exchangers with excellent formability and brazing
JP2004084060A (en) Aluminum alloy fin material for heat exchanger and heat exchanger including the fin material
JP2013040367A (en) Aluminium alloy fin material for heat exchanger excellent in strength and corrosion resistance after brazing
JPH1088265A (en) Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing
JP3859781B2 (en) Aluminum alloy clad fin material and aluminum alloy heat exchanger using the clad fin material
JP2002161324A (en) Aluminum alloy fin-material for heat exchanger superior in formability and brazability
JP4596618B2 (en) High corrosion resistance aluminum alloy composite for heat exchanger and anticorrosion aluminum alloy for heat exchanger
JP3847076B2 (en) Aluminum alloy fin material for heat exchangers with excellent formability and brazing
JP2000202681A (en) Aluminum alloy fin material for heat exchanger excellent in brazability
JPH11269590A (en) High strength aluminum alloy fin material for heat exchanger, excellent in brazability
JP3743709B2 (en) Aluminum alloy fin material for heat exchangers with excellent formability and brazing
JPH11256261A (en) High strength aluminum alloy fin material for heat exchanger
JPH0841573A (en) High strength aluminum alloy fin material for heat exchanger
JP2768393B2 (en) Aluminum alloy for heat exchanger fin material with excellent strength after brazing and sacrificial anode effect
JPH0718358A (en) High strength aluminum alloy fin material for heat exchanger
JP2691069B2 (en) Heat exchanger with excellent corrosion resistance and heat transfer
JPH11269589A (en) Aluminum alloy fin material for heat exchanger, excellent in brazability
JP2000135591A (en) Aluminum alloy clad material for heat exchanger superior in corrosion resistance
JP3763522B2 (en) Aluminum alloy fin material for heat exchangers with excellent formability and brazing
JP2000167689A (en) Aluminum alloy clad material for heat exchanger excellent in brazability and corrosion resistance
JPH1017968A (en) Aluminum alloy clad fin material
JPH0797652A (en) Production of aluminum alloy brazing sheet fin material and heat exchanger made of aluminum alloy
JP2006037137A (en) Highly corrosion resistant aluminum clad material for heat exchanger
JP2000239774A (en) High strength aluminum alloy fin material for heat exchanger, excellent in thermal conductivity