JPH11265838A - Paste composition for solid electrolyte formation, solid electrolysis capacitor using the same and manufacture thereof - Google Patents

Paste composition for solid electrolyte formation, solid electrolysis capacitor using the same and manufacture thereof

Info

Publication number
JPH11265838A
JPH11265838A JP6641998A JP6641998A JPH11265838A JP H11265838 A JPH11265838 A JP H11265838A JP 6641998 A JP6641998 A JP 6641998A JP 6641998 A JP6641998 A JP 6641998A JP H11265838 A JPH11265838 A JP H11265838A
Authority
JP
Japan
Prior art keywords
paste composition
solid electrolyte
forming
powder
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6641998A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yano
康洋 矢野
Takashi Dodo
隆史 堂々
Takehiro Shimizu
健博 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP6641998A priority Critical patent/JPH11265838A/en
Publication of JPH11265838A publication Critical patent/JPH11265838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To make uniform the prescribed film thickness of a paste composition for solid electrolyte formation and to inhibit the contact resistance of manganese dioxide powder, by a method wherein the paste composition for solid electrolyte formation contains a conductive filler consisting of either of the metallic oxide powder and/or the carbon powder and a manganese nitride solution as its essential components. SOLUTION: A paste composition for solid electrolyte formation contains an electric conductivity of 1×10<2> Ω.cm and below of metallic oxide powder, such as manganese dioxide powder, ruthenium oxide powder, indium oxide powder and niobium dioxide powder, a mean particle diameter of 50 μm or below of carbon powder, such as graphite powder and carbon black powder, or a conductive filler consisting of either of the metallic oxide powder and the carbon powder, and a manganese nitride solution as its essential components. As a result, the prescribed film thickness of the paste composition can be uniformly obtained by a one-time application of the paste composition and the contact resistance of the manganese dioxide powder can be inhibited.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、コンデンサをはじ
めとする電子部品に電極層を形成するために用いられる
固体電解質形成用ペースト組成物、これを用いた固体電
解コンデンサ及びその製造法に関するものである。
The present invention relates to a paste composition for forming a solid electrolyte used for forming an electrode layer on an electronic component such as a capacitor, a solid electrolytic capacitor using the same, and a method for producing the same. is there.

【0002】[0002]

【従来の技術】従来タンタルコンデンサを初めとする電
子部品の固体電解質層の形成には、硝酸マンガン溶液を
熱分解する方式が採られている。すなわちタンタル等の
弁作用金属の粉末からなる焼結体を陽極体として用い、
この焼結体を化成処理してTa2O5の酸化被膜を形成す
る。次に、任意の濃度の硝酸マンガン等の溶液中に、陽
極酸化皮膜を形成した焼結体を浸漬し、任意の温度で焼
成することにより二酸化マンガン等に熱分解する。さら
に焼成後、加熱により損傷した酸化被膜を再化成処理に
より修復する。この浸漬、焼成及び再化成の工程を数回
から数10回繰り返して任意の厚さの二酸化マンガン等
の半導体層を形成する。半導体層を形成後、カーボン、
銀ペースト等を順次塗布して陰極層を形成する。そして
塗布後に外部リードをはんだ、導電性接着剤等で接続
し、樹脂ディップ法、樹脂モールド法等により樹脂外装
し、固体電解コンデンサを製造する方法が採られてい
る。
2. Description of the Related Art Conventionally, a method of thermally decomposing a manganese nitrate solution has been employed for forming a solid electrolyte layer of an electronic component such as a tantalum capacitor. In other words, a sintered body made of a valve metal powder such as tantalum is used as the anode body,
The sintered body is subjected to a chemical conversion treatment to form an oxide film of Ta2O5. Next, the sintered body having the anodic oxide film formed thereon is immersed in a solution such as manganese nitrate having an arbitrary concentration, and is baked at an arbitrary temperature to be thermally decomposed into manganese dioxide or the like. After firing, the oxide film damaged by heating is repaired by a re-chemical conversion treatment. The steps of dipping, firing and re-chemical formation are repeated several times to several tens of times to form a semiconductor layer such as manganese dioxide having an arbitrary thickness. After forming the semiconductor layer, carbon,
A silver paste or the like is sequentially applied to form a cathode layer. Then, after coating, external leads are connected with solder, a conductive adhesive, or the like, and the package is covered with a resin by a resin dipping method, a resin molding method, or the like, thereby manufacturing a solid electrolytic capacitor.

【0003】本方式において、陽極酸化皮膜を形成した
焼結体を硝酸マンガン溶液中に浸漬し、熱分解する工程
の際に、一度に得られる塗膜の厚さが非常に薄いため、
所定の厚さの半導体層を形成するために熱分解工程を数
回から10数回繰り返す必要があり、それに要する時間
とエネルギーコストが非常に大きいという欠点を持って
いる。固体電解コンデンサの性能上の問題としては、二
酸化マンガン等の半導体層の厚さが均一になりにくく、
この厚さが薄い場合には、陽極酸化被膜がカーボン層に
直接接触して漏れ電流が増大する欠点がある。また、焼
結体が角状のときには、角部分で二酸化マンガン等の半
導体層が他の部分よりも厚くなるため、樹脂モールド法
により樹脂外装する際に、角部分の外装が薄くなり耐熱
性や耐湿性が低下する欠点がある。さらに、樹脂ディッ
プ法により樹脂外装する際には寸法がバラつき易く、樹
脂外装の収縮時に角部分にストレスがかかり特性が劣化
する欠点がある。
[0003] In this method, the thickness of the coating film obtained at the same time is extremely small during the step of immersing the sintered body having the anodic oxide film formed therein in a manganese nitrate solution and thermally decomposing it.
In order to form a semiconductor layer having a predetermined thickness, it is necessary to repeat the thermal decomposition process several times to several tens of times, which is disadvantageous in that the time and energy cost required for the process are extremely large. As a problem in the performance of the solid electrolytic capacitor, the thickness of the semiconductor layer such as manganese dioxide is difficult to be uniform,
When the thickness is small, there is a disadvantage that the anodic oxide film directly contacts the carbon layer and the leakage current increases. In addition, when the sintered body has a square shape, the semiconductor layer such as manganese dioxide is thicker at the corners than at the other parts. There is a disadvantage that the moisture resistance is reduced. Furthermore, when the resin sheathing is performed by the resin dipping method, the dimensions are likely to vary, and stress is applied to corner portions when the resin sheathing shrinks, resulting in a disadvantage that characteristics are deteriorated.

【0004】上記の問題について、特開昭51−765
59号公報には、二酸化マンガン粉末を水、アルコー
ル、シンナー、四塩化炭素、炭酸アンモニウム等の揮発
性溶剤中に混入する方法が開示されている。また特開平
7ー233298号公報には導電ペーストに使用されて
いる金属粉の一部を二酸化マンガン粉末に置き換える方
法が開示されている。しかし、これらの方法では、溶液
中の二酸化マンガン粉末の凝集・沈降により、均一な塗
膜を得るのが困難であり、固体電解質としての性質が充
分発揮されないといった問題点がある。
Regarding the above problem, Japanese Patent Laid-Open Publication No.
No. 59 discloses a method of mixing manganese dioxide powder into a volatile solvent such as water, alcohol, thinner, carbon tetrachloride, and ammonium carbonate. Japanese Patent Application Laid-Open No. Hei 7-233298 discloses a method in which a part of metal powder used for a conductive paste is replaced with manganese dioxide powder. However, these methods have a problem that it is difficult to obtain a uniform coating film due to aggregation and sedimentation of the manganese dioxide powder in the solution, and the properties as a solid electrolyte are not sufficiently exhibited.

【0005】さらに特開平8−69559号公報には二
酸化マンガン粉が沈降しにくくかつ均一な塗膜が形成可
能な固体電解質形成用ペースト組成物を得る方法が開示
されているが、塗膜乾燥後において塗膜のムラやクラッ
クが生じるといった問題点がある。加えて、コンデンサ
特性において等価直列抵抗ESRが上昇するといった問
題点がある。これは従来の硝酸マンガンの熱分解から得
られる二酸化マンガン層等に比べて、ペースト硬化物の
二酸化マンガン層等の方が固有抵抗値が高いこと、ま
た、二酸化マンガンフィラーの相互間の接触抵抗が大き
いことに起因していると考えられる。
Further, Japanese Patent Application Laid-Open No. Hei 8-69559 discloses a method for obtaining a paste composition for forming a solid electrolyte in which manganese dioxide powder hardly precipitates and a uniform coating film can be formed. However, there is a problem that the coating film has unevenness and cracks. In addition, there is a problem that the equivalent series resistance ESR increases in the capacitor characteristics. This is because the manganese dioxide layer of the cured paste has a higher specific resistance than the conventional manganese dioxide layer obtained from the thermal decomposition of manganese nitrate, and the contact resistance between the manganese dioxide fillers is higher. It is thought to be due to the largeness.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の欠点を
補い、所定の膜厚を均一に得ることができ、二酸化マン
ガン粉末の接触抵抗を抑え、ペースト硬化物の固有抵抗
値が低く、低抵抗な塗膜を得ることができる固体電解質
形成用ペースト組成物およびこの組成物を用いることに
より、固体電解コンデンサの等価直列抵抗特性、漏れ電
流特性、耐熱性、耐湿性等および外形寸法の精度を向上
した固体電解コンデンサ及びその製造法を提供するもの
である。
SUMMARY OF THE INVENTION The present invention overcomes the above drawbacks, enables a uniform film thickness to be obtained, suppresses the contact resistance of manganese dioxide powder, and reduces the specific resistance of the cured paste to a low level. By using the paste composition for forming a solid electrolyte capable of obtaining a resistive coating film and this composition, the equivalent series resistance characteristics, leakage current characteristics, heat resistance, moisture resistance, etc. of the solid electrolytic capacitor and the accuracy of the external dimensions are improved. An improved solid electrolytic capacitor and a method for manufacturing the same are provided.

【0007】[0007]

【課題を解決するための手段】本発明は、(A)金属酸
化物粉末および(B)カーボン粉末またはいずれか一方
よりなる導電性フィラー、並びに(C)硝酸マンガン溶
液を必須成分とする固体電解質形成用ペースト組成物に
関する。
SUMMARY OF THE INVENTION The present invention provides a solid electrolyte comprising (A) a metal oxide powder and / or (B) a conductive filler composed of one or both of carbon powder, and (C) a manganese nitrate solution as an essential component. The present invention relates to a forming paste composition.

【0008】本発明においては、さらに(D)バインダ
ー樹脂を必須成分とすることが好ましい。
In the present invention, it is preferable that the binder resin (D) is an essential component.

【0009】本発明においては、(A)金属酸化物粉末
の導電率が1×102Ω・cm以下とすることが好ましい。
In the present invention, it is preferable that the conductivity of the metal oxide powder (A) be 1 × 10 2 Ω · cm or less.

【0010】本発明においては、(A)金属酸化物粉末
の平均粒径が50μm以下とすることが好ましい。
In the present invention, it is preferable that the average particle size of the metal oxide powder (A) is 50 μm or less.

【0011】本発明においては、(A)金属酸化物粉末
にβ型結晶構造を含有する二酸化マンガン粉末であるこ
とが好ましい。
In the present invention, it is preferable that the metal oxide powder (A) is a manganese dioxide powder containing a β-type crystal structure.

【0012】本発明においては、(A)金属酸化物粉末
に2種以上の金属酸化物粉末を組み合わせることが好ま
しい。
In the present invention, it is preferable to combine (A) the metal oxide powder with two or more metal oxide powders.

【0013】本発明においては、(B)カーボン粉末の
平均粒径が50μm以下とすることが好ましい。
In the present invention, it is preferable that the average particle size of the carbon powder (B) is 50 μm or less.

【0014】本発明においては、(E)カップリング剤
として、シラン系、チタネート系、アルミニウム系、ジ
ルコニウム系、ジルコアルミニウム系、脂肪酸系、カル
ボン酸系およびリン酸系の中の1種または2種以上を必
須成分とすることが好ましい。
In the present invention, as the coupling agent (E), one or two of silane, titanate, aluminum, zirconium, zirconium, fatty acid, carboxylic acid and phosphoric acid are used. It is preferable that the above be an essential component.

【0015】本発明は上記の固体電解質形成用ペースト
組成物を用いた固体電解コンデンサに関する。
The present invention relates to a solid electrolytic capacitor using the above paste composition for forming a solid electrolyte.

【0016】本発明は上記の固体電解質形成用ペースト
組成物を用いた固体電解コンデンサの製造法に関する。
The present invention relates to a method for producing a solid electrolytic capacitor using the above paste composition for forming a solid electrolyte.

【0017】本発明の製造法においては、弁作用金属の
粉末よりなる陽極体の表面に陽極酸化皮膜を形成し、陽
極酸化皮膜上に半導体層を形成し、さらにその上に導電
性皮膜を付着させて陰極層とする固体電解コンデンサの
製造法において、半導体層の全部または一部を上記の固
体電解質形成用ペースト組成物による半導体層とするこ
とが好ましい。
In the production method of the present invention, an anodic oxide film is formed on the surface of an anode body made of a valve metal powder, a semiconductor layer is formed on the anodic oxide film, and a conductive film is further deposited thereon. In the method for manufacturing a solid electrolytic capacitor to be used as the cathode layer, it is preferable that all or a part of the semiconductor layer is a semiconductor layer made of the paste composition for forming a solid electrolyte.

【0018】[0018]

【本発明の実施の形態】以下に本発明の固体電解質形成
用ペースト組成物、これを用いた固体電解コンデンサ及
びその製造法について詳細に説明する。本発明における
(A)金属酸化物粉末としては、導電率を考慮すると、
例えば二酸化マンガン(β型結晶構造を含む)、酸化ル
テニウム、酸化イリジウム、三酸化レニウム、二酸化ニ
オブ、酸化アンチモンドープ酸化錫、酸化錫/アンチモ
ンドープ酸化チタン等が挙げられるが、金属酸化物粉末
自体の導電率が1×102Ω・cm以下のものであれば特に
制限されるものではない。金属酸化物粉末の平均粒径は
ペーストの分散安定性および塗布性等を考慮すると、平
均粒径が50μm以下のものが使用されるが、10μm
以下のものが好ましい。平均粒径が50μmを越える
と、沈降しやすくなり、均一に塗膜を形成することが困
難な傾向がある。また、金属酸化物粉末の形状は、球
状、不定形、破砕状などが例示されるが、特に制限され
るものではない。なお、2種以上の異なる金属酸化物粉
末を組み合わせて使用しても構わない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a paste composition for forming a solid electrolyte, a solid electrolytic capacitor using the paste composition and a method of manufacturing the same according to the present invention will be described in detail. As the metal oxide powder (A) in the present invention, considering the electrical conductivity,
For example, manganese dioxide (including β-type crystal structure), ruthenium oxide, iridium oxide, rhenium trioxide, niobium dioxide, antimony oxide-doped tin oxide, tin oxide / antimony-doped titanium oxide and the like can be mentioned. There is no particular limitation as long as the conductivity is 1 × 10 2 Ω · cm or less. The average particle size of the metal oxide powder is 50 μm or less in consideration of the dispersion stability of the paste and the applicability.
The following are preferred. If the average particle size exceeds 50 μm, sedimentation tends to occur, and it tends to be difficult to form a uniform coating film. The shape of the metal oxide powder is exemplified by a sphere, an irregular shape, a crushed shape and the like, but is not particularly limited. Note that two or more different metal oxide powders may be used in combination.

【0019】本発明における(A)金属酸化物粉末の配
合量は、(A)金属酸化物粉末および(B)カーボン粉
末の単独または2種の組み合わせによる導電性フィラ
ー、並びに(C)硝酸マンガン溶液の総量100重量部
に対して、1〜90重量部とすることが好ましく、5〜
80重量部とすることがより好ましく、20〜70重量
部とすることがさらに好ましい。この配合量が1重量部
未満では、塗膜の形成が難しく、固体電解質としての機
能が低下する傾向があり、90重量部を越えるとペース
トとしての塗布性および基材との密着性が低下する傾向
がある。
In the present invention, the compounding amount of (A) the metal oxide powder is as follows: (A) a metal oxide powder and (B) a conductive filler made of a single or a combination of two types of carbon powder, and (C) a manganese nitrate solution. Is preferably 1 to 90 parts by weight with respect to 100 parts by weight of
It is more preferably 80 parts by weight, and further preferably 20 to 70 parts by weight. If the amount is less than 1 part by weight, it is difficult to form a coating film, and the function as a solid electrolyte tends to decrease. If the amount exceeds 90 parts by weight, the applicability as a paste and the adhesion to a base material decrease. Tend.

【0020】本発明における(B)カーボン粉末として
は、例えば黒鉛、カーボンブラックなどの粉末が挙げら
れるが、導電性を有するカーボン粉末であれば特に制限
されるものではない。カーボン粉末の平均粒径はペース
トの塗布性等を考慮すると、平均粒径が50μm以下の
ものが好ましく、10μm以下のものがより好ましい。
平均粒径が50μmを越えると、分散状態が不安定であ
り、さらに塗膜形成時において基材からの剥離、クラッ
クが生じ、均一な塗膜を形成することが困難な傾向があ
る。また、カーボン粉末の形状としては球形、鱗片形、
不定形等が挙げられるが、特に制限されるものではな
い。なお、2種以上の異なるカーボン粉末を組み合わせ
て使用してもよい。
The carbon powder (B) in the present invention includes, for example, graphite, carbon black and the like, but is not particularly limited as long as it is a conductive carbon powder. The average particle diameter of the carbon powder is preferably 50 μm or less, more preferably 10 μm or less, in consideration of paste coatability and the like.
If the average particle size exceeds 50 μm, the dispersion state is unstable, and further, there is a tendency that peeling and cracking occur from the base material during the formation of the coating film, making it difficult to form a uniform coating film. Also, the shape of the carbon powder is spherical, scale-like,
Examples include, but are not particularly limited to, irregular shapes. Note that two or more different carbon powders may be used in combination.

【0021】本発明における(B)カーボン粉末の配合
量は、(A)金属酸化物粉末および(B)カーボン粉末
の単独または2種の組み合わせによる導電性フィラー、
並びに(C)硝酸マンガン溶液の総量100重量部に
対して、90重量部以下とすることが好ましく、80重
量部以下とすることがより好ましく、70重量部以下と
することがさらに好ましい。この配合量が90重量部を
越えるとペーストとしての塗布性および基材との密着性
が低下する傾向がある。
In the present invention, the compounding amount of the (B) carbon powder is as follows.
In addition, the amount is preferably 90 parts by weight or less, more preferably 80 parts by weight or less, and even more preferably 70 parts by weight or less, based on 100 parts by weight of the total amount of the manganese nitrate solution (C). If the amount exceeds 90 parts by weight, the applicability as a paste and the adhesion to a substrate tend to decrease.

【0022】本発明における(A)金属酸化物粉末およ
び(B)カーボン粉末の単独または2種の組み合わせに
よる導電性フィラーとしては、1種の金属酸化物粉末、
2種以上の金属酸化物粉末、1種のカーボン粉末、2種
以上のカーボン粉末、1種の金属酸化物粉末と1種のカ
ーボン粉末、2種以上の金属酸化物粉末と1種のカーボ
ン粉末、1種の金属酸化物粉末と2種以上のカーボン粉
末、および2種以上の金属酸化物粉末と2種以上のカー
ボン粉末のものなどが挙げられる。(A)金属酸化物粉
末および(B)カーボン粉末を組み合わせる場合の使用
量は、(A)金属酸化物粉末、(B)カーボン粉末及び
(C)硝酸マンガン溶液の総量100重量部に対して、
1〜90重量部が好ましく、(A)金属酸化物粉末と
(B)カーボン粉末は任意の割合で選ばれる。
In the present invention, as the conductive filler of the metal oxide powder (A) and the carbon powder (B) alone or in combination of two kinds, one kind of metal oxide powder,
Two or more kinds of metal oxide powders, one kind of carbon powder, two or more kinds of carbon powders, one kind of metal oxide powder and one kind of carbon powder, two or more kinds of metal oxide powders and one kind of carbon powder And one type of metal oxide powder and two or more types of carbon powder, and two or more types of metal oxide powder and two or more types of carbon powder. The amount used when combining (A) metal oxide powder and (B) carbon powder is based on 100 parts by weight of the total amount of (A) metal oxide powder, (B) carbon powder and (C) manganese nitrate solution.
The amount is preferably 1 to 90 parts by weight, and the metal oxide powder (A) and the carbon powder (B) are selected in any ratio.

【0023】本発明に用いる(C)硝酸マンガン溶液
は、硝酸マンガンの水溶液等が挙げられるが硝酸マンガ
ンを溶解した溶液であれば、特に制限されるものではな
い。本発明における(C)硝酸マンガン溶液の配合量
は、(A)金属酸化物粉末および(B)カーボン粉末の
単独または2種の組み合わせによる導電性フィラー、並
びに(C)硝酸マンガン溶液の総量100重量部に対し
て、10〜95重量部とすることが好ましく、20〜9
0重量部とすることがより好ましく、25〜80重量部
とすることさらに好ましい。この配合量が10重量部未
満では、(A)金属酸化物粉末および(B)カーボン粉
末の分散が不充分となり、95重量部を越えると一度に
充分な膜厚を得ることができない傾向がある。
The manganese nitrate solution (C) used in the present invention includes, for example, an aqueous solution of manganese nitrate, but is not particularly limited as long as it is a solution in which manganese nitrate is dissolved. In the present invention, the compounding amount of the (C) manganese nitrate solution is 100% by weight of the conductive filler of (A) the metal oxide powder and the (B) carbon powder alone or in combination of two kinds, and (C) the manganese nitrate solution. Parts by weight, preferably 10 to 95 parts by weight, more preferably 20 to 9 parts by weight.
It is more preferably 0 parts by weight, and further preferably 25 to 80 parts by weight. If the amount is less than 10 parts by weight, the dispersion of the metal oxide powder (A) and the carbon powder (B) becomes insufficient, and if it exceeds 95 parts by weight, a sufficient film thickness tends not to be obtained at once. .

【0024】本発明において、(D)バインダー樹脂の
使用が、塗膜の強度および密着性の向上に有効である。
(D)バインダー樹脂としては、熱硬化性樹脂、熱可塑
性樹脂またはそれらの混合樹脂が用いられるが、例え
ば、尿素樹脂、ユリア・メラミン樹脂、フェノール樹
脂、エポキシ樹脂、ポリエステル樹脂、アルキド樹脂、
ウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹
脂、ポリアセタール樹脂、アクリル樹脂、シアリルフタ
レート樹脂、ポリスチレン樹脂、ケイ素樹脂、フッ素樹
脂、ポリ塩化ビニル樹脂、ポリビニル樹脂、ポリアミド
樹脂、ポリエーテルアミド樹脂、ポリエーテルアミドイ
ミド樹脂および水溶性高分子樹脂等が挙げられる。な
お、2種以上の樹脂を組み合わせて使用しても差し支え
ない。
In the present invention, the use of the binder resin (D) is effective for improving the strength and adhesion of the coating film.
(D) As the binder resin, a thermosetting resin, a thermoplastic resin, or a resin mixture thereof is used. For example, urea resin, urea / melamine resin, phenol resin, epoxy resin, polyester resin, alkyd resin,
Urethane resin, polyethylene resin, polypropylene resin, polyacetal resin, acrylic resin, sialyl phthalate resin, polystyrene resin, silicon resin, fluorine resin, polyvinyl chloride resin, polyvinyl resin, polyamide resin, polyetheramide resin, polyetheramideimide resin and Water-soluble polymer resins and the like can be mentioned. Note that two or more resins may be used in combination.

【0025】本発明における(D)バインダー樹脂の配
合量は、(A)金属酸化物粉末および(B)カーボン粉
末の単独または2種の組み合わせによる導電性フィラ
ー、並びに(C)硝酸マンガン溶液の総量100重量部
に対して、40重量部以下とすることが好ましく、20
重量部以下とすることがさらに好ましい。この配合が4
0重量部を越えると導電率が低下し、固体電解質として
の性能が劣化する傾向がある。
In the present invention, the compounding amount of the binder resin (D) is based on the total amount of the (A) metal oxide powder and the (B) carbon powder alone or in combination of two conductive fillers, and (C) the manganese nitrate solution. It is preferable that the content is not more than 40 parts by weight based on 100 parts by weight.
More preferably, the amount is not more than part by weight. This formula is 4
If the amount exceeds 0 parts by weight, the conductivity tends to decrease, and the performance as a solid electrolyte tends to deteriorate.

【0026】本発明においては、(E)カップリング剤
の使用が、(A)金属酸化物粉末および(B)カーボン
粉末の凝集を防ぎ、分散の安定に有効である。(E)カ
ップリング剤の使用方法としては、固体電解質形成用ペ
ーストに直接添加して用いる方法、または(A)金属酸
化物粉末および(B)カーボン粉末を(E)カップリン
グ剤で処理して用いる方法が挙げられる。(A)金属酸
化物粉末を処理する方法としては、例えば、(A)金属
酸化物粉末に直接(E)カップリング剤を添加し攪拌混
合する方法(乾式処理法)とヘキサン、トルエン等の溶
剤に(E)カップリング剤を予め溶解し、その中に
(A)金属酸化物粉末を入れ混合攪拌した後、溶剤を除
去・乾燥させる方法(湿式処理法)等が挙げられる。
(B)カーボン粉末においても同様の方法が挙げられ
る。
In the present invention, the use of the coupling agent (E) prevents aggregation of the (A) metal oxide powder and (B) the carbon powder and is effective in stabilizing the dispersion. As a method of using the coupling agent (E), a method of directly adding to the paste for forming a solid electrolyte and using it, or a method of treating (A) a metal oxide powder and (B) a carbon powder with a coupling agent (E). The method used is mentioned. As a method for treating (A) the metal oxide powder, for example, a method in which (E) a coupling agent is directly added to the (A) metal oxide powder and mixed by stirring (dry treatment method) or a solvent such as hexane or toluene is used. (E) The coupling agent is dissolved in advance, and the metal oxide powder (A) is added therein, mixed and stirred, and then the solvent is removed and dried (wet processing method).
The same method can be used for the carbon powder (B).

【0027】本発明における(E)カップリング剤とし
ては、(A)金属酸化物粉末および(B)カーボン粉末
の凝集を防ぎ、分散安定性を向上することができるもの
であれば特に制限されないが、シラン系、チタネート
系、アルミニウム系、ジルコニウム系、ジルコアルミニ
ウム系、脂肪酸系、カルボン酸系またはリン酸系のカッ
プリング剤が好ましいものとして例示される。本発明に
おける(E)カップリング剤の添加量は、(A)金属酸
化物粉末および(B)カーボン粉末の総量100重量部
に対して10重量部以下が好ましく、5重量部以下がよ
り好ましい。(E)カップリング剤の添加量が10重量
部を越えると(A)金属酸化物粉末および(B)カーボ
ン粉末自体の導電率が低下する傾向がある。
The coupling agent (E) in the present invention is not particularly limited as long as it can prevent aggregation of the (A) metal oxide powder and (B) the carbon powder and improve the dispersion stability. Preferred examples thereof include silane-based, titanate-based, aluminum-based, zirconium-based, zirconium-based, fatty acid-based, carboxylic acid-based, and phosphoric acid-based coupling agents. In the present invention, the amount of the coupling agent (E) added is preferably 10 parts by weight or less, more preferably 5 parts by weight or less, based on 100 parts by weight of the total amount of the (A) metal oxide powder and (B) the carbon powder. If the amount of the coupling agent (E) exceeds 10 parts by weight, the electrical conductivity of the metal oxide powder (A) and the electrical conductivity of the carbon powder (B) tend to decrease.

【0028】本発明の固体電解質形成用ペースト組成物
は、ペーストおよび塗膜にした際の硬化物特性に悪影響
を及ぼさない限り、例えば抗酸化剤、キレート剤、界面
活性剤、その他種々の機能を有する添加剤、改質剤等を
添加することは差し支えない。
The paste composition for forming a solid electrolyte of the present invention has, for example, an antioxidant, a chelating agent, a surfactant and other various functions as long as it does not adversely affect the properties of the cured product when the paste and the coating film are formed. Additives and modifiers may be added.

【0029】本発明の固体電解質形成用ペースト組成物
は、所定量の(A)金属酸化物粉末、(B)カーボン粉
末の単独または2種の組み合わせによる導電性フィラ
ー、(C)硝酸マンガン溶液等を通常の攪拌機、らいか
い機、3本ロール或いはロールミル等を用いて均一に混
練或いは分散することで容易に得ることができ、固体電
解質としての特性を変えることなく、一度の塗布で均一
かつ厚い塗膜を得ることができるものであり、タンタル
コンデンサ等の固体電解質層として好適に使用すること
ができる。
The paste composition for forming a solid electrolyte of the present invention comprises a predetermined amount of (A) a metal oxide powder, (B) a conductive filler made of a single or a combination of two carbon powders, (C) a manganese nitrate solution and the like. Can be easily obtained by kneading or dispersing uniformly using a conventional stirrer, mill, three-roll or roll mill, etc., without changing the characteristics as a solid electrolyte, uniform and thick in one application. It can provide a coating film and can be suitably used as a solid electrolyte layer of a tantalum capacitor or the like.

【0030】本発明は固体電解質形成用ペースト組成物
を用いた固体電解コンデンサおよびその製造法、弁作用
金属の粉末よりなる陽極体の表面に陽極酸化皮膜を形成
し、陽極酸化皮膜上に半導体層を形成し、さらにその上
に導電性皮膜を付着させて陰極層とする固体電解コンデ
ンサの製造法において、半導体層の一部または全部を本
発明の固体電解質形成用ペースト組成物に置き換える固
体電解コンデンサの製造法、半導体母液と本発明の固体
電解質形成用ペースト組成物の組合せにより、半導体層
を形成する固体電解コンデンサの製造法、および、半導
体層の最外殻に本発明の固体電解質形成用ペースト組成
物を用いる固体電解コンデンサの製造法に関する。な
お、半導体層の一部に、本発明の固体電解質形成用ペー
スト組成物が含まれれば、その製造法は特に制限されな
い。例えば、弁作用金属の粉末よりなる陽極体の表面に
陽極酸化皮膜を形成した後に、あるいは陽極酸化被膜を
形成した焼結体を半導体母液に浸漬し、焼成および再化
成をした後に、本発明の固体電解質形成用ペースト組成
物を用いて半導体層を形成する。また、この次に必要に
応じて成形体を半導体母液に浸漬し、焼成および再化成
して半導体層を形成し、固体電解コンデンサが製造され
る。
The present invention relates to a solid electrolytic capacitor using a paste composition for forming a solid electrolyte, a method for producing the same, an anodic oxide film formed on the surface of an anode body made of valve metal powder, and a semiconductor layer formed on the anodic oxide film. And a method for producing a solid electrolytic capacitor having a cathode layer by further attaching a conductive film thereon, wherein a solid electrolytic capacitor in which part or all of a semiconductor layer is replaced with the solid electrolyte forming paste composition of the present invention. , A method for manufacturing a solid electrolytic capacitor for forming a semiconductor layer by combining a semiconductor mother liquor and the paste composition for forming a solid electrolyte of the present invention, and a paste for forming a solid electrolyte of the present invention on the outermost shell of the semiconductor layer. The present invention relates to a method for producing a solid electrolytic capacitor using the composition. The manufacturing method is not particularly limited as long as the solid electrolyte-forming paste composition of the present invention is included in a part of the semiconductor layer. For example, after forming an anodized film on the surface of the anode body made of a valve action metal powder, or after immersing the sintered body having the formed anodized film in a semiconductor mother liquor, firing and re-forming, the present invention A semiconductor layer is formed using the paste composition for forming a solid electrolyte. Next, if necessary, the molded body is immersed in a semiconductor mother liquor, fired and re-formed to form a semiconductor layer, and a solid electrolytic capacitor is manufactured.

【0031】より具体的に好ましい製造法を説明すれ
ば、タンタル等の弁作用金属にタンタルリード線等の一
端を埋め、プレスで圧縮成型し、真空中で2000℃程
度の温度で数10分間加熱してタンタル焼結体を形成す
る。次に、この焼結体のタンタルリード線等の一端をス
テンレス等の金属製バーに溶接し、焼結体を硝酸やリン
酸等の化成液中で電圧を印加して化成処理し、Ta25
の陽極酸化被膜を形成する。陽極酸化被膜を形成後に、
本発明の固体電解質形成用ペースト組成物中に焼結体を
数秒間浸漬し、焼成および再化成し、二酸化マンガン等
を主とした半導体層を形成する。または陽極酸化被膜を
形成した焼結体を硝酸マンガン溶液等の半導体母液中に
浸漬し、200℃〜350℃の温度で焼成し熱分解して
焼結体内部に二酸化マンガン等を主とした半導体層を形
成する。焼成後、再化成により、加熱で損傷した陽極酸
化被膜を修復する。そして以上の浸漬、焼成および再化
成の工程を必要に応じて数回繰返す。この次に本発明の
固体電解質形成用ペースト組成物中に焼結体を数秒間浸
漬し、焼成および再化成し、二酸化マンガン等を主とし
た半導体層を形成する。具体的には、焼結体を本発明の
固体電解質形成用ペースト組成物中に数秒間浸漬し、次
いで200℃〜350℃の温度で焼成して二酸化マンガ
ン等を主とした半導体層を形成する。焼成後、再化成に
より、損傷した陽極酸化被膜を修復する。なお、この浸
漬、焼成および再化成工程は充分な厚さの半導体層を得
るために、2回以上繰返してもよい。また、この次に必
要に応じて、この成形体を硝酸マンガン溶液等の半導体
母液中に浸漬し、200℃〜350℃の温度で焼成、熱
分解し、さらに再化成して二酸化マンガン等を主とした
半導体層を形成する。
More specifically, a preferred manufacturing method will be described. One end of a tantalum lead wire or the like is buried in a valve metal such as tantalum, compression molded by a press, and heated in a vacuum at a temperature of about 2000 ° C. for several tens of minutes. To form a tantalum sintered body. Then, one end of the tantalum lead wire or the like of the sintered body was welded to a metal bar such as stainless steel, and chemical conversion treatment by applying a voltage to the sintered body by chemical liquid such as nitric acid or phosphoric acid, Ta 2 O 5
Is formed. After forming the anodic oxide coating,
The sintered body is dipped in the paste composition for forming a solid electrolyte of the present invention for several seconds, fired and re-formed to form a semiconductor layer mainly composed of manganese dioxide or the like. Alternatively, a sintered body having an anodic oxide film formed thereon is immersed in a semiconductor mother liquor such as a manganese nitrate solution, baked at a temperature of 200 ° C. to 350 ° C., and thermally decomposed to form a semiconductor mainly containing manganese dioxide or the like inside the sintered body. Form a layer. After firing, the anodized film damaged by heating is repaired by re-chemical formation. Then, the above immersion, firing and re-chemical conversion steps are repeated several times as necessary. Next, the sintered body is immersed in the paste composition for forming a solid electrolyte of the present invention for several seconds, fired and re-formed to form a semiconductor layer mainly composed of manganese dioxide or the like. Specifically, the sintered body is immersed in the paste composition for forming a solid electrolyte of the present invention for several seconds, and then fired at a temperature of 200 to 350 ° C. to form a semiconductor layer mainly containing manganese dioxide or the like. . After firing, the damaged anodic oxide film is repaired by re-chemical conversion. The immersion, firing and re-chemical conversion steps may be repeated twice or more in order to obtain a semiconductor layer having a sufficient thickness. Then, if necessary, the molded body is immersed in a semiconductor mother liquor such as a manganese nitrate solution, baked at a temperature of 200 ° C. to 350 ° C., thermally decomposed, and further re-formed to mainly produce manganese dioxide and the like. Is formed.

【0032】以上の半導体層形成の工程の中で、本発明
の固体電解質形成用ペースト組成物を単独で、もしくは
半導体母液と組み合わせて使用するが、本発明の固体電
解質形成用ペースト組成物が一部に含まれれば、その組
み合わせは特に制限されない。以上の方法により半導体
層を形成後、カーボン、銀ペースト等を順次塗布して陰
極層を形成する。次に、この形成体をリードフレームに
はんだあるいは導電性接着剤で接続し、外部から陽極、
陰極等が取り出せる状態で、樹脂ディップ法や樹脂モー
ルド法等により樹脂外装を形成する。
In the above-described semiconductor layer forming process, the solid electrolyte forming paste composition of the present invention is used alone or in combination with a semiconductor mother liquor. The combination is not particularly limited as long as it is included in the section. After forming the semiconductor layer by the above method, carbon, silver paste and the like are sequentially applied to form a cathode layer. Next, this formed body is connected to a lead frame with solder or a conductive adhesive, and an anode,
In a state where the cathode and the like can be taken out, a resin exterior is formed by a resin dipping method or a resin molding method.

【0033】[0033]

【実施例】次に実施例を挙げて本発明を具体的に説明す
るが、本発明はこれらにより制限されるものではない。
Next, the present invention will be described specifically with reference to examples, but the present invention is not limited by these examples.

【0034】実施例1 導電性フィラーとして、二酸化マンガン粉末(三井金属
製RB−A)を450℃1.5時間の加熱処理して得ら
れたβ型結晶構造を含む二酸化マンガン粉末(平均粒
径:2μm)100重量部、硝酸マンガン・六水和物
(和光純薬製)200重量部を乳鉢中で予備混合後、3
本ロールにて混練し、固体電解質形成用ペースト組成物
を得た。この固体電解質形成用ペースト組成物の体積抵
抗率、分散性、塗膜厚および塗布性を測定した結果を表
1に示す。体積抵抗率は、スクリーン印刷により約50
μmの塗膜をセラミック板上に形成し、硬化後4端子法
によりデジタルマルチメータを用いて測定し算出した。
分散性は、粒ゲージを用いて、JIS−K5400の方
法に準じて測定した。塗膜厚の測定は1×2cmのセラ
ミック板をペースト中に約3秒間ディップ後引き上げ、
250℃で10分間焼成後にマイクロメータを用いて測
定した。また、塗布性は、乾燥後の塗膜表面を目視によ
り観察して、表面状態の良いものから優(◎)、良
(○)、不良(×)の3段階で評価した(以下の例にお
いても同じ)。
Example 1 As a conductive filler, manganese dioxide powder (RB-A made by Mitsui Kinzoku) was heat-treated at 450 ° C. for 1.5 hours. : 2 μm) 100 parts by weight, and 200 parts by weight of manganese nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) were premixed in a mortar, and then mixed.
The mixture was kneaded with this roll to obtain a paste composition for forming a solid electrolyte. Table 1 shows the results of measuring the volume resistivity, dispersibility, coating film thickness, and coatability of the paste composition for forming a solid electrolyte. Volume resistivity is about 50 by screen printing.
A μm coating film was formed on a ceramic plate, and after curing was measured and calculated by a four-terminal method using a digital multimeter.
The dispersibility was measured using a grain gauge according to the method of JIS-K5400. For measuring the coating thickness, a 1 × 2 cm ceramic plate was dipped in the paste for about 3 seconds and then pulled up.
After firing at 250 ° C. for 10 minutes, the measurement was performed using a micrometer. In addition, the applicability was evaluated by visually observing the surface of the coating film after drying, and evaluated from three grades of excellent (◎), good (○), and poor (×) in terms of good surface condition (in the following examples). The same).

【0035】実施例2 導電性フィラーとして、金属酸化物の酸化ルテニウム1
00重量部を用いること以外は実施例1と同様の実験を
行い、得られた固体電解質形成用ペースト組成物の体積
抵抗率、分散性、塗膜厚および塗布性を表1に示す。
Example 2 As a conductive filler, ruthenium oxide 1 of a metal oxide was used.
The same experiment as in Example 1 was conducted except that 00 parts by weight was used. Table 1 shows the volume resistivity, dispersibility, coating film thickness, and coatability of the obtained paste composition for forming a solid electrolyte.

【0036】実施例3 導電性フィラーとして、カーボン粉末(日立粉末冶金社
製HITASOL GP-60S)50重量部を用いること以外は実施
例1と同様の実験を行い、得られた固体電解質形成用ペ
ースト組成物の体積抵抗率、分散性、塗膜厚および塗布
性を表1に示す。
Example 3 The same experiment as in Example 1 was carried out except that 50 parts by weight of carbon powder (Hitasol GP-60S manufactured by Hitachi Powdered Metals Co., Ltd.) was used as the conductive filler, and the obtained paste for forming a solid electrolyte was obtained. Table 1 shows the volume resistivity, dispersibility, coating film thickness and coatability of the composition.

【0037】実施例4 導電性フィラーとして、β型結晶構造を含む二酸化マン
ガン粉末(RB−A)50重量部、金属酸化物の酸化ル
テニウム50重量部を用いること以外は実施例1と同様
の実験を行い、得られた固体電解質形成用ペースト組成
物の体積抵抗率、分散性、塗膜厚および塗布性を表1に
示す。
Example 4 An experiment similar to that of Example 1 except that 50 parts by weight of manganese dioxide powder (RB-A) having a β-type crystal structure and 50 parts by weight of ruthenium oxide as a metal oxide were used as conductive fillers. Table 1 shows the volume resistivity, dispersibility, coating film thickness, and coatability of the obtained paste composition for forming a solid electrolyte.

【0038】実施例5 導電性フィラーとして、β型結晶構造を含む二酸化マン
ガン粉末(RB−A)80重量部、カーボン粉末(HITA
SOL GP-60S)20重量部を用いること以外は実施例1と
同様の実験を行い、得られた固体電解質形成用ペースト
組成物の体積抵抗率、分散性、塗膜厚および塗布性を表
1に示す。
Example 5 As a conductive filler, 80 parts by weight of manganese dioxide powder (RB-A) having a β-type crystal structure, carbon powder (HITA)
SOL GP-60S) An experiment was conducted in the same manner as in Example 1 except that 20 parts by weight was used, and the volume resistivity, dispersibility, coating film thickness and coatability of the obtained paste composition for forming a solid electrolyte were shown in Table 1. Shown in

【0039】実施例6 導電性フィラーとして、β型結晶構造を含む二酸化マン
ガン粉末(RB−A)40重量部、金属酸化物の酸化ル
テニウム40重量部、カーボン粉末(HITASOLGP-60S)
20重量部を用いること以外は実施例1と同様の実験を
行い、得られた固体電解質形成用ペースト組成物の体積
抵抗率、分散性、塗膜厚および塗布性を表1に示す。
Example 6 As a conductive filler, 40 parts by weight of manganese dioxide powder (RB-A) having a β-type crystal structure, 40 parts by weight of ruthenium oxide as a metal oxide, and carbon powder (HITASOLGP-60S)
The same experiment as in Example 1 was conducted except that 20 parts by weight was used. Table 1 shows the volume resistivity, dispersibility, coating film thickness, and coatability of the obtained paste composition for forming a solid electrolyte.

【0040】実施例7 導電性フィラーとして、金属酸化物の酸化ルテニウム5
0重量部、酸化イリジウム50重量部を用いること以外
は実施例1と同様の実験を行い、得られた固体電解質形
成用ペースト組成物の体積抵抗率、分散性、塗膜厚およ
び塗布性を表1に示す。
Example 7 Metal oxide ruthenium oxide 5 was used as a conductive filler.
The same experiment as in Example 1 was performed except that 0 parts by weight and 50 parts by weight of iridium oxide were used, and the volume resistivity, dispersibility, coating film thickness, and coating properties of the obtained paste composition for forming a solid electrolyte were shown. It is shown in FIG.

【0041】実施例8 導電性フィラーとして、金属酸化物の酸化ルテニウム8
0重量部、カーボン粉末(HITASOL GP-60S)20重量部
を用いること以外は実施例1と同様の実験を行い、得ら
れた固体電解質形成用ペースト組成物の体積抵抗率、分
散性、塗膜厚および塗布性を表1に示す。
Example 8 As a conductive filler, ruthenium oxide 8 of a metal oxide was used.
The same experiment as in Example 1 was conducted except that 0 parts by weight and 20 parts by weight of carbon powder (HITASOL GP-60S) were used, and the volume resistivity, dispersibility, and coating film of the obtained solid electrolyte-forming paste composition were obtained. Table 1 shows the thickness and coatability.

【0042】比較例1 導電性フィラーとして、β型結晶構造を含まない二酸化
マンガン粉末(γ型結晶構造)100重量部を用いるこ
と以外は実施例1と同様の実験を行い、得られた固体電
解質形成用ペースト組成物の体積抵抗率、分散性、塗膜
厚および塗布性を表1に示す。
Comparative Example 1 The same experiment as in Example 1 was carried out except that 100 parts by weight of manganese dioxide powder containing no β-type crystal structure (γ-type crystal structure) was used as the conductive filler. Table 1 shows the volume resistivity, dispersibility, coating film thickness, and coatability of the forming paste composition.

【0043】比較例2 導電性フィラーとして、導電率が1×102Ω・cm以上の
金属酸化物を100重量部を用いること以外は実施例1
と同様の実験を行い、得られた固体電解質形成用ペース
ト組成物の体積抵抗率、分散性、塗膜厚および塗布性を
表1に示した。
Comparative Example 2 Example 1 was repeated except that 100 parts by weight of a metal oxide having a conductivity of 1 × 10 2 Ω · cm or more was used as the conductive filler.
Table 1 shows the volume resistivity, dispersibility, coating film thickness, and coatability of the obtained paste composition for forming a solid electrolyte.

【0044】比較例3 導電性フィラーとして、平均粒径が50μmより大きい
二酸化マンガン粉末を用いること以外は実施例1と同様
の実験を行い、得られた固体電解質形成用ペースト組成
物の体積抵抗率、分散性、塗膜厚および塗布性を表1に
示した。
Comparative Example 3 The same experiment as in Example 1 was carried out except that manganese dioxide powder having an average particle size larger than 50 μm was used as the conductive filler, and the volume resistivity of the obtained paste composition for forming a solid electrolyte was obtained. The dispersibility, coating thickness and coatability are shown in Table 1.

【0045】比較例4 導電性フィラーとして、平均粒径が50μmより大きい
酸化ルテニウムを用いること以外は実施例1と同様の実
験を行い、得られた固体電解質形成用ペースト組成物の
体積抵抗率、分散性、塗膜厚および塗布性を表1に示し
た。
Comparative Example 4 The same experiment as in Example 1 was carried out except that ruthenium oxide having an average particle size larger than 50 μm was used as the conductive filler, and the volume resistivity of the obtained paste composition for forming a solid electrolyte was as follows: Table 1 shows the dispersibility, coating film thickness, and coatability.

【0046】比較例5 導電性フィラーとして、平均粒径が50μmより大きい
カーボン粉末を用いること以外は実施例1と同様の実験
を行い、得られた固体電解質形成用ペースト組成物の体
積抵抗率、分散性、塗膜厚および塗布性を表1に示し
た。
Comparative Example 5 The same experiment as in Example 1 was carried out except that carbon powder having an average particle diameter of more than 50 μm was used as the conductive filler, and the volume resistivity of the obtained paste composition for forming a solid electrolyte was Table 1 shows the dispersibility, coating film thickness, and coatability.

【0047】表1の結果より、本発明の固体電解質形成
用ペースト組成物は、分散性が良好で、体積抵抗率が低
く、かつ一度の塗布で適度な塗膜厚を得ることができる
ことが判明した。特にカーボン粉末を数十パーセント加
えることにより体積抵抗率が低下し、コンデンサにおけ
る等価直列抵抗ESR特性の低下が期待できる。
From the results shown in Table 1, it was found that the paste composition for forming a solid electrolyte of the present invention had good dispersibility, low volume resistivity, and was able to obtain an appropriate coating thickness by one application. did. In particular, by adding tens of percent of carbon powder, the volume resistivity is reduced, and it is expected that the equivalent series resistance ESR characteristics of the capacitor will be reduced.

【0048】次に本発明の固体電解質形成用ペースト組
成物を用いた固体電解コンデンサの製造法を実施例およ
び比較例を挙げて具体的に説明するが、半導体層の一部
に本発明の固体電解質形成用ペースト組成物が含まれれ
ば、特にこれらに制限されるものではない。
Next, a method for producing a solid electrolytic capacitor using the paste composition for forming a solid electrolyte of the present invention will be specifically described with reference to Examples and Comparative Examples. It is not particularly limited as long as the electrolyte-forming paste composition is included.

【0049】実施例9 まず、0.24φのタンタルリード線の一端をタンタル
の微粉末に埋め、プレスして1.97mm×2.1mm×
2.8mm角の成形体を造り、焼結させる。この焼結体を
硝酸により化成処理してTa2O5の陽極酸化被膜を形成し
た。次に、実施例1で作製した固体電解質形成用ペース
ト組成物を原液として、硝酸マンガン・六水和物により
原液:硝酸マンガン・六水和物=3:2(重量比)に希
釈した液中に成形体を数秒間浸漬し、250℃で10分
間焼成し、さらに化成処理を行った。そしてこの浸漬、
焼成および化成処理を6回繰返して半導体層を形成し
た。次に、カーボンペースト及び銀ペースト等を順次塗
布して陰極層を形成した。陰極層形成後は、成形体をリ
ードフレームに接続し、樹脂モールド法で樹脂外装を形
成して固体電解コンデンサを作製した。
Example 9 First, one end of a 0.24φ tantalum lead wire was buried in fine tantalum powder and pressed to obtain 1.97 mm × 2.1 mm ×
A 2.8 mm square compact is produced and sintered. This sintered body was subjected to a chemical conversion treatment with nitric acid to form an anodic oxide film of Ta 2 O 5 . Next, the paste composition for forming a solid electrolyte prepared in Example 1 was used as a stock solution, and diluted with manganese nitrate hexahydrate into a stock solution: manganese nitrate hexahydrate = 3: 2 (weight ratio). Was immersed for several seconds, baked at 250 ° C. for 10 minutes, and further subjected to a chemical conversion treatment. And this dipping,
The firing and the chemical conversion treatment were repeated six times to form a semiconductor layer. Next, a carbon paste and a silver paste were sequentially applied to form a cathode layer. After the formation of the cathode layer, the molded body was connected to a lead frame, and a resin exterior was formed by a resin molding method to produce a solid electrolytic capacitor.

【0050】実施例10 半導体層を形成する際に、原液として実施例2で作製し
た固体電解質形成用ペースト組成物を用いること以外
は、実施例9と同様にして固体電解コンデンサを作製し
た。
Example 10 A solid electrolytic capacitor was manufactured in the same manner as in Example 9, except that the paste composition for forming a solid electrolyte prepared in Example 2 was used as a stock solution when forming a semiconductor layer.

【0051】実施例11 半導体層を形成する際に、原液として実施例3で作製し
た固体電解質形成用ペースト組成物を用いること以外
は、実施例9と同様にして固体電解コンデンサを作製し
た。
Example 11 A solid electrolytic capacitor was manufactured in the same manner as in Example 9, except that the paste composition for forming a solid electrolyte prepared in Example 3 was used as a stock solution when forming a semiconductor layer.

【0052】実施例12 半導体層を形成する際に、原液として実施例4で作製し
た固体電解質形成用ペースト組成物を用いること以外
は、実施例9と同様にして固体電解コンデンサを作製し
た。
Example 12 A solid electrolytic capacitor was manufactured in the same manner as in Example 9 except that the paste for solid electrolyte formation prepared in Example 4 was used as a stock solution when forming a semiconductor layer.

【0053】実施例13 半導体層を形成する際に、原液として実施例5で作製し
た固体電解質形成用ペースト組成物を用いること以外
は、実施例9と同様にして固体電解コンデンサを作製し
た。
Example 13 A solid electrolytic capacitor was manufactured in the same manner as in Example 9, except that the paste composition for forming a solid electrolyte prepared in Example 5 was used as a stock solution when forming a semiconductor layer.

【0054】実施例14 半導体層を形成する際に、原液として実施例6で作製し
た固体電解質形成用ペースト組成物を用いること以外
は、実施例9と同様にして固体電解コンデンサを作製し
た。
Example 14 A solid electrolytic capacitor was manufactured in the same manner as in Example 9 except that the paste composition for forming a solid electrolyte prepared in Example 6 was used as a stock solution when forming a semiconductor layer.

【0055】実施例15 半導体層を形成する際に、原液として実施例7で作製し
た固体電解質形成用ペースト組成物を用いること以外
は、実施例9と同様にして固体電解コンデンサを作製し
た。
Example 15 A solid electrolytic capacitor was manufactured in the same manner as in Example 9, except that the paste composition for forming a solid electrolyte prepared in Example 7 was used as a stock solution when forming a semiconductor layer.

【0056】実施例16 半導体層を形成する際に、原液として実施例8で作製し
た固体電解質形成用ペースト組成物を用いること以外
は、実施例9と同様にして固体電解コンデンサを作製し
た。
Example 16 A solid electrolytic capacitor was manufactured in the same manner as in Example 9 except that the paste composition for forming a solid electrolyte prepared in Example 8 was used as a stock solution when forming a semiconductor layer.

【0057】実施例17 半導体層の形成に際し、陽極酸化皮膜を形成した焼結体
を硝酸マンガン溶液中に浸漬、焼成および再化成する一
連の処理を3回繰返した。次に、実施例5で作製した固
体電解質形成用ペースト組成物を原液として、硝酸マン
ガン・六水和物により原液:硝酸マンガン・六水和物=
3:2(重量比)に希釈した液中に焼結体を数秒間浸漬
し、250℃で10分間焼成し、さらに化成処理を行っ
た。そしてこの浸漬、焼成および化成処理を3回繰返す
こと以外は、実施例9と同様にして固体電解コンデンサ
を作製した。
Example 17 In forming a semiconductor layer, a series of steps of immersing the sintered body having the anodic oxide film formed therein in a manganese nitrate solution, firing and re-forming was repeated three times. Next, using the paste composition for forming a solid electrolyte prepared in Example 5 as a stock solution, manganese nitrate hexahydrate was used as a stock solution: stock solution: manganese nitrate hexahydrate =
The sintered body was immersed in a liquid diluted to 3: 2 (weight ratio) for several seconds, baked at 250 ° C. for 10 minutes, and further subjected to a chemical conversion treatment. Then, a solid electrolytic capacitor was produced in the same manner as in Example 9, except that the immersion, firing and chemical conversion treatments were repeated three times.

【0058】実施例18 半導体層の形成に際し、陽極酸化皮膜を形成した焼結体
を実施例5で作製した固体電解質形成用ペースト組成物
を原液として、硝酸マンガン・六水和物により原液:硝
酸マンガン・六水和物=3:2(重量比)に希釈した液
中に焼結体を数秒間浸漬し、250℃で10分間焼成
し、さらに化成処理を行った。そしてこの浸漬、焼成お
よび化成処理を3回繰返した。次に、硝酸マンガン溶液
中に浸漬、焼成および再化成する一連の処理を3回繰返
すこと以外は、実施例9と同様にして固体電解コンデン
サを作製した。
Example 18 In forming a semiconductor layer, the paste composition for forming a solid electrolyte prepared in Example 5 was used as a stock solution of a sintered body having an anodized film formed thereon, and manganese nitrate hexahydrate was used as a stock solution: nitric acid. The sintered body was immersed in a liquid diluted to manganese hexahydrate = 3: 2 (weight ratio) for several seconds, baked at 250 ° C. for 10 minutes, and further subjected to a chemical conversion treatment. The immersion, firing and chemical conversion treatments were repeated three times. Next, a solid electrolytic capacitor was produced in the same manner as in Example 9, except that a series of treatments of dipping in a manganese nitrate solution, firing and re-chemical formation was repeated three times.

【0059】実施例19 半導体層の形成に際し、陽極酸化皮膜を形成した焼結体
を硝酸マンガン溶液中に浸漬、焼成および再化成する一
連の処理を2回繰返した。次いで、実施例5で作製した
固体電解質形成用ペースト組成物を原液として、硝酸マ
ンガン・六水和物により原液:硝酸マンガン・六水和物
=3:2(重量比)に希釈した液中に焼結体を数秒間浸
漬し、250℃で10分間焼成し、さらに化成処理を行
った。そしてこの浸漬、焼成および化成処理を2回繰返
した。次いで、硝酸マンガン溶液中に浸漬、焼成および
再化成する一連の処理を2回繰返すこと以外は、実施例
9と同様にして固体電解コンデンサを作製した。
Example 19 In forming a semiconductor layer, a series of processes of immersing the sintered body having the anodized film formed therein in a manganese nitrate solution, firing and re-forming was repeated twice. Then, the paste composition for forming a solid electrolyte prepared in Example 5 was used as a stock solution, and the solution was diluted with manganese nitrate hexahydrate to a stock solution: manganese nitrate hexahydrate = 3: 2 (weight ratio). The sintered body was immersed for several seconds, fired at 250 ° C. for 10 minutes, and further subjected to a chemical conversion treatment. The immersion, firing and chemical conversion treatments were repeated twice. Next, a solid electrolytic capacitor was produced in the same manner as in Example 9, except that a series of treatments of immersing in a manganese nitrate solution, firing and re-chemical formation was repeated twice.

【0060】比較例6 半導体層の形成に際し、陽極酸化皮膜を形成した焼結体
を硝酸マンガン溶液中に浸漬、焼成および再化成する一
連の処理を6回繰返すこと以外は、実施例9と同様にし
て固体電解コンデンサを作製した。
Comparative Example 6 The procedure of Example 9 was repeated, except that a series of steps of immersing the sintered body having the anodic oxide film formed thereon in a manganese nitrate solution, sintering and re-chemical formation was repeated six times. To produce a solid electrolytic capacitor.

【0061】実施例9〜19および比較例6で作製した
定格16V35μFのタンタルチップ型固体電解コンデ
ンサの特性を評価した結果を表2に示した。ここで試料
数は各々500個とした。表2から明らかなように、従
来法の比較例6では、硝酸マンガンの熱分解工程を6回
行ったが、漏れ電流特性が不十分である。しかしなが
ら、本発明方法を用いることにより、比較例6と比べ
て、6回の適用回数で正殿容量、等価直列抵抗ESRでは
同等もしくはそれ以上の特性を、漏れ電流では1/2程
度の特性を得ることができた。これにより、硝酸マンガ
ン溶液の浸漬、熱分解工程を本発明の固体電解質形成用
ペースト組成物の浸漬、焼成工程に置き換えることによ
り、工程回数を低減し、特性の良好な固体電解コンデン
サが作製可能であるということが明らかになった。
Table 2 shows the results of evaluating the characteristics of the tantalum chip type solid electrolytic capacitors having a rated voltage of 16 V and 35 μF produced in Examples 9 to 19 and Comparative Example 6. Here, the number of samples was 500 each. As is clear from Table 2, in Comparative Example 6 of the conventional method, the thermal decomposition step of manganese nitrate was performed six times, but the leakage current characteristics were insufficient. However, by using the method of the present invention, as compared with Comparative Example 6, the same or higher characteristics can be obtained in the capacitance and the equivalent series resistance ESR and the characteristics of about 1/2 in the leakage current can be obtained in six application times. I was able to. Thereby, by replacing the immersion of the manganese nitrate solution and the thermal decomposition step with the immersion of the paste composition for forming a solid electrolyte of the present invention and the firing step, the number of steps can be reduced and a solid electrolytic capacitor having good characteristics can be manufactured. It became clear that there was.

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【表2】 [Table 2]

【0064】[0064]

【発明の効果】請求項1記載の固体電解質形成用ペース
ト組成物は、導電性に優れ、かつ一度の塗布で所定の膜
厚を得ることができるため、タンタルコンデンサ素子の
固体電解質層の形成に好適である。請求項2記載の発明
によれば、バインダー樹脂を加えることにより、強度お
よび密着性を向上した塗膜を形成することができる。請
求項3記載の発明によれば、金属酸化物粉末の導電率を
限定することで、低抵抗な塗膜を形成することができ
る。請求項4記載の発明によれば、金属酸化物粉末の平
均粒径を限定することで、金属酸化物粉末の沈降を抑
え、均一な塗膜を形成することができる。請求項5記載
の発明によれば、金属酸化物粉末にβ型結晶構造を有す
る二酸化マンガン粉末を用いることにより、従来と同等
の導電率をもつ半導体層を形成することができる。請求
項6記載の発明によれば、2種以上の金属酸化物粉末を
用いることにより、導電性の異なる半導体層を形成する
ことができる。請求項7記載の発明によれば、カーボン
粉末の平均粒径を限定することで、カーボン粉末の沈降
を抑え、均一な塗膜を形成することができる。請求項8
記載の発明はによれば、請求項1記載の組成物の効果を
奏し、金属酸化物粉末およびカーボン粉末の凝集を防
ぎ、使用時の安定性を向上することができる。
The paste composition for forming a solid electrolyte according to the present invention is excellent in conductivity and can obtain a predetermined film thickness by a single application, so that it can be used for forming a solid electrolyte layer of a tantalum capacitor element. It is suitable. According to the second aspect of the present invention, a coating film having improved strength and adhesion can be formed by adding a binder resin. According to the third aspect of the present invention, it is possible to form a low-resistance coating film by limiting the conductivity of the metal oxide powder. According to the fourth aspect of the invention, by limiting the average particle size of the metal oxide powder, sedimentation of the metal oxide powder can be suppressed, and a uniform coating film can be formed. According to the fifth aspect of the present invention, by using a manganese dioxide powder having a β-type crystal structure as the metal oxide powder, it is possible to form a semiconductor layer having the same conductivity as the conventional one. According to the invention of claim 6, by using two or more kinds of metal oxide powders, semiconductor layers having different conductivity can be formed. According to the seventh aspect of the present invention, by limiting the average particle size of the carbon powder, the sedimentation of the carbon powder can be suppressed, and a uniform coating film can be formed. Claim 8
According to the invention described above, the effects of the composition according to claim 1 are exhibited, aggregation of the metal oxide powder and the carbon powder can be prevented, and stability during use can be improved.

【0065】請求項9記載の発明によれば、本発明の固
体電解質形成用ペースト組成物を用いることにより、半
導体層の膜質を均一にし、コンデンサの等価直列抵抗特
性、漏れ電流特性、耐熱性、耐湿性および外形寸法の精
度を向上した固体電解コンデンサが提供される。請求項
10記載の発明によれば、本発明の固体電解質形成用ペ
ースト組成物を用いることにより、製造工程を簡略化
し、かつ半導体層の膜質を均一にし、コンデンサの等価
直列抵抗特性、漏れ電流特性、耐熱性、耐湿性および外
形寸法の精度を向上した固体電解コンデンサの製造法が
提供される。請求項11記載の発明によれば、弁作用金
属の粉末よりなる陽極体の表面に陽極酸化皮膜を形成
し、陽極酸化皮膜上に半導体層を形成し、さらにその上
に導電性皮膜を付着させて陰極層とする固体電解コンデ
ンサの製造法において、半導体層の一部または全部を本
発明の固体電解質形成用ペースト組成物に置き換える固
体電解コンデンサの製造法により、コンデンサの等価直
列抵抗特性、漏れ電流特性、耐熱性、耐湿性および外形
寸法の精度を向上した固体電解コンデンサを製造するこ
とができる。
According to the ninth aspect of the present invention, by using the paste composition for forming a solid electrolyte of the present invention, the film quality of the semiconductor layer is made uniform, and the equivalent series resistance characteristics, leakage current characteristics, heat resistance, A solid electrolytic capacitor having improved moisture resistance and external dimension accuracy is provided. According to the tenth aspect of the present invention, by using the paste composition for forming a solid electrolyte of the present invention, the manufacturing process is simplified, the film quality of the semiconductor layer is made uniform, the equivalent series resistance characteristic and the leakage current characteristic of the capacitor are obtained. The present invention provides a method for manufacturing a solid electrolytic capacitor having improved heat resistance, moisture resistance, and external dimension accuracy. According to the eleventh aspect of the present invention, an anodic oxide film is formed on the surface of an anode body made of a valve action metal powder, a semiconductor layer is formed on the anodic oxide film, and a conductive film is further deposited thereon. In the method for manufacturing a solid electrolytic capacitor having a negative electrode layer, the equivalent series resistance characteristics of the capacitor and the leakage current are determined by the method for manufacturing a solid electrolytic capacitor in which part or all of the semiconductor layer is replaced with the solid electrolyte forming paste composition of the present invention. A solid electrolytic capacitor having improved characteristics, heat resistance, moisture resistance and accuracy of external dimensions can be manufactured.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 (A)金属酸化物粉末および(B)カー
ボン粉末またはいずれか一方よりなる導電性フィラー、
並びに(C)硝酸マンガン溶液を必須成分とする固体電
解質形成用ペースト組成物。
1. A conductive filler comprising (A) a metal oxide powder and / or (B) a carbon powder,
And (C) a paste composition for forming a solid electrolyte comprising a manganese nitrate solution as an essential component.
【請求項2】 さらに(D)バインダー樹脂を必須成分
とする請求項1記載の固体電解質形成用ペースト組成
物。
2. The paste composition for forming a solid electrolyte according to claim 1, further comprising (D) a binder resin as an essential component.
【請求項3】 (A)金属酸化物粉末の導電率が1×1
2Ω・cm以下である請求項1または2記載の固体電解質
形成用ペースト組成物。
3. The method according to claim 2, wherein the metal oxide powder has a conductivity of 1 × 1.
3. The paste composition for forming a solid electrolyte according to claim 1, wherein the paste composition has a resistivity of 0 2 Ω · cm or less.
【請求項4】 (A)金属酸化物粉末の平均粒径が50
μm以下である請求項1〜3のいずれか1項記載の固体
電解質形成用ペースト組成物。
(A) a metal oxide powder having an average particle size of 50
The paste composition for forming a solid electrolyte according to any one of claims 1 to 3, which has a diameter of not more than μm.
【請求項5】 (A)金属酸化物粉末にβ型結晶構造を
有する二酸化マンガン粉末である請求項1〜4記載のい
ずれか1項記載の固体電解質形成用ペースト組成物。
5. The paste composition for forming a solid electrolyte according to claim 1, wherein the metal oxide powder is a manganese dioxide powder having a β-type crystal structure.
【請求項6】 (A)金属酸化物粉末に2種以上の金属
酸化物粉末を組み合わせる請求項1〜5記載のいずれか
1項記載の固体電解質形成用ペースト組成物。
6. The paste composition for forming a solid electrolyte according to claim 1, wherein (A) two or more metal oxide powders are combined with the metal oxide powder.
【請求項7】 (B)カーボン粉末の平均粒径が50μ
m以下である請求項1〜6のいずれか1項記載の固体電
解質形成用ペースト組成物。
7. (B) The carbon powder has an average particle size of 50 μm.
The paste composition for forming a solid electrolyte according to any one of claims 1 to 6, which is not more than m.
【請求項8】 さらに(E)カップリング剤として、シ
ラン系、チタネート系、アルミニウム系、ジルコニウム
系、ジルコアルミニウム系、脂肪酸系、カルボン酸系お
よびリン酸系の中の1種または2種以上を必須成分とす
る請求項1〜7のいずれか1項記載の固体電解質形成用
ペースト組成物。
8. A coupling agent (E) comprising one or more of silane, titanate, aluminum, zirconium, zirconium, fatty acid, carboxylic acid and phosphoric acid. The paste composition for forming a solid electrolyte according to any one of claims 1 to 7, which is an essential component.
【請求項9】 請求項1〜8のいずれか1項記載の固体
電解質形成用ペースト組成物を用いた固体電解コンデン
サ。
9. A solid electrolytic capacitor using the paste composition for forming a solid electrolyte according to claim 1. Description:
【請求項10】 請求項1〜8のいずれか1項記載の固
体電解質形成用ペースト組成物を用いることを特徴とす
る固体電解コンデンサの製造法。
10. A method for producing a solid electrolytic capacitor, comprising using the paste composition for forming a solid electrolyte according to claim 1. Description:
【請求項11】 弁作用金属の粉末よりなる陽極体の表
面に陽極酸化皮膜を形成し、陽極酸化皮膜上に半導体層
を形成し、さらにその上に導電性皮膜を付着させて陰極
層とする固体電解コンデンサの製造法において、半導体
層の全部または一部を請求項1〜8のいずれか1項記載
の固体電解質形成用ペースト組成物による半導体層とす
る固体電解コンデンサの製造法。
11. An anodic oxide film is formed on the surface of an anode body made of a valve metal powder, a semiconductor layer is formed on the anodic oxide film, and a conductive film is further deposited thereon to form a cathode layer. A method for producing a solid electrolytic capacitor, wherein the whole or a part of the semiconductor layer is a semiconductor layer using the paste composition for forming a solid electrolyte according to any one of claims 1 to 8.
JP6641998A 1998-03-17 1998-03-17 Paste composition for solid electrolyte formation, solid electrolysis capacitor using the same and manufacture thereof Pending JPH11265838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6641998A JPH11265838A (en) 1998-03-17 1998-03-17 Paste composition for solid electrolyte formation, solid electrolysis capacitor using the same and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6641998A JPH11265838A (en) 1998-03-17 1998-03-17 Paste composition for solid electrolyte formation, solid electrolysis capacitor using the same and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11265838A true JPH11265838A (en) 1999-09-28

Family

ID=13315267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6641998A Pending JPH11265838A (en) 1998-03-17 1998-03-17 Paste composition for solid electrolyte formation, solid electrolysis capacitor using the same and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11265838A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096264A (en) * 2005-08-29 2007-04-12 Sanyo Electric Co Ltd Solid electrolytic capacitor element, its manufacturing method, and solid electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007096264A (en) * 2005-08-29 2007-04-12 Sanyo Electric Co Ltd Solid electrolytic capacitor element, its manufacturing method, and solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
US8976509B2 (en) Aluminum material
TW200428434A (en) Solid electrolytic capacitor and manufacturing method thereof
JP5933397B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
US6965508B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4914769B2 (en) Conductive paste for solid electrolytic capacitor electrode and method for producing electrode of solid electrolytic capacitor using the conductive paste
JP2009071300A (en) Solid-state electrolytic capacitor
CN1539031A (en) Metal foil consiting of alloy of earth-acid metal and capacitor provided with the same
JP5020020B2 (en) Manufacturing method of solid electrolytic capacitor
JP3711964B2 (en) Manufacturing method of solid electrolytic capacitor
JP5623214B2 (en) Solid electrolytic capacitor
JP4131709B2 (en) Manufacturing method of solid electrolytic capacitor
JP4670402B2 (en) Manufacturing method of solid electrolytic capacitor
JP2792469B2 (en) Solid electrolytic capacitor and method of manufacturing the same
WO2014091647A1 (en) Carbon paste and solid electrolytic capacitor element
JPH1174158A (en) Solid electrolyte forming paste composition, solid electrolytic capacitor provided therewith, and manufacture thereof
JPH11265838A (en) Paste composition for solid electrolyte formation, solid electrolysis capacitor using the same and manufacture thereof
JP4454526B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH10326521A (en) Paste composition for forming solid electrolyte, and manufacture of electronic part using this paste composition
JP5611745B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
KR102016481B1 (en) Solid Electrolyte Capacitor and fabrication method thereof
JPH11243036A (en) Paste constituent for forming solid electrolyte and manufacture of solid electrolytic capacitor using the same
WO2020137548A1 (en) Electrolytic capacitor and method for producing same
JPH11274009A (en) Solid electrolytic capacitor and manufacture thereof
JPH10275746A (en) Manufacture of solid-state electrolytic capacitor
JP2004221224A (en) Solid electrolytic capacitor