JPH11265708A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery

Info

Publication number
JPH11265708A
JPH11265708A JP10065812A JP6581298A JPH11265708A JP H11265708 A JPH11265708 A JP H11265708A JP 10065812 A JP10065812 A JP 10065812A JP 6581298 A JP6581298 A JP 6581298A JP H11265708 A JPH11265708 A JP H11265708A
Authority
JP
Japan
Prior art keywords
positive electrode
ion secondary
lithium ion
coating film
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10065812A
Other languages
Japanese (ja)
Inventor
Satoshi Yanase
聡 柳瀬
Takahiro Himeda
卓宏 姫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP10065812A priority Critical patent/JPH11265708A/en
Publication of JPH11265708A publication Critical patent/JPH11265708A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery having high adhesion strength of the boundary face between an electrode coating film and a collector without damaging battery capacity. SOLUTION: In this lithium ion secondary battery carbon material is used for a negative electrode, lithium oxide containing manganese, for a positive electrode, and after coating solution of high hinder concentration is applied to a collector and is dried, coating solution of low binder concentration is applied thereon and is dried to form an electrode so as to be used as the positive electrode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオン二次
電池に関する。
The present invention relates to a lithium ion secondary battery.

【0002】[0002]

【従来の技術】近年、電子携帯機器の発達に伴ない、そ
の駆動源となる電池の発達には著しいものがある。その
中でもリチウムイオン二次電池は高いエネルギー密度を
有することから特に注目を集めている。機器の小型化、
軽量化が可能なことから、リチウムイオン二次電池は、
最近、カメラ一体型VTRあるいは携帯電話等の携帯機
器に多く使用されるようになってきた。現在、一般的に
市販されているリチウムイオン二次電池は、正極活物質
にコバルト、ニッケル、マンガン等の遷移金属を含んだ
リチウム複合酸化物、負極活物質に炭素素材を用い、両
極間をリチウムイオンが移動する事によって充放電を行
う機構をとる。
2. Description of the Related Art In recent years, along with the development of electronic portable devices, there has been a remarkable progress in the development of batteries as driving sources thereof. Among them, lithium ion secondary batteries have attracted particular attention because of their high energy density. Equipment miniaturization,
Because it is possible to reduce the weight, lithium ion secondary batteries are
Recently, it has been widely used in portable devices such as a camera-integrated VTR and a mobile phone. Currently, generally available lithium ion secondary batteries use a lithium composite oxide containing a transition metal such as cobalt, nickel, and manganese as a positive electrode active material, a carbon material as a negative electrode active material, and a lithium gap between both electrodes. A mechanism for charging and discharging by moving ions is adopted.

【0003】正極活物質として用いられるリチウム複合
酸化物は含有される遷移金属によって電池正極としての
挙動が異なることが知られており、現在市場に見られる
リチウムイオン二次電池の正極活物質には、容量、電池
特性、安全性のバランスが良いという理由からコバルト
酸リチウムが用いられている。しかしながらコバルト酸
リチウムに含まれるコバルトは資源的にその埋蔵量が乏
しく、潜在的な供給不安が存在する事が指摘されてい
る。またコバルト酸リチウムの正極は電池が過充電状態
になった場合に負極上へのリチウム金属析出を誘発し、
発熱や発火に到る危険性を含んでいる。このためリチウ
ムイオン二次電池の安全性をさらに高めるという目的か
ら、安全性についてコバルトより優位であると考えられ
ているマンガン系正極の開発が盛んに行われている(例
えば特開昭55-100224号公報、特開昭58-220362号公報、
特開昭63-114065号公報など)。マンガン酸リチウムを正
極に用いた電池は、電池容量についてはコバルト酸リチ
ウム、ニッケル酸リチウムに劣るものの、過充電時や高
温時の安定性が大きく、それを正極に用いた電池は発火
や破裂の危険性が小さくなる。このことは、これまでリ
チウムイオン二次電池を使用する際に不可欠であった充
放電保護回路の簡略化につながり、コスト面でのメリッ
トにもつながる。またマンガンは資源量も豊富であり、
供給不安を引き起こす心配も少ない。
It is known that the lithium composite oxide used as a positive electrode active material behaves differently as a battery positive electrode depending on the contained transition metal, and the positive electrode active materials of lithium ion secondary batteries currently on the market include: Lithium cobaltate is used because it has a good balance between capacity, battery characteristics, and safety. However, it has been pointed out that cobalt contained in lithium cobaltate has a scarce resource reserve, and there is a potential supply anxiety. Also, the lithium cobaltate positive electrode induces lithium metal deposition on the negative electrode when the battery is overcharged,
Includes danger of overheating and ignition. Therefore, for the purpose of further enhancing the safety of lithium ion secondary batteries, manganese-based positive electrodes, which are considered to be superior to cobalt in safety, have been actively developed (for example, Japanese Patent Application Laid-Open No. 55-100224). JP, JP-A-58-220362,
JP-A-63-114065). Batteries using lithium manganate for the positive electrode are inferior to lithium cobalt oxide and lithium nickel oxide in terms of battery capacity, but have greater stability at overcharge and at high temperatures. Danger is reduced. This leads to simplification of the charge / discharge protection circuit which has been indispensable when using a lithium ion secondary battery, and also leads to cost advantages. Manganese is also rich in resources,
There is little worry about supply anxiety.

【0004】[0004]

【発明が解決しようとする課題】しかしながらマンガン
酸リチウムを正極に用いた電池は、次のような問題点を
内在している。マンガン酸リチウムを活物質として用い
た正極は、従来リチウムイオン二次電池の正極活物質と
して使われてきたリチウム酸コバルト系の正極と比べ
て、塗膜と集電体の界面の接着強度が小さく、その正極
の製造過程において十分な製造収率を得ることが出来な
い。また得られる電池の電池性能においても容量低下を
起こす割合が大きい。これらの現象は塗膜と集電体の界
面剥離が主な原因となっている。マンガン酸リチウムを
活物質として用いた正極において、塗膜と集電体の界面
の接着強度が小さい理由についての詳細は明らかでない
が、一般に塗膜中のバインダー濃度が大きいほど接着強
度が大きい傾向が見られる。しかしながら接着強度を高
く保つためにバインダー濃度を高くすることは電池全体
の活物質含量の低下につながり、電池容量を低下させる
結果となるため好ましくない。この相反する二つの課題
を解決するには、塗膜と集電体の界面近傍のバインダー
濃度のみを高く保ち、それ以外の塗膜部分については集
電性を維持するだけのバインダー濃度とすれば良い。し
かしながら塗膜の厚み方向のバインダー濃度を調整する
には、塗膜の乾燥条件を詳細に検討し、目的の濃度分布
を得るために厳密な調整を行わねばならない。また任意
の濃度に調整できるとは限らないこともありこの方法は
実用的でない。
However, a battery using lithium manganate for the positive electrode has the following problems. The positive electrode using lithium manganate as the active material has lower adhesive strength at the interface between the coating film and the current collector than the positive electrode based on cobalt lithium oxide, which has been conventionally used as the positive electrode active material for lithium ion secondary batteries. However, a sufficient production yield cannot be obtained in the production process of the positive electrode. Also, the battery performance of the obtained battery has a large rate of causing a capacity reduction. These phenomena are mainly caused by peeling of the interface between the coating film and the current collector. The details of the reason why the adhesive strength at the interface between the coating film and the current collector is low in a positive electrode using lithium manganate as an active material are not clear, but generally, the adhesive strength tends to increase as the binder concentration in the coating film increases. Can be seen. However, increasing the binder concentration to keep the bonding strength high is not preferable because it leads to a decrease in the active material content of the whole battery and results in a decrease in the battery capacity. In order to solve these two conflicting problems, only the binder concentration near the interface between the coating film and the current collector should be kept high, and the remaining coating film portion should have a binder concentration sufficient to maintain the current collecting property. good. However, in order to adjust the binder concentration in the thickness direction of the coating film, it is necessary to carefully examine the drying conditions of the coating film and make strict adjustments in order to obtain a desired concentration distribution. In addition, this method may not always be able to be adjusted to an arbitrary concentration, and this method is not practical.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討を重ねた結果、次のような方法が
有効であることを見出し本発明の完成に到った。すなわ
ち本発明は、負極に炭素素材、正極にマンガンを含んだ
リチウム酸化物を用いたリチウムイオン二次電池におい
て、バインダー濃度の高い塗液を集電体に塗布し乾燥さ
せた後、その上にバインダー濃度の低い塗液を塗布し乾
燥させて成形された電極を正極として用いることを特徴
とするリチウムイオン二次電池である。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the following method is effective, and have completed the present invention. That is, in the present invention, in a lithium ion secondary battery using a carbon material for the negative electrode and a lithium oxide containing manganese for the positive electrode, a coating solution having a high binder concentration is applied to the current collector, dried, and then placed thereon. A lithium ion secondary battery characterized in that an electrode formed by applying and drying a coating solution having a low binder concentration is used as a positive electrode.

【0006】本発明の特徴は、正極を作製する際、バイ
ンダー濃度の高い塗液を集電体に塗布し乾燥させた後、
その上にバインダー濃度の低い塗液を塗布し乾燥させ、
正極を成形することにある。この方法を用いることによ
って、塗膜と集電体の界面近傍のバインダー濃度のみを
高く保ち、それ以外の塗膜部分については集電性を維持
するだけのバインダー濃度とすることができるため、そ
の結果として電池容量を損なわずに、塗膜と集電体の界
面の接着強度を高くすることができる。
A feature of the present invention is that when a positive electrode is produced, a coating solution having a high binder concentration is applied to a current collector and dried,
Apply a coating solution with a low binder concentration on it and dry it,
It is to form a positive electrode. By using this method, only the binder concentration near the interface between the coating film and the current collector can be kept high, and the remaining coating film portion can have a binder concentration sufficient to maintain the current collecting property. As a result, the adhesive strength at the interface between the coating film and the current collector can be increased without impairing the battery capacity.

【0007】本発明は負極に炭素素材、正極にマンガン
を含んだリチウム酸化物を用いたリチウムイオン二次電
池に関するものである。負極に用いる炭素素材としては
天然グラファイト、人造グラファイト、ソフトカーボ
ン、ハードカーボンなどのリチウムイオン二次電池の負
極として現在一般的に用いられている炭素素材またはそ
れらの混合物を用いることが出来る。正極に用いるマン
ガンを含んだリチウム酸化物としては、化学量論組成の
マンガン酸リチウムをはじめ、マンガンとリチウムの組
成比を化学量論組成からずらした非化学量論組成のマン
ガン酸リチウムやコバルト、ニッケル、マグネシウム、
クロム、アルミニウムなどのマンガン以外の元素が添加
されたマンガン酸リチウムなどが挙げられる。
The present invention relates to a lithium ion secondary battery using a carbon material for a negative electrode and a lithium oxide containing manganese for a positive electrode. As the carbon material used for the negative electrode, a carbon material currently used generally as a negative electrode of a lithium ion secondary battery, such as natural graphite, artificial graphite, soft carbon, and hard carbon, or a mixture thereof can be used. Lithium oxide containing manganese used for the positive electrode includes lithium manganate having a stoichiometric composition, lithium manganate or cobalt having a non-stoichiometric composition in which the composition ratio of manganese and lithium is shifted from the stoichiometric composition, Nickel, magnesium,
Examples thereof include lithium manganate to which an element other than manganese such as chromium and aluminum is added.

【0008】これらの活物質を用いたリチウムイオン二
次電池とは正極、負極、セパレーター、電解液、その他
の電池缶部材から成り、正極と負極をリチウムイオンが
移動する事によって充放電を繰り返す電池を指す。電池
缶の形については円筒型、角型、薄角型、コイン型など
様々なタイプが考えられる。以上のようなリチウムイオ
ン二次電池の正極を製造するには通常次のようなプロセ
スによる。活物質、フィラー、バインダーを適当な溶剤
と混合してスラリー状の途液とし、これを集電体の上に
塗布して乾燥させる。本発明においてフイラーとしては
カーボンブラック、アセチレンブラック、天然グラファ
イト、人造グラファイト、ソフトカーボン、ハードカー
ボン、ピッチコークスなどのカーボン類が好適である。
またバインダーとしてはポリフッ化ビニリデン、ポリテ
トラフルオロエチレン、ポリヘキサフルオロプロピレン
などのポリマーあるいはそれらのコポリマーを主な主成
分としたフッ素系バインダーが推奨される。これらを分
散させる溶剤としては特に限定されないが、活物質、フ
ィラー、バインダーを均一に分散させ、また途液の特性
が変化しにくい溶剤としてN-メチルピロリドンが挙げら
れる。調整した塗液は集電体状に均一に塗布した後、加
熱によって溶剤を蒸発させて乾燥させる。集電体として
は十分な導電性を持ち、電気的、化学的に安定なアルミ
箔を用いるのが好適である。
A lithium ion secondary battery using these active materials is composed of a positive electrode, a negative electrode, a separator, an electrolytic solution, and other battery can members, and is charged and discharged repeatedly by moving lithium ions between the positive electrode and the negative electrode. Point to. Various types of battery cans are conceivable, such as a cylindrical type, a square type, a thin square type, and a coin type. In order to manufacture the positive electrode of the above-described lithium ion secondary battery, the following process is usually performed. The active material, filler, and binder are mixed with an appropriate solvent to form a slurry-like liquid, which is applied on a current collector and dried. In the present invention, carbons such as carbon black, acetylene black, natural graphite, artificial graphite, soft carbon, hard carbon, and pitch coke are preferable as the filler.
As the binder, a fluorine-based binder containing a polymer such as polyvinylidene fluoride, polytetrafluoroethylene, or polyhexafluoropropylene or a copolymer thereof as a main component is recommended. Although the solvent for dispersing these is not particularly limited, N-methylpyrrolidone is used as a solvent for uniformly dispersing the active material, the filler, and the binder and hardly changing the properties of the liquid. After the prepared coating liquid is uniformly applied to a current collector, the solvent is evaporated by heating and dried. As the current collector, it is preferable to use an aluminum foil having sufficient conductivity and being electrically and chemically stable.

【0009】以上のようにして得られた正極塗膜の上に
更に塗液を均一に塗布し再び乾燥させて最終的な電極と
するのが本発明の特徴である。この時、1回目に塗布す
る塗液のバインダー濃度を高く、2回目に塗布する塗液
のバインダー濃度を低くする。1回目に塗布する塗液の
バインダー濃度は、集電体と塗膜との十分な接着強度を
維持する濃度範囲として、活物質に対して2〜20重量%、
好ましくは5〜10重量%とするのが好適である。2回目に
塗布する塗液のバインダー濃度に関しては塗膜の構造が
維持できる範囲であれば良く特に限定されず、1回目の
塗液のバインダー濃度よりも低い範囲で1〜5重量%程度
が推奨される。また1回目に塗布する塗液の塗布量と2回
目に塗布する塗液の塗布量については乾燥後に得られる
塗膜の膜厚を考慮して決定すれば良いが、十分な接着強
度を維持しつつ正極の容量を低下させない範囲として、
1回目の塗布量と2回目の塗布量の比で1対10から1対3の
範囲が推奨される。このようにして得られた塗膜を再び
乾燥して最終的な正極塗膜が得られる。このようにして
得られた塗膜のかつ断面を、蛍光エックス線等の分析手
段を用いて分析すると、バインダーに含まれるフッ素に
ついて、塗膜の膜厚方向分布の情報が得られるが、本発
明によって得られる正極塗膜は、集電体近傍のバインダ
ー由来のフッ素濃度が他の部分に対して高いという特徴
を有する。これは集電体との界面近傍に十分な量のバイ
ンダーが分布していることを示しており、これによって
正極として十分な接着強度を発現できるようになる。
It is a feature of the present invention that a coating liquid is further uniformly applied on the positive electrode coating film obtained as described above and dried again to obtain a final electrode. At this time, the binder concentration of the first application liquid is increased, and the binder concentration of the second application liquid is decreased. The binder concentration of the coating liquid applied for the first time is 2 to 20% by weight based on the active material, as a concentration range for maintaining a sufficient adhesive strength between the current collector and the coating film.
Preferably, the content is 5 to 10% by weight. The binder concentration of the second coating liquid is not particularly limited as long as the structure of the coating film can be maintained, and is preferably about 1 to 5% by weight in a range lower than the binder concentration of the first coating liquid. Is done. The application amount of the first application liquid and the application amount of the second application liquid may be determined in consideration of the thickness of the coating film obtained after drying, but it is necessary to maintain sufficient adhesive strength. The range that does not decrease the capacity of the positive electrode while
It is recommended that the ratio of the first application amount to the second application amount be in the range of 1:10 to 1: 3. The coating film thus obtained is dried again to obtain a final positive electrode coating film. When the cross section of the coating film obtained in this manner is analyzed using an analyzing means such as a fluorescent X-ray, information on the film thickness direction distribution of the coating film can be obtained for fluorine contained in the binder. The obtained positive electrode coating film has a feature that the concentration of fluorine derived from the binder near the current collector is higher than other portions. This indicates that a sufficient amount of the binder is distributed in the vicinity of the interface with the current collector, whereby sufficient adhesive strength can be exhibited as a positive electrode.

【0010】[0010]

【発明の実施の形態】以下に具体的な実施例によって本
発明を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to specific examples.

【0011】[0011]

【実施例1】マンガン酸リチウム、ポリフッ化ビニリデ
ン、グラファイト、N-メチルピロリドンを重量比で100
部、5部、7部、150部の割合に混合しスラリー状の塗液
1とした。これを15ミクロン厚のアルミ箔にクリアラン
ス50ミクロンの塗工用アプリケーターを用いて塗布した
あと120℃で40分乾燥した。次にマンガン酸リチウム、
ポリフッ化ビニリデン、グラファイト、N-メチルピロリ
ドンを重量比で100部、2部、7部、60部の割合に混合し
たスラリー状の塗液2を調整し、クリアランス50ミクロ
ンの塗工用アプリケーターを用いて塗液1で形成された
塗膜上に塗布し、120℃で20分乾燥し正極塗膜とした。
Example 1 Lithium manganate, polyvinylidene fluoride, graphite, and N-methylpyrrolidone were added in a weight ratio of 100.
Parts, 5 parts, 7 parts, and 150 parts, thereby obtaining a slurry-like coating liquid 1. This was applied to an aluminum foil having a thickness of 15 microns using a coating applicator having a clearance of 50 microns, and then dried at 120 ° C for 40 minutes. Then lithium manganate,
A slurry-like coating liquid 2 in which polyvinylidene fluoride, graphite, and N-methylpyrrolidone were mixed at a weight ratio of 100 parts, 2 parts, 7 parts, and 60 parts was prepared, and a coating applicator having a clearance of 50 microns was used. And coated on the coating film formed with the coating solution 1 and dried at 120 ° C. for 20 minutes to obtain a positive electrode coating film.

【0012】次に正極塗膜と集電体の界面の接着強度を
以下のように評価した。得られた正極を2センチ×10セ
ンチの大きさに切り出し、塗膜側の全面に厚み0.2ミリ
の粘着テープをはりつけた。この状態で粘着テープを集
電体から剥がしとると、粘着テープは塗膜が付着した状
態で集電体から剥がれ、集電体と塗膜の界面が現れた。
このようにしてから今田製作所製SU-52型引っ張り試験
機に塗膜の付着した粘着テープ部と集電体部を各々固定
し、引っ張り速度10ミリ/分で引っ張り試験を行い、得
られた張力の最大値を界面の接着強度とした。この方法
によって得られた正極の接着強度は10.5gであり、正極
塗膜として十分な強度を有していた。
Next, the adhesive strength at the interface between the positive electrode coating film and the current collector was evaluated as follows. The obtained positive electrode was cut into a size of 2 cm × 10 cm, and an adhesive tape having a thickness of 0.2 mm was adhered to the entire surface on the coating film side. When the pressure-sensitive adhesive tape was peeled off from the current collector in this state, the pressure-sensitive adhesive tape was peeled off from the current collector with the coating applied thereto, and an interface between the current collector and the coating appeared.
In this way, the adhesive tape and the current collector with the coating film were respectively fixed to a SU-52 type tensile tester manufactured by Imada Seisakusho, and a tensile test was performed at a tensile speed of 10 mm / min. The maximum value was taken as the adhesive strength at the interface. The adhesive strength of the positive electrode obtained by this method was 10.5 g, which was sufficient for a positive electrode coating film.

【0013】[0013]

【実施例2〜5】塗液1中の各成分の組成を表1の様に
する以外は実施例1と同様に正極塗膜を作製し、評価し
た。結果を表1に示す。この方法によって得られた、正
極の接着強度は正極塗膜として十分な強度を有してい
た。
Examples 2 to 5 Positive electrode coating films were prepared and evaluated in the same manner as in Example 1 except that the composition of each component in the coating liquid 1 was as shown in Table 1. Table 1 shows the results. The adhesive strength of the positive electrode obtained by this method was sufficient as a positive electrode coating film.

【0014】[0014]

【比較例】マンガン酸リチウム、ポリフッ化ビニリデ
ン、グラファイト、N-メチルピロリドンを重量比で100
部、2部、7部、60部の割合に混合したスラリー状の塗液
1を調整し、クリアランス75ミクロンの塗工用アプリケ
ーターを用いて集電体上に塗布し、120℃で20分乾燥し
正極塗膜とした。接着強度の評価を実施例と同様に行っ
たところ3.5gであり、正極塗膜として十分な接着強度を
得ることは出来なかった。
[Comparative Example] Lithium manganate, polyvinylidene fluoride, graphite, N-methylpyrrolidone in a weight ratio of 100
Parts, 2 parts, 7 parts, and 60 parts of a slurry-like coating liquid 1 were prepared, applied to a current collector using a coating applicator having a clearance of 75 microns, and dried at 120 ° C. for 20 minutes. Then, a positive electrode coating film was obtained. When the evaluation of the adhesive strength was performed in the same manner as in the example, it was 3.5 g, and it was not possible to obtain sufficient adhesive strength as the positive electrode coating film.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】本発明によれば、正極製造時の収率を落
とさずに、十分な集電性を維持した塗膜を得ることがで
きる。
According to the present invention, it is possible to obtain a coating film which maintains a sufficient current collecting property without reducing the yield during the production of the positive electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 負極に炭素素材、正極にマンガンを含ん
だリチウム酸化物を用いたリチウムイオン二次電池にお
いて、バインダー濃度の高い塗液を集電体に塗布し乾燥
させた後、その上にバインダー濃度の低い塗液を塗布し
乾燥させて成形された電極を正極として用いることを特
徴とするリチウムイオン二次電池。
In a lithium ion secondary battery using a carbon material for a negative electrode and a lithium oxide containing manganese for a positive electrode, a coating solution having a high binder concentration is applied to a current collector, dried, and then placed on the current collector. A lithium ion secondary battery characterized in that an electrode formed by applying and drying a coating solution having a low binder concentration is used as a positive electrode.
JP10065812A 1998-03-16 1998-03-16 Lithium ion secondary battery Withdrawn JPH11265708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10065812A JPH11265708A (en) 1998-03-16 1998-03-16 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10065812A JPH11265708A (en) 1998-03-16 1998-03-16 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JPH11265708A true JPH11265708A (en) 1999-09-28

Family

ID=13297824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10065812A Withdrawn JPH11265708A (en) 1998-03-16 1998-03-16 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JPH11265708A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114473A1 (en) * 2010-03-17 2011-09-22 トヨタ自動車株式会社 Method for manufacturing a battery electrode
US20120121955A1 (en) * 2010-05-28 2012-05-17 Kazuki Endo Positive electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
JPWO2011013414A1 (en) * 2009-07-31 2013-01-07 トヨタ自動車株式会社 Method for manufacturing battery electrode

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011013414A1 (en) * 2009-07-31 2013-01-07 トヨタ自動車株式会社 Method for manufacturing battery electrode
JPWO2011013413A1 (en) * 2009-07-31 2013-01-07 トヨタ自動車株式会社 Method for manufacturing battery electrode
JP5445871B2 (en) * 2009-07-31 2014-03-19 トヨタ自動車株式会社 Method for manufacturing battery electrode
JP5522487B2 (en) * 2009-07-31 2014-06-18 トヨタ自動車株式会社 Method for manufacturing battery electrode
WO2011114473A1 (en) * 2010-03-17 2011-09-22 トヨタ自動車株式会社 Method for manufacturing a battery electrode
JP5534370B2 (en) * 2010-03-17 2014-06-25 トヨタ自動車株式会社 Method for manufacturing battery electrode
US9159987B2 (en) 2010-03-17 2015-10-13 Toyota Jidosha Kabushiki Kaisha Method for manufacturing battery electrode including depositing a liquid phase bilayer
US20120121955A1 (en) * 2010-05-28 2012-05-17 Kazuki Endo Positive electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
CN102473900A (en) * 2010-05-28 2012-05-23 松下电器产业株式会社 Cathode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US9112209B2 (en) 2010-05-28 2015-08-18 Panasonic Intellectual Property Management Co., Ltd. Positive electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
CN108428867B (en) Fast charging type lithium ion battery and preparation method thereof
US7459235B2 (en) Anode composition for lithium battery, and anode and lithium battery using the same
JP4777593B2 (en) Method for producing lithium ion secondary battery
KR20140137660A (en) Electrode for secondary battery and secondary battery comprising the same
JP2000067852A (en) Lithium secondary battery
JP6959010B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2008270160A (en) Non-aqueous electrolyte battery
JP2015103449A (en) Negative electrode active material layer for lithium ion secondary batteries and lithium ion secondary battery
US10468663B2 (en) Electrode with porous binder coating layer, method for manufacturing the same, and lithium secondary battery comprising the same
JPH10241670A (en) Electrode for nonaqueous electrolytic secondary battery and manufacture thereof
JP2001357855A (en) Nonaqueous electrolyte secondary battery
JP4053657B2 (en) Lithium secondary battery and manufacturing method thereof
JP2006172860A (en) Negative electrode for lithium secondary battery and its manufacturing method, and lithium secondary battery
JPH06310126A (en) Nonaquous electrolytic secondary battery
JPH11185733A (en) Manufacture of lithium polymer secondary battery
KR20010066272A (en) Polymer electrolyte having multilayer structure, method for preparing the same and lithium secondary battery employing the same
JPH10116604A (en) Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery using it
JPH10208729A (en) Slurry for electrode
JPH1167277A (en) Lithium secondary battery
JPH11265708A (en) Lithium ion secondary battery
JP2002015726A (en) Gel electrolyte secondary battery
JPH1167207A (en) Negative electrode for lithium secondary battery
JP2020087627A (en) Negative electrode active material composite for all solid state battery
JPH0589871A (en) Electrode of secondary battery
JPH10284039A (en) Secondary battery

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040820

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607