JPH11264080A - Electric discharge surface treating device and electric discharge surface treatment using the same - Google Patents

Electric discharge surface treating device and electric discharge surface treatment using the same

Info

Publication number
JPH11264080A
JPH11264080A JP6584398A JP6584398A JPH11264080A JP H11264080 A JPH11264080 A JP H11264080A JP 6584398 A JP6584398 A JP 6584398A JP 6584398 A JP6584398 A JP 6584398A JP H11264080 A JPH11264080 A JP H11264080A
Authority
JP
Japan
Prior art keywords
surface treatment
discharge
nitrogen
treated
green compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6584398A
Other languages
Japanese (ja)
Other versions
JP3562298B2 (en
Inventor
Yoshihito Imai
祥人 今井
Hidetaka Miyake
英孝 三宅
Akihiro Goto
昭弘 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP06584398A priority Critical patent/JP3562298B2/en
Publication of JPH11264080A publication Critical patent/JPH11264080A/en
Application granted granted Critical
Publication of JP3562298B2 publication Critical patent/JP3562298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the electric discharge surface treating device capable of easily obtaining a nitrided surface treated layer good in quality in spite of a material to be treated. SOLUTION: In the electric discharge surface treating device, an electric discharge treating means and a nitrogen supplying means are provided, and an atmosphere in which the electric discharge is generated is kept in a nitrogen component-containing atmosphere, and voltage is applied between a green compact electrode consisting of a surface treating material or the material being a starting material of the surface treating material and the material to be treated to form the nitrided surface treated layer 4 on the surface of the material 3 to be treated. A processing liq. is supplied preferably between the green compact electrode and the material to be treated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば金属または
セラミック等に、放電表面処理により窒化表面処理層を
形成する放電表面処理装置およびこれを用いた放電表面
処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge surface treatment apparatus for forming a nitrided surface treatment layer on a metal or ceramic by discharge surface treatment and a discharge surface treatment method using the same.

【0002】[0002]

【従来の技術】図11は例えば特開平7―70761号
公報に記載されている表面処理方法を説明するための説
明図であり、液中放電により金属材料の表面をコーティ
ングして、耐食性または耐磨耗性を与えるものである。
図11(a)および(b)は各々一次加工および二次加
工を説明する説明図であり、図中26は被処理材、27
は一次加工用の圧粉体電極、28は一次加工用圧粉体電
極27の電極材料、29は二次加工用電極である。
2. Description of the Related Art FIG. 11 is an explanatory view for explaining a surface treatment method described in, for example, Japanese Patent Application Laid-Open No. 7-70761. It gives abrasion.
FIGS. 11A and 11B are explanatory views for explaining the primary processing and the secondary processing, respectively. In FIG.
Is a green compact electrode for primary processing, 28 is an electrode material of the green compact electrode 27 for primary processing, and 29 is an electrode for secondary processing.

【0003】即ち、まずWC(タングステンカーバイ
ド)とCo(コバルト)の粉末を混合して圧縮成形した
一次加工用のWC―Co混合圧粉体電極27を用いて、
液中で放電処理をおこなうことにより、被処理材料26
である炭素鋼(ワーク)に上記圧粉体電極27の電極材
料28であるWC―Coを堆積させる(1次加工)。次
に、二次加工用の別の電極29(例えば、銅電極または
グラファイト電極等、一次加工用の電極より消耗しにく
い電極)によって、再溶融放電加工(二次加工)をおこ
ない、より高い硬度と高い密着力を得る方法である。上
記のように処理することにより、一次加工の堆積のまま
では、被覆層は硬度もHv=1410程度であり空洞も
多かったが、二次加工の再溶融加工によって被覆層の空
洞が減少し、硬度もHv=1750と向上した。しかし
ながら、上記方法は鋼材に対しては硬くしかも密着度の
よい被覆層が得られるが、超硬合金のような焼結材料の
表面には強固な密着力を持った被覆層を形成することは
困難である。
[0003] First, using a WC-Co mixed green compact electrode 27 for primary processing, which is obtained by mixing WC (tungsten carbide) and Co (cobalt) powder and compression-molding the mixture,
By performing the discharge treatment in the liquid, the material to be treated 26
WC-Co, which is an electrode material 28 of the green compact electrode 27, is deposited on a carbon steel (work) having the following characteristics (primary processing). Next, remelting discharge machining (secondary machining) is performed by another electrode 29 for secondary machining (for example, an electrode that is less likely to be consumed than the electrode for primary machining, such as a copper electrode or a graphite electrode), and has a higher hardness. This is a method to obtain high adhesion. By the treatment as described above, the hardness of the coating layer was about Hv = 1410 and the number of cavities was large in the as-deposited state of the primary processing, but the cavities of the coating layer were reduced by the re-melting processing of the secondary processing, The hardness also improved to Hv = 1750. However, although the above method can provide a coating layer that is hard and has good adhesion to steel, it is not possible to form a coating layer having strong adhesion on the surface of a sintered material such as a cemented carbide. Have difficulty.

【0004】しかも、Ti等の硬質炭化物を形成する材
料を上記圧粉体電極27として用い、被処理材料26で
ある金属材料(金属,超硬合金)との間に放電を発生さ
せると、再溶融の過程(二次加工)なしに強固な硬質膜
を被処理材料の表面に形成できることが知られていた。
Further, when a material forming a hard carbide such as Ti is used as the green compact electrode 27 and a discharge is generated between the material to be processed 26 and a metal material (metal, cemented carbide), It has been known that a strong hard film can be formed on the surface of a material to be processed without a melting process (secondary processing).

【0005】また、TiH2(水素化チタン)など、金
属の水素化物を圧粉体電極27の材料として用い、上記
と同様にして被処理材料である金属材料との間に放電を
発生させると、上記Ti等の材料を単独で使用する場合
よりも、速くて密着性よく硬質膜を形成することができ
ることが知られていた。
When a metal hydride such as TiH 2 (titanium hydride) is used as a material for the green compact electrode 27 and a discharge is generated between the material and the metal material to be processed in the same manner as described above. It has been known that a hard film can be formed faster and with better adhesion than when the above-mentioned materials such as Ti are used alone.

【0006】また、TiH2(水素化チタン)等の水素
化物に他の金属やセラミックスを混合したものを圧粉体
電極27の材料として用い、被処理材料である金属材料
との間に放電を発生させると硬度または耐磨耗性等、様
々な性質をもった硬質被膜を素早く形成することができ
ることが知られていた。
Further, a mixture of a hydride such as TiH 2 (titanium hydride) and other metals or ceramics is used as a material for the green compact electrode 27, and discharge is caused between the material and the metal material to be processed. It has been known that when generated, a hard coating having various properties such as hardness or abrasion resistance can be quickly formed.

【0007】さらに、上記Ti等の金属電極、TiH2
等の金属の水素化物圧粉体電極、TiH2(水素化チタ
ン)等の金属の水素化物に他の金属やセラミックスを混
合した圧粉体電極などの電極を使用して形成した被膜を
窒化することにより、さらに質の良い被膜とすることが
できることも知られていた。
Further, a metal electrode of Ti or the like, TiH 2
Nitriding of a coating formed using an electrode such as a hydride compact electrode of a metal such as Ti, and a compact electrode in which another metal or ceramic is mixed with a hydride of a metal such as TiH 2 (titanium hydride) It has also been known that a higher quality coating can be obtained.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来被
膜の窒化方法としてはPVD(物理蒸着)等の方法が用
いられてきたが、真空等複雑な装置が必要であるという
課題があった。また、カーボンを主成分とする加工液中
で放電を発生させて表面処理層を形成する場合、カーボ
ンの比率が圧倒的に高く、形成される表面処理層は炭化
物になりやすい反応雰囲気になっている。従って、油中
での放電では窒化物を形成することは非常に困難であっ
た。
However, conventionally, a method such as PVD (physical vapor deposition) has been used as a method of nitriding a film, but there is a problem that a complicated apparatus such as a vacuum is required. In addition, when a surface treatment layer is formed by generating an electric discharge in a working fluid containing carbon as a main component, the ratio of carbon is overwhelmingly high, and the formed surface treatment layer becomes a reaction atmosphere that easily becomes carbide. I have. Therefore, it was very difficult to form nitrides by discharging in oil.

【0009】本発明は、かかる課題を解決するためにな
されたもので、被処理材の材質に係わらずに質のよい窒
化表面処理層を、容易に得ることができる放電表面処理
装置およびこれを用いた放電表面処理方法を得ることを
目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an electric discharge surface treatment apparatus and a discharge surface treatment apparatus capable of easily obtaining a high quality nitrided surface treatment layer regardless of the material of the material to be treated. An object is to obtain a used discharge surface treatment method.

【0010】[0010]

【課題を解決するための手段】本発明に係る第1の放電
表面処理装置は、表面処理材料または表面処理材料の元
となる材料からなる圧粉体電極と被処理材との間に電圧
を印加して放電を発生させる放電処理手段、並びに放電
が発生する雰囲気を窒素成分含有雰囲気とする窒素供給
手段を備えたものである。
According to a first aspect of the present invention, there is provided a discharge surface treatment apparatus which applies a voltage between a green compact electrode made of a surface treatment material or a material which is a source of the surface treatment material and a material to be treated. Discharge processing means for generating a discharge by applying a voltage, and nitrogen supply means for setting the atmosphere in which the discharge occurs to a nitrogen component-containing atmosphere.

【0011】本発明に係る第2の放電表面処理装置は、
上記第1の放電表面処理装置において、圧粉体電極と被
処理材との間に加工液を供給するものである。
A second discharge surface treatment apparatus according to the present invention comprises:
In the first discharge surface treatment apparatus, a working fluid is supplied between the green compact electrode and the workpiece.

【0012】本発明に係る第3の放電表面処理装置は、
上記第1または第2の放電表面処理装置において、窒素
供給手段は圧粉体電極と被処理材との間に窒素成分含有
物を供給するものである。
A third discharge surface treatment apparatus according to the present invention comprises:
In the first or second discharge surface treatment apparatus, the nitrogen supply means supplies a nitrogen component-containing substance between the green compact electrode and the material to be treated.

【0013】本発明に係る第4の放電表面処理装置は、
上記第3の放電表面処理装置において、窒素成分含有物
が気体のものである。
[0013] A fourth discharge surface treatment apparatus according to the present invention comprises:
In the third discharge surface treatment apparatus, the nitrogen component-containing substance is a gas.

【0014】本発明に係る第5の放電表面処理装置は、
上記第4の放電表面処理装置において、窒素成分含有物
が窒素ガスまたはアンモニアガスのものである。
A fifth discharge surface treatment apparatus according to the present invention comprises:
In the fourth discharge surface treatment apparatus, the nitrogen component-containing substance is nitrogen gas or ammonia gas.

【0015】本発明に係る第1の放電表面処理方法は、
表面処理材料または表面処理材料の元となる材料からな
る圧粉体電極と被処理材との間に電圧を印加し、窒素成
分含有雰囲気中で放電を発生させることにより上記被処
理材の表面に窒化表面処理層を形成する方法である。
[0015] The first discharge surface treatment method according to the present invention comprises:
A voltage is applied between the surface treatment material or the green compact electrode composed of the material of the surface treatment material and the material to be treated, and a discharge is generated in an atmosphere containing a nitrogen component, thereby causing the surface of the material to be treated to have a discharge. This is a method for forming a nitrided surface treatment layer.

【0016】本発明に係る第2の放電表面処理方法は、
上記第1の放電表面処理方法において、放電によって炭
素を分解生成する加工液中において放電を発生させる方
法である。
[0016] A second discharge surface treatment method according to the present invention comprises:
In the first discharge surface treatment method, a discharge is generated in a machining fluid that decomposes and generates carbon by the discharge.

【0017】[0017]

【発明の実施の形態】実施の形態1.図1は本発明の第
1の実施の形態の放電表面処理装置を説明する説明図で
ある。図において、1はTiH2(水素化チタン)系の
圧粉体電極、3は被処理材、2は圧粉体電極1を保持す
る保持装置であり、Z軸駆動機構5に接続されている。
9,10,5は保持装置2をそれぞれX、Y、Zの任意
の方向にNC制御装置(図示せず)の指令により移動さ
せる駆動機構であり、制御回路14に接続され、さらに
軌跡移動制御回路15につながれ、X軸駆動機構9はX
ステージ17に、Y軸駆動機構10はYステージ18に
接続されている。11は加工槽、12は加工液、13は
放電を発生させるための電源装置で、圧粉体電極1と被
処理材3に接続されている。16は処理中の極間電圧を
検出する極間検出回路であり圧粉体電極1と被処理材3
に接続される。以上の構成により、圧粉体電極1と被処
理材3との間に電源装置13により電圧を印加して放電
を発生させる放電処理手段となり、上記被処理材3の表
面に表面処理層4を形成する。6は窒素ガスボンベで導
管8によって保持装置2と接続され、7は窒素ガスボン
ベ6のバルブであり制御回路14に接続される。以上の
構成により、放電雰囲気を窒素成分含有雰囲気として窒
化表面処理層を形成するための窒素を噴出して供給する
窒素供給手段となり、4は上記のように放電と窒化処理
により形成される表面処理層である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is an explanatory diagram illustrating a discharge surface treatment apparatus according to a first embodiment of the present invention. In the figure, reference numeral 1 denotes a TiH 2 (titanium hydride) -based green compact electrode, 3 denotes a workpiece, and 2 denotes a holding device for holding the green compact electrode 1, which is connected to a Z-axis drive mechanism 5. .
Numerals 9, 10, and 5 denote drive mechanisms for moving the holding device 2 in arbitrary directions of X, Y, and Z in accordance with commands from an NC control device (not shown). Circuit 15 and the X-axis drive mechanism 9
The Y-axis drive mechanism 10 is connected to a Y stage 18. 11 is a processing tank, 12 is a processing liquid, 13 is a power supply device for generating electric discharge, and is connected to the green compact electrode 1 and the workpiece 3. Reference numeral 16 denotes a gap detection circuit for detecting a gap voltage during processing, which is a green compact electrode 1 and a workpiece 3
Connected to. With the above configuration, a discharge processing means for generating a discharge by applying a voltage between the green compact electrode 1 and the processing target material 3 by the power supply device 13, and forming the surface processing layer 4 on the surface of the processing target material 3. Form. Reference numeral 6 denotes a nitrogen gas cylinder connected to the holding device 2 by a conduit 8, and reference numeral 7 denotes a valve of the nitrogen gas cylinder 6, which is connected to the control circuit 14. With the above structure, the discharge atmosphere is a nitrogen component-containing atmosphere, and nitrogen supply means for ejecting and supplying nitrogen for forming a nitrided surface treatment layer is formed. Layer.

【0018】次に上記装置を用いた放電表面処理方法
を、被処理材3にTi系の被膜を形成する場合について
説明する。被処理材3として炭素鋼を、圧粉体電極1と
してTiH2(水素化チタン)系の圧粉体電極を、放電
加工液12として放電により炭素を分解生成する油を用
いて、加工液12中で放電を発生させた。この場合、電
極1の極性が−、被処理材3の極性が+であるが、極性
が反対でも、効果に差があるが、同様の効果が得られ
る。また、電極1としては表面処理層の元となる材料で
あるTiH2(水素化チタン)系の圧粉体電極だけでな
く、ソリッドのTi電極でもよい。ただし、膜形成の速
度、密着性、処理の容易さ等の点でTiH2(水素化チ
タン)系の圧粉体電極が勝っている。また、被処理材3
としては、炭素鋼だけでなく、超硬合金等導電性のもの
であればよい。
Next, a description will be given of a discharge surface treatment method using the above-described apparatus, in which a Ti-based film is formed on the material 3 to be treated. A carbon steel is used as the material to be treated 3, a TiH 2 (titanium hydride) -based green compact electrode is used as the green compact electrode 1, and a machining fluid 12 is used as the electrical discharge machining fluid 12 using an oil which decomposes and generates carbon by electric discharge. A discharge was generated in the inside. In this case, the polarity of the electrode 1 is-and the polarity of the material to be processed 3 is +. Even if the polarity is reversed, there is a difference in effects, but the same effect can be obtained. Further, the electrode 1 may be not only a TiH 2 (titanium hydride) -based green compact electrode, which is a material serving as a material of the surface treatment layer, but also a solid Ti electrode. However, TiH 2 (titanium hydride) -based green compact electrodes are superior in terms of film formation speed, adhesion, and ease of processing. Also, the material to be treated 3
The material may be not only carbon steel but also a conductive material such as a cemented carbide.

【0019】本実施の形態において金属の水素化物をベ
ースにした電極を使用することにより、以下の効果を得
ることができる。つまり、金属の水素化物は一般的に不
安定であり、数百度の温度で分解して次式のように水素
を放出する。 TiH2 → Ti+H2 そのため、金属の水素化物をベースにした電極で放電を
行うと分解した水素が被処理材料の表面をクリーニング
する効果がある。また、金属の水素化物をベースにした
電極は放電の熱で容易に崩れるため、コーティングのス
ピードが速くなる。
The following effects can be obtained by using an electrode based on a metal hydride in the present embodiment. That is, hydrides of metals are generally unstable and decompose at a temperature of several hundred degrees to release hydrogen as in the following equation. TiH 2 → Ti + H 2 Therefore, when a discharge is performed at an electrode based on a metal hydride, decomposed hydrogen has an effect of cleaning the surface of the material to be treated. Also, electrodes based on metal hydrides are easily destroyed by the heat of the discharge, thus increasing the coating speed.

【0020】上記放電と同時に圧粉体電極1と被処理材
3との間隙に、窒素ガスボンベ6から導管8を通り、圧
粉体電極1に開けられた孔から窒素ガスを噴出する。窒
素の供給量はバルブ7に接続される制御回路15によっ
て調整される。窒素ガスの供給方法は図1に示すよう
に、電極から供給する以外に導管8の開口端を放電間隙
に向けて窒素ガスを噴出させることでも同様の効果が得
られる。
Simultaneously with the above-mentioned discharge, nitrogen gas is jetted from a hole opened in the green compact electrode 1 into the gap between the green compact electrode 1 and the workpiece 3 through a conduit 8 from a nitrogen gas cylinder 6. The supply amount of nitrogen is adjusted by a control circuit 15 connected to the valve 7. As shown in FIG. 1, the same effect can be obtained by supplying nitrogen gas with the open end of the conduit 8 directed toward the discharge gap, as shown in FIG.

【0021】放電が発生する雰囲気を窒素成分含有雰囲
気とするために供給するものは、上記のように窒素ガス
に限定されるものではなく、例えばアンモニア等でもよ
く、窒化処理の反応性からはむしろアンモニアガスの方
がよい。ただし、アンモニアガスは強い臭いがあるた
め、臭いの処理を工夫する必要がある。また、上記物質
の供給形態も上記のように気体に限らず液体でもよく、
例えば気体窒素以外に液体窒素でもよい。
What is supplied to make the atmosphere in which the discharge is generated an atmosphere containing a nitrogen component is not limited to nitrogen gas as described above, but may be, for example, ammonia or the like. Ammonia gas is better. However, since ammonia gas has a strong odor, it is necessary to devise a treatment for the odor. Further, the supply form of the substance is not limited to gas as described above, and may be liquid,
For example, liquid nitrogen may be used instead of gaseous nitrogen.

【0022】放電は加工液中でおこなったり、加工液を
吹きかける方式でよく、加工液を吹きかけながら放電を
おこない、同時に周囲を窒素雰囲気にして窒化すること
もできる。また、放電を加工液を含有しない窒素成分含
有雰囲気中でおこなってもよく、雰囲気を気体窒素雰囲
気とした気中放電によって窒化被膜を形成できる。この
場合、チタンの電極を使用するとTiN被膜が生成さ
れ、油を浸透させた圧粉体電極を使用すればTiCN被
膜が生成される。
The electric discharge may be carried out in the working fluid or by spraying the working fluid. The discharge may be performed while the working fluid is being sprayed, and at the same time, the surroundings may be nitrided in a nitrogen atmosphere. Further, the discharge may be performed in a nitrogen component-containing atmosphere containing no machining fluid, and the nitride film can be formed by aerial discharge in a gas nitrogen atmosphere. In this case, the use of a titanium electrode produces a TiN film, and the use of an oil-impregnated green compact electrode produces a TiCN film.

【0023】さらに、電極成分、加工液の種類により被
処理材に形成する表面処理層の成分を変更することがで
きる。
Further, the components of the surface treatment layer formed on the material to be treated can be changed depending on the electrode components and the type of the working liquid.

【0024】本実施の形態において、被処理材3とTi
2(水素化チタン)系の圧粉体電極1との間の放電に
より形成された表面処理層は、TiC(炭化チタン)が
主成分となる。これは、加工液12が油であるため、放
電の熱で分解した油の成分のC(炭素)と電極中のTi
が熱により次式のように化学反応を起こしTiCとなる
ためである。 Ti+C → TiC TiCは非常に硬質(ビッカース硬度2000〜300
0)であり、被膜として良質のものである。Ti以外に
も炭化物が硬質の物質であるV(バナジウム)、Nb
(ニオブ)、Ta(タンタル)等を成分とする電極を使
用し、同様に窒化されることにより靱性にも優れたもの
となる。TiCNは工具等へのコーティングの膜として
は、TiCよりもさらに良好な膜であることが知られて
いる。硬度はTiCと同程度であるが、鉄との親和性が
TiCよりさらに低く、工具へのコーティング材料とし
ては、TiCNの方がより優れているということが知ら
れている。
In the present embodiment, the workpiece 3 and Ti
The surface treatment layer formed by the discharge between the H 2 (titanium hydride) -based green compact electrode 1 is mainly composed of TiC (titanium carbide). This is because, because the working fluid 12 is oil, C (carbon) as a component of the oil decomposed by the heat of discharge and Ti in the electrode
Is caused by heat to cause a chemical reaction as shown in the following formula to become TiC. Ti + C → TiC TiC is very hard (Vickers hardness 2000-300)
0), which is of good quality as a film. V (Vanadium), Nb, whose carbides are hard materials other than Ti
By using an electrode containing (niobium), Ta (tantalum) or the like as a component, and similarly nitrided, the toughness becomes excellent. It is known that TiCN is a better film than TiC as a coating film for tools and the like. Although the hardness is almost the same as that of TiC, it is known that TiCN has a lower affinity for iron than TiC, and TiCN is more excellent as a coating material for tools.

【0025】即ち、上記放電により、圧粉体電極1が消
耗し、圧粉体電極1の成分であるTiと上記窒素ガスの
窒素と加工液中のカーボンとが反応してチタンの炭窒化
物が生成されて表面処理層を形成したり、被処理材に形
成された圧粉体電極1の成分であるTiまたはTiCを
主成分とした表面処理層を、上記窒素ガスの窒素により
TiNまたはTiCNとするのである。また、本実施の
形態では表面処理層を被処理材に形成すると同時に窒素
ガスを供給したが、一旦形成された表面処理層を本実施
の形態と同様に窒素成分雰囲気中で放電処理しても同様
の効果を得ることができる。
That is, due to the discharge, the green compact electrode 1 is consumed, and Ti, which is a component of the green compact electrode 1, reacts with the nitrogen of the nitrogen gas and the carbon in the working fluid to form a carbonitride of titanium. Is generated to form a surface treatment layer, or the surface treatment layer mainly composed of Ti or TiC, which is a component of the green compact electrode 1 formed on the material to be treated, is treated with TiN or TiCN by the nitrogen of the nitrogen gas. That is. Further, in the present embodiment, the nitrogen gas is supplied at the same time as the surface treatment layer is formed on the material to be treated, but the surface treatment layer once formed may be subjected to discharge treatment in a nitrogen component atmosphere as in the present embodiment. Similar effects can be obtained.

【0026】実施の形態2.図2は本発明の第2の実施
の形態の放電表面処理装置を説明する説明図である。図
中、3は被処理材である鉄板で、貫通孔20を設け、こ
の貫通孔20から窒素ガス19を噴出するようにし、加
工液12として油を用いた。つまり、鉄板3に設けた貫
通孔20から窒素ガス19が所定の供給量{(噴出孔径
0.5mm、ガス圧2kgf/cm2)または(噴出孔
径1.0mm、ガス圧5kgf/cm2)}で噴出する
ように窒素ガスボンベを接続し、窒素ガスを放電間隙に
供給しながら、TiH2の圧粉体電極1を使用して鉄板
3に対して油中放電を行なった。上記のようにして形成
された表面処理層に対してSIMS(Secondar
y Ion Mass Spectroscopy))
による元素分析を行った。その結果を図3に示す。図3
は質量分析スペクトルで、図3(a)は窒素ガスの供給
量(噴出孔径0.5mm、噴出孔数5個、ガス圧2kg
f/cm2)の場合、図3(b)は窒素ガスの供給量
(噴出孔径1.0mm、噴出孔数5個、ガス圧5kgf
/cm2)の場合である。窒素の供給量が少ないと被膜
からは窒素元素が検出されない{図3(a)}が、一定
量以上を供給すると窒素が検出される{図3(b)}こ
とが示される。図4は上記のようにして得られた表面処
理層のうち、窒素の供給量の多い方のX線回折による組
成分析結果を示すX線回折スペクトルであるが、図に示
すように母材成分以外にTiCNが検出されることか
ら、窒素ガスの供給による油中放電でチタンの炭窒化被
膜が形成できることが明らかとなった。
Embodiment 2 FIG. FIG. 2 is an explanatory diagram illustrating a discharge surface treatment apparatus according to a second embodiment of the present invention. In the drawing, reference numeral 3 denotes an iron plate which is a material to be processed, which is provided with a through hole 20, a nitrogen gas 19 is jetted from the through hole 20, and oil is used as the working fluid 12. That is, the nitrogen gas 19 is supplied from the through hole 20 provided in the iron plate 3 at a predetermined supply amount {(ejection hole diameter 0.5 mm, gas pressure 2 kgf / cm 2 ) or (ejection hole diameter 1.0 mm, gas pressure 5 kgf / cm 2 )}. A nitrogen gas cylinder was connected so as to be ejected, and an in-oil discharge was performed on the iron plate 3 using the TiH 2 compact electrode 1 while supplying nitrogen gas to the discharge gap. A SIMS (Secondary) is applied to the surface treatment layer formed as described above.
y Ion Mass Spectroscopy))
Was used for elemental analysis. The result is shown in FIG. FIG.
Fig. 3 (a) is a mass spectrometry spectrum, and Fig. 3 (a) shows a supply amount of nitrogen gas (ejection hole diameter 0.5mm, number of ejection holes 5, gas pressure 2kg).
f / cm 2 ), FIG. 3B shows the supply amount of nitrogen gas (the diameter of the ejection hole is 1.0 mm, the number of the ejection holes is 5, the gas pressure is 5 kgf).
/ Cm 2 ). The nitrogen element is not detected from the coating when the supply amount of nitrogen is small (FIG. 3A), but nitrogen is detected when the supply amount is more than a certain amount (FIG. 3B). FIG. 4 is an X-ray diffraction spectrum showing a composition analysis result by X-ray diffraction of a surface treatment layer obtained as described above, which has a larger supply of nitrogen. As shown in FIG. In addition, TiCN was detected, which revealed that a carbonitride film of titanium could be formed by discharging in oil by supplying nitrogen gas.

【0027】実施の形態3.図5は本発明の第3の実施
の形態の放電表面処理装置を説明する説明図である。図
中、3は被処理材である炭素鋼で、21は窒素ガス19
と加工液12の混合物、22はポンプであり、加工液1
2として油を、圧粉体電極1としてTiH2を用いた。
つまり、加工液12中に噴出させた窒素ガス19をポン
プ22により加工液とともに汲み上げポンプ内で攪拌し
て再び放電間隙へ供給した。これにより、放電間隙中の
窒素ガス濃度が高くなり、気泡も細かくなるために窒素
ガスが放電により反応する確率が上昇する。図6は形成
された表面処理層に対してSIMSによる元素分析を行
った結果を示す質量分析スペクトルであるが、窒素の存
在が確認できる。油中における窒素ガスの気泡の細か
さ、混合割合を制御することで表面処理層の窒化の度合
いも制御できる。図7は上記表面処理層のX線回折によ
る組成分析結果を示すX線回折スペクトルであるが、図
から母材成分以外にTiCNが検出されるため、窒素ガ
スの供給による油中放電でチタンの炭窒化被膜が形成で
きることが明らかとなった。
Embodiment 3 FIG. 5 is an explanatory diagram illustrating a discharge surface treatment apparatus according to a third embodiment of the present invention. In the figure, 3 is carbon steel as a material to be treated, 21 is nitrogen gas 19
And a working fluid 12, a pump 22 and a working fluid 1
Oil 2 was used as Ti, and TiH 2 was used as the green compact electrode 1.
That is, the nitrogen gas 19 jetted into the machining fluid 12 was pumped up together with the machining fluid by the pump 22, stirred in the pump, and supplied again to the discharge gap. As a result, the nitrogen gas concentration in the discharge gap increases, and the bubbles become finer, so that the probability of the nitrogen gas reacting by the discharge increases. FIG. 6 is a mass spectrometry spectrum showing the result of elemental analysis by SIMS of the formed surface treatment layer. The presence of nitrogen can be confirmed. By controlling the fineness and mixing ratio of the nitrogen gas bubbles in the oil, the degree of nitriding of the surface treatment layer can also be controlled. FIG. 7 is an X-ray diffraction spectrum showing the composition analysis result of the surface treatment layer by X-ray diffraction. Since TiCN is detected in addition to the base metal component from the figure, the discharge of oil by the supply of nitrogen gas caused the discharge of titanium. It became clear that a carbonitriding film could be formed.

【0028】実施の形態4.図8は本発明の第4の実施
の形態の放電表面処理装置を説明する説明図で、図中、
23は密閉された加工槽で、3は被処理材である炭素鋼
である。つまり、周囲を囲んだ加工槽23に窒素ガス1
9を噴出圧(4kgf/cm2)で吹き込み、TiH2
たはTi電極を回転数50rpmで回転しながら窒素ガ
ス雰囲気中で放電をおこない窒化被膜を形成した。図9
は本実施の形態で形成した表面処理層のX線回折による
組成分析結果を示すX線回折スペクトルである。図9
(a)および(b)は各々TiH2電極を用いたスペク
トルおよびTi電極を用いたスペクトルである。図か
ら、電極にTiH2および純チタンを使用した場合、そ
れぞれの被膜に対してTiNおよびTiCNが生成して
いるのがわかる。また、上記表面処理層の硬度はいずれ
もマイクロビッカースで2200〜2500Hvであ
る。なお、TiCNが生成するのは電極または被処理材
表面に油が残留していたためであり、窒素雰囲気中にカ
ーボンを供給することで被膜の炭化もできる。
Embodiment 4 FIG. 8 is an explanatory view illustrating a discharge surface treatment apparatus according to a fourth embodiment of the present invention.
Reference numeral 23 denotes a closed processing tank, and reference numeral 3 denotes carbon steel as a material to be processed. That is, the nitrogen gas 1 is stored in the processing tank 23 surrounding the periphery.
9 was blown in at an ejection pressure (4 kgf / cm 2 ), and discharge was performed in a nitrogen gas atmosphere while rotating the TiH 2 or Ti electrode at a rotation speed of 50 rpm to form a nitride film. FIG.
3 is an X-ray diffraction spectrum showing a composition analysis result by X-ray diffraction of the surface treatment layer formed in the present embodiment. FIG.
(A) and (b) are a spectrum using a TiH 2 electrode and a spectrum using a Ti electrode, respectively. From the figure, it can be seen that when TiH 2 and pure titanium were used for the electrode, TiN and TiCN were generated for each coating. The hardness of each of the surface treatment layers is 2200 to 2500 Hv by micro Vickers. The generation of TiCN is due to the oil remaining on the electrode or the surface of the material to be processed. By supplying carbon in a nitrogen atmosphere, carbonization of the coating can be performed.

【0029】実施の形態5.図10は本発明の第5の実
施の形態の放電表面処理装置を説明する説明図であり、
図中、24はアンモニアタンク、25はアンモニアであ
り、加工液12として油を用い、被処理材として炭素鋼
を用いた。つまり、窒化のために供給する窒素成分とし
てアンモニアタンク24からアンモニア25を加工液1
2に溶解させてイオン化させる。イオン化させた窒素成
分は間隙へ送り込まれ、放電により被膜を窒化するため
に使用された。
Embodiment 5 FIG. 10 is an explanatory diagram illustrating a discharge surface treatment apparatus according to a fifth embodiment of the present invention.
In the figure, 24 is an ammonia tank, 25 is ammonia, oil was used as the working fluid 12, and carbon steel was used as the material to be treated. That is, ammonia 25 is supplied from the ammonia tank 24 as a nitrogen component to be supplied for nitriding to the machining fluid 1
2 and ionized. The ionized nitrogen component was pumped into the gap and used to nitride the coating by electrical discharge.

【0030】[0030]

【発明の効果】本発明の第1の放電表面処理装置によれ
ば、表面処理材料または表面処理材料の元となる材料か
らなる圧粉体電極と被処理材との間に電圧を印加して放
電を発生させる放電処理手段、並びに放電が発生する雰
囲気を窒素成分含有雰囲気とする窒素供給手段を備えた
ものであり、被処理材の材質に係わらずに質のよい窒化
表面処理層を、容易に得ることができるという効果があ
る。
According to the first discharge surface treatment apparatus of the present invention, a voltage is applied between a material to be treated and a green compact electrode made of a surface treatment material or a material which is a source of the surface treatment material. Discharge treatment means for generating discharge, and nitrogen supply means for setting the atmosphere in which discharge occurs to a nitrogen component-containing atmosphere are provided, so that a high-quality nitrided surface treatment layer can be easily formed regardless of the material of the material to be treated. There is an effect that can be obtained.

【0031】本発明の第2の放電表面処理装置によれ
ば、上記第1の放電表面処理装置において、圧粉体電極
と被処理材との間に加工液を供給するものであり、加工
液の成分を表面処理層に含有可能であり、被処理材の材
質に係わらずに質のよい窒化表面処理層を、容易に得る
ことができるという効果がある。
According to the second discharge surface treatment apparatus of the present invention, in the first discharge surface treatment apparatus, a machining fluid is supplied between the green compact electrode and the workpiece. Can be contained in the surface treatment layer, and there is an effect that a high quality nitrided surface treatment layer can be easily obtained regardless of the material of the material to be treated.

【0032】本発明の第3の放電表面処理装置によれ
ば、上記第1または第2の放電表面処理装置において、
窒素供給手段は圧粉体電極と被処理材との間に窒素成分
含有物を供給するものであり、被処理材の材質に係わら
ずに質のよい表面処理層を、容易に得ることができると
いう効果がある。
According to the third discharge surface treatment apparatus of the present invention, in the first or second discharge surface treatment apparatus,
The nitrogen supply means is for supplying a nitrogen component-containing substance between the green compact electrode and the material to be treated, and a high quality surface treatment layer can be easily obtained regardless of the material of the material to be treated. This has the effect.

【0033】本発明の第4の放電表面処理装置によれ
ば、上記第3の放電表面処理装置において、窒素成分含
有物が気体のものであり、被処理材の材質に係わらずに
質のよい表面処理層を、容易に得ることができるという
効果がある。
According to the fourth discharge surface treatment apparatus of the present invention, in the third discharge surface treatment apparatus, the nitrogen component-containing substance is gaseous and has good quality regardless of the material of the material to be treated. There is an effect that the surface treatment layer can be easily obtained.

【0034】本発明の第5の放電表面処理装置によれ
ば、上記第4の放電表面処理装置において、窒素成分含
有物が窒素ガスまたはアンモニアガスのものであり、被
処理材の材質に係わらずに質のよい表面処理層を、容易
に得ることができるという効果がある。
According to the fifth discharge surface treatment apparatus of the present invention, in the fourth discharge surface treatment apparatus, the nitrogen component-containing substance is nitrogen gas or ammonia gas, regardless of the material of the material to be treated. There is an effect that a high quality surface treatment layer can be easily obtained.

【0035】本発明の第1の放電表面処理方法は、表面
処理材料または表面処理材料の元となる材料からなる圧
粉体電極と被処理材との間に電圧を印加し、窒素成分含
有雰囲気中で放電を発生させることにより上記被処理材
の表面に窒化表面処理層を形成する方法であり、被処理
材の材質に係わらずに質のよい表面処理層を、容易に得
ることができるという効果がある。
According to the first discharge surface treatment method of the present invention, a voltage is applied between a green compact electrode made of a surface treatment material or a material which is a source of the surface treatment material and a material to be treated, and a nitrogen component-containing atmosphere is This is a method of forming a nitrided surface treatment layer on the surface of the material to be treated by generating an electric discharge therein, and it is possible to easily obtain a high quality surface treatment layer regardless of the material of the material to be treated. effective.

【0036】本発明の第2の放電表面処理方法によれ
ば、上記第1の放電表面処理方法において、放電によっ
て炭素を分解生成する加工液中において放電を発生させ
る方法であり、被処理材の材質に係わらずに質のよい表
面処理層を、容易に得ることができるという効果があ
る。
According to the second discharge surface treatment method of the present invention, in the first discharge surface treatment method, a discharge is generated in a working fluid which decomposes and generates carbon by discharge. There is an effect that a high quality surface treatment layer can be easily obtained regardless of the material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係わる放電表面処理装置を説明する
説明図である。
FIG. 1 is an explanatory diagram for explaining a discharge surface treatment apparatus according to the present invention.

【図2】 本発明に係わる放電表面処理装置を説明する
説明図である。
FIG. 2 is an explanatory diagram for explaining a discharge surface treatment apparatus according to the present invention.

【図3】 本発明による表面処理層の質量分析スペクト
ルである。
FIG. 3 is a mass spectrometry spectrum of the surface treatment layer according to the present invention.

【図4】 本発明による表面処理層のX線回折スペクト
ルである。
FIG. 4 is an X-ray diffraction spectrum of the surface treatment layer according to the present invention.

【図5】 本発明に係わる放電表面処理装置を説明する
説明図である。
FIG. 5 is an explanatory view for explaining a discharge surface treatment apparatus according to the present invention.

【図6】 本発明による表面処理層の質量分析スペクト
ルである。
FIG. 6 is a mass spectrometry spectrum of the surface treatment layer according to the present invention.

【図7】 本発明による表面処理層のX線回折スペクト
ルである。
FIG. 7 is an X-ray diffraction spectrum of the surface treatment layer according to the present invention.

【図8】 本発明に係わる放電表面処理装置を説明する
説明図である。
FIG. 8 is an explanatory view for explaining a discharge surface treatment apparatus according to the present invention.

【図9】 本発明による表面処理層のX線回折スペクト
ルである。
FIG. 9 is an X-ray diffraction spectrum of the surface treatment layer according to the present invention.

【図10】 本発明に係わる放電表面処理装置を説明す
る説明図である。
FIG. 10 is an explanatory diagram for explaining a discharge surface treatment apparatus according to the present invention.

【図11】 従来の放電表面処理方法を説明する説明図
である。
FIG. 11 is an explanatory view illustrating a conventional discharge surface treatment method.

【符号の説明】[Explanation of symbols]

1 圧粉体電極、3 被処理材、4 表面処理層、6
窒素ガスボンベ、24アンモニアタンク。
1 green compact electrode, 3 material to be treated, 4 surface treatment layer, 6
Nitrogen gas cylinder, 24 ammonia tank.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 表面処理材料または表面処理材料の元と
なる材料からなる圧粉体電極と被処理材との間に電圧を
印加して放電を発生させる放電処理手段、並びに放電が
発生する雰囲気を窒素成分含有雰囲気とする窒素供給手
段を備えた放電表面処理装置。
1. A discharge processing means for generating a discharge by applying a voltage between a green compact electrode made of a surface treatment material or a material which is a source of the surface treatment material and a material to be treated, and an atmosphere in which the discharge occurs. Surface treatment apparatus provided with a nitrogen supply means for setting a nitrogen atmosphere containing a nitrogen component.
【請求項2】 圧粉体電極と被処理材との間に加工液を
供給することを特徴とする請求項1に記載の放電表面処
理装置。
2. The discharge surface treatment apparatus according to claim 1, wherein a working fluid is supplied between the green compact electrode and the workpiece.
【請求項3】 窒素供給手段は圧粉体電極と被処理材と
の間に窒素成分含有物を供給することを特徴とする請求
項1または請求項2に記載の放電表面処理装置。
3. The discharge surface treatment apparatus according to claim 1, wherein the nitrogen supply means supplies a nitrogen component-containing substance between the green compact electrode and the material to be treated.
【請求項4】 窒素成分含有物が気体であることを特徴
とする請求項3に記載の放電表面処理装置。
4. The discharge surface treatment apparatus according to claim 3, wherein the nitrogen component-containing substance is a gas.
【請求項5】 窒素成分含有物が窒素ガスまたはアンモ
ニアガスであることを特徴とする請求項4に記載の放電
表面処理装置。
5. The discharge surface treatment apparatus according to claim 4, wherein the nitrogen component-containing substance is nitrogen gas or ammonia gas.
【請求項6】 表面処理材料または表面処理材料の元と
なる材料からなる圧粉体電極と被処理材との間に電圧を
印加し、窒素成分含有雰囲気中で放電を発生させること
により上記被処理材の表面に窒化表面処理層を形成する
放電表面処理方法。
6. A method in which a voltage is applied between a surface-treated material or a green compact electrode made of a material that is a source of the surface-treated material and a material to be processed, and a discharge is generated in an atmosphere containing a nitrogen component. A discharge surface treatment method for forming a nitrided surface treatment layer on the surface of a treatment material.
【請求項7】 放電によって炭素を分解生成する加工液
中において、放電を発生させることを特徴とする請求項
6に記載の放電表面処理方法。
7. The discharge surface treatment method according to claim 6, wherein the discharge is generated in a machining fluid that decomposes and generates carbon by the discharge.
JP06584398A 1998-03-16 1998-03-16 Discharge surface treatment equipment Expired - Fee Related JP3562298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06584398A JP3562298B2 (en) 1998-03-16 1998-03-16 Discharge surface treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06584398A JP3562298B2 (en) 1998-03-16 1998-03-16 Discharge surface treatment equipment

Publications (2)

Publication Number Publication Date
JPH11264080A true JPH11264080A (en) 1999-09-28
JP3562298B2 JP3562298B2 (en) 2004-09-08

Family

ID=13298709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06584398A Expired - Fee Related JP3562298B2 (en) 1998-03-16 1998-03-16 Discharge surface treatment equipment

Country Status (1)

Country Link
JP (1) JP3562298B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100787275B1 (en) 2003-06-11 2007-12-20 미쓰비시덴키 가부시키가이샤 Device for electrical discharge coating and method for electrical discharge coating
KR100790657B1 (en) 2003-05-29 2008-01-02 미쓰비시덴키 가부시키가이샤 Electrode for discharge surface treatment, discharge surface treatment method and discharge surface treatment apparatus
US7537808B2 (en) 2002-07-30 2009-05-26 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus
US7641945B2 (en) 2003-06-11 2010-01-05 Mitsubishi Denki Kabushiki Kaisha Electrical-discharge surface-treatment method
CN115125476A (en) * 2022-08-29 2022-09-30 山东理工大学 Preparation method for in-situ generation of titanium nitride wear-resistant resist layer on titanium alloy surface

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7537808B2 (en) 2002-07-30 2009-05-26 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus
KR100790657B1 (en) 2003-05-29 2008-01-02 미쓰비시덴키 가부시키가이샤 Electrode for discharge surface treatment, discharge surface treatment method and discharge surface treatment apparatus
US7834291B2 (en) 2003-05-29 2010-11-16 Mitsubishi Denki Kabushiki Kaisha Electrode for electric discharge surface treatment, and method and apparatus for electric discharge surface treatment
KR100787275B1 (en) 2003-06-11 2007-12-20 미쓰비시덴키 가부시키가이샤 Device for electrical discharge coating and method for electrical discharge coating
US7641945B2 (en) 2003-06-11 2010-01-05 Mitsubishi Denki Kabushiki Kaisha Electrical-discharge surface-treatment method
US7691454B2 (en) 2003-06-11 2010-04-06 Mitsubishi Denki Kabushiki Kaisha Electrical-discharge surface-treatment method using a metallic powder or metallic powder compound in combination with other elements as electrode
US8658005B2 (en) 2003-06-11 2014-02-25 Mitsubishi Denki Kabushiki Kaisha Electrical-discharge surface-treatment method
CN115125476A (en) * 2022-08-29 2022-09-30 山东理工大学 Preparation method for in-situ generation of titanium nitride wear-resistant resist layer on titanium alloy surface

Also Published As

Publication number Publication date
JP3562298B2 (en) 2004-09-08

Similar Documents

Publication Publication Date Title
US8491696B2 (en) Ultrafine alloy particles, and process for producing the same
US7582135B2 (en) Process for producing ultrafine particles
US6482476B1 (en) Low temperature plasma enhanced CVD ceramic coating process for metal, alloy and ceramic materials
JP3271844B2 (en) Surface treatment method for metallic materials by submerged discharge
KR100285071B1 (en) Discharge surface treatment method and discharge surface treatment apparatus
AU2007240431A2 (en) Method of using a thermal plasma to produce a functionally graded composite surface layer on metals
JPWO2004011696A1 (en) Discharge surface treatment electrode, discharge surface treatment method, and discharge surface treatment apparatus
EP1497061B1 (en) Powder formation method
JP3562298B2 (en) Discharge surface treatment equipment
KR100385687B1 (en) Method for discharge surface treatment, and discharge surface treatment device
WO2001023640A1 (en) Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method
JPS63128164A (en) Surface treatment
JP2628601B2 (en) Diamond coated cemented carbide and method of diamond coating of cemented carbide
JP3544823B2 (en) Discharge surface treatment method and discharge surface treatment device
JP2001279465A (en) Surface discharge treating method, electrode for surface treatment used therefor and obtained surface treated film
JP3798100B2 (en) Discharge surface treatment method and treatment apparatus
Sireli Molten salt baths: electrochemical boriding
JP4523547B2 (en) Discharge surface treatment method and discharge surface treatment apparatus
CN101730373B (en) Method and device for forming new materials by discharge of fog gas
Kostrin Single‐layer and multi‐layer wear‐resistant coatings: Deposition by vacuum arc plasma source
JPH03232957A (en) Production of wear resistant member
JPH06280044A (en) Surface treatment method and device by electric discharge machining
Bobylyov et al. Kinetics of the formation of diffusion titanium coatings on the surfaces of hard alloys during isothermal mass transfer of titanium in the Pb-Bi-Li melt
JP3572240B2 (en) Method and apparatus for physically modifying a conductive member
JPH08104976A (en) Hard coating film, and its production and vapor deposition of hard coating device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Effective date: 20040524

Free format text: JAPANESE INTERMEDIATE CODE: A61

LAPS Cancellation because of no payment of annual fees