JPH11264070A - Manganese-iridium alloy sputtering target for forming magnetic thin film, magnetic thin film and production of manganese-iridium alloy sputtering target for forming magnetic thin film - Google Patents

Manganese-iridium alloy sputtering target for forming magnetic thin film, magnetic thin film and production of manganese-iridium alloy sputtering target for forming magnetic thin film

Info

Publication number
JPH11264070A
JPH11264070A JP10088240A JP8824098A JPH11264070A JP H11264070 A JPH11264070 A JP H11264070A JP 10088240 A JP10088240 A JP 10088240A JP 8824098 A JP8824098 A JP 8824098A JP H11264070 A JPH11264070 A JP H11264070A
Authority
JP
Japan
Prior art keywords
ppm
thin film
less
magnetic thin
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10088240A
Other languages
Japanese (ja)
Other versions
JP3396420B2 (en
Inventor
Yuichiro Shindo
裕一朗 新藤
Tsuneo Suzuki
恒男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP08824098A priority Critical patent/JP3396420B2/en
Publication of JPH11264070A publication Critical patent/JPH11264070A/en
Application granted granted Critical
Publication of JP3396420B2 publication Critical patent/JP3396420B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a means for forming a diamagnetic film small in outgassing and the generation of particles at the time of sputtering, excellent in corrosion resistance and furthermore good in magnetic properties. SOLUTION: An Mn-Ir alloy sputtering target for forming a magnetic thin film is the one in which the content of oxygen is regulated to <=1000 ppm, that of S to <=300 ppm, that of carbon to <=100 ppm, and that of hydrogen to <=1 ppm. As for the method for producing it, a high purity Mn material obtd. by subjecting raw material Mn to preliminary melting at 1250 to 1500 deg.C and thereafter executing vacuum distillation at 100 to 1500 deg.C and a high purity Ir material obtd. by subjecting raw material Ir powder to degassing treatment at 1000 to 1500 deg.C and thereafter executing electron beam melting are melted to alloy, and after that, casting is executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁性薄膜形成用M
n−Ir合金スパッタリングターゲットに関する。特に
は、反強磁性薄膜用Mn−Ir合金スパッタリングター
ゲットに関する。
The present invention relates to a magnetic thin film forming method for forming a magnetic thin film.
The present invention relates to an n-Ir alloy sputtering target. In particular, it relates to a Mn-Ir alloy sputtering target for an antiferromagnetic thin film.

【0002】[0002]

【従来の技術】コンピュータ用のハードディスクなどの
磁気記録装置は、近年急速に小型大容量化が進み、数年
後にはその記録密度は20Gb/in2 に達すると予想
される。このため、再生ヘッドとしては従来の誘導型ヘ
ッドが限界に近づき、磁気抵抗効果型(AMR)ヘッド
が用いられ始めている。磁気抵抗効果型ヘッドは、パソ
コン市場等の拡大に伴い世界的規模で今後急成長が見込
まれている。そして、数年のうちには、さらに高密度が
期待されている巨大磁気抵抗効果型(GMR)ヘッドが
実用化されることが現実的となってきた。GMRヘッド
に使用されるスピンバルブ膜の反磁性膜としてMn合金
が検討されている。
2. Description of the Related Art In recent years, magnetic recording devices such as hard disks for computers have rapidly become smaller and larger in capacity, and the recording density is expected to reach 20 Gb / in 2 in a few years. For this reason, the conventional inductive head approaches the limit as a reproducing head, and a magnetoresistive (AMR) head has begun to be used. Magnetoresistive heads are expected to grow rapidly on a worldwide scale with the expansion of the personal computer market and the like. In a few years, it has become realistic to commercialize a giant magnetoresistive (GMR) head, which is expected to have higher density. A Mn alloy has been studied as a diamagnetic film of a spin valve film used for a GMR head.

【0003】[0003]

【発明が解決しようとする課題】スピンバルブ膜用の反
磁性膜としてはMn合金、特にMn−貴金属合金、例え
ばMn−Ir合金が検討されている。これらは通常、焼
結あるいは溶解によって製造される。しかし、従来のM
n−Ir合金はスパッタリングの際のガスの放出やパー
ティクルの発生が多く、耐食性にも問題があった。ま
た、磁気特性も満足すべきものではなかった。本発明
は、スパッタリングの際のガス放出やパーティクルの発
生が少なく、耐食性に優れ、しかも磁気特性も良好な反
磁性膜を形成するための手段を提供することを目的とし
た。
As a diamagnetic film for a spin valve film, a Mn alloy, particularly a Mn-noble metal alloy, for example, a Mn-Ir alloy has been studied. These are usually produced by sintering or melting. However, the conventional M
The n-Ir alloy emits a lot of gas and generates particles during sputtering, and has a problem in corrosion resistance. Also, the magnetic properties were not satisfactory. SUMMARY OF THE INVENTION An object of the present invention is to provide a means for forming a diamagnetic film which is less likely to emit gas and particles during sputtering, has excellent corrosion resistance, and has good magnetic properties.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
めに本発明者らは鋭意研究を行った結果、Mn−Ir合
金中の不純物元素、特に酸素、炭素、硫黄、水素がガス
放出やパーティクルの発生、耐食性低下の原因であるこ
とを見いだした。さらに磁気特性は主に薄膜の結晶組織
に依存し、結晶が粗大な柱状晶であるほど磁気特性が向
上することを見いだした。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted intensive studies, and as a result, the impurity elements in the Mn-Ir alloy, particularly, oxygen, carbon, sulfur, and hydrogen have been released. It was found that this was the cause of the generation of particles and the decrease in corrosion resistance. Furthermore, it was found that the magnetic properties mainly depend on the crystal structure of the thin film, and that the coarser the columnar crystals, the better the magnetic properties.

【0005】本発明は、この知見に基づき、 1.酸素含有量が1000ppm以下、S含有量が30
0ppm以下、炭素含有量が100ppm以下、水素含
有量が1ppm以下であることを特徴とする磁性薄膜形
成用Mn−Ir合金スパッタリングターゲット。
The present invention has been made based on this finding. Oxygen content is less than 1000 ppm, S content is 30
A Mn-Ir alloy sputtering target for forming a magnetic thin film, wherein the sputtering target has a carbon content of 0 ppm or less, a carbon content of 100 ppm or less, and a hydrogen content of 1 ppm or less.

【0006】2.酸素含有量が100ppm以下、S含
有量が10ppm以下、炭素含有量が50ppm以下、
水素含有量が0.5ppm以下であることを特徴とする
磁性薄膜形成用Mn−Ir合金スパッタリングターゲッ
ト。
[0006] 2. Oxygen content is 100 ppm or less, S content is 10 ppm or less, carbon content is 50 ppm or less,
A Mn-Ir alloy sputtering target for forming a magnetic thin film, wherein the hydrogen content is 0.5 ppm or less.

【0007】3.請求項1または2に記載の磁性薄膜形
成用Mn−Ir合金スパッタリングターゲットをスパッ
タリングすることにより形成されたことを特徴とする磁
性薄膜。
[0007] 3. A magnetic thin film formed by sputtering the Mn-Ir alloy sputtering target for forming a magnetic thin film according to claim 1 or 2.

【0008】4.酸素含有量が1000ppm以下、S
含有量が300ppm以下、炭素含有量が100ppm
以下、水素含有量が1ppm以下であり、結晶組織が柱
状晶であることを特徴とするMn−Ir合金磁性薄膜。
[0008] 4. Oxygen content is less than 1000ppm, S
Content is 300ppm or less, carbon content is 100ppm
Hereinafter, a Mn-Ir alloy magnetic thin film having a hydrogen content of 1 ppm or less and a crystal structure of a columnar crystal.

【0009】5.原料Mnを1250〜1500℃で予
備溶解した後、1100〜1500℃で真空蒸留するこ
とによって得た高純度Mn材料と、原料Ir粉末を10
00〜1500℃で脱ガス処理した後、電子ビーム溶解
することによって得た高純度Ir材料とを溶解し合金化
した後、鋳造することを特徴とする磁性薄膜形成用Mn
−Ir合金スパッタリングターゲットの製造方法、を提
供するものである。
[0009] 5. After preliminarily dissolving the raw material Mn at 1250 to 1500 ° C., the high purity Mn material obtained by vacuum distillation at 1100 to 1500 ° C. and the raw material Ir powder
Mn for forming a magnetic thin film, comprising: degassing at 00 to 1500 ° C .; melting and alloying with a high-purity Ir material obtained by electron beam melting; and casting.
A method for producing an Ir alloy sputtering target.

【0010】[0010]

【発明の実施の形態】本発明の磁性薄膜形成用Mn−I
r合金スパッタリングターゲットは、Mnを30wt%
以上含有するMn−Ir合金からなるものである。代表
的にはMn−Irの2成分合金が上げられるが、さらに
Fe,Pt,Pd,Rh,Ru,Ni,Cr,Co な
どを合金成分として添加した合金も含まれる。
DETAILED DESCRIPTION OF THE INVENTION Mn-I for forming a magnetic thin film of the present invention
The r alloy sputtering target contains 30 wt% Mn.
It is composed of the Mn-Ir alloy contained above. Typically, a two-component alloy of Mn-Ir can be used, but an alloy further containing Fe, Pt, Pd, Rh, Ru, Ni, Cr, Co, or the like as an alloy component is also included.

【0011】本発明のMn−Ir合金スパッタリングタ
ーゲットは、不純物すなわちMn,Ir及び合金成分以
外の元素が低減されたものである。特に酸素、硫黄、炭
素、水素が極力低減されたものである。酸素、硫黄、炭
素、水素は耐食性を悪化させ、パーティクル発生の原因
となり、また、磁気的特性を悪化させる原因となるた
め、酸素含有量1000ppm以下、好ましくは100
ppm以下、S含有量300ppm以下、好ましくは1
0ppm以下、炭素含有量100ppm以下、好ましく
は50ppm以下、水素含有量1ppm以下、好ましく
は0.5ppm以下にまで低減すべきである。上記の含
有量を超えるとパーティクル発生量の増大、耐食性の著
しい低下、磁気特性不良が顕著になるため好ましくな
い。
The Mn-Ir alloy sputtering target of the present invention has reduced impurities, that is, elements other than Mn, Ir and alloy components. In particular, oxygen, sulfur, carbon and hydrogen are reduced as much as possible. Oxygen, sulfur, carbon, and hydrogen deteriorate the corrosion resistance, cause particles to be generated, and cause the magnetic characteristics to deteriorate. Therefore, the oxygen content is 1000 ppm or less, preferably 100 ppm.
ppm or less, S content 300 ppm or less, preferably 1
It should be reduced to 0 ppm or less, carbon content 100 ppm or less, preferably 50 ppm or less, and hydrogen content 1 ppm or less, preferably 0.5 ppm or less. Exceeding the above contents is not preferred because the amount of generated particles is increased, the corrosion resistance is remarkably reduced, and the magnetic properties are remarkably poor.

【0012】本発明者らはMn−Ir合金中の不純物が
原料の電解Mn及びIrに起因するものであることか
ら、原料となるMn及びIrのそれぞれについて高純度
化を行った。Mn原料の高純度化は、例えば下記のよう
な方法を用いることによって行うことができる。すなわ
ち、市販の粗Mnを1250〜1500℃で予備溶解し
た後、1100〜1500℃で真空蒸留を行うことによ
り不純物を除去する。
Since the impurities in the Mn-Ir alloy are caused by the electrolytic Mn and Ir of the raw materials, the present inventors have made each of the raw materials Mn and Ir highly purified. Purification of the Mn raw material can be performed, for example, by using the following method. That is, impurities are removed by preliminarily dissolving commercially available crude Mn at 1250 to 1500 ° C. and performing vacuum distillation at 1100 to 1500 ° C.

【0013】原料である粗Mnとしては、市販の電解M
nを用いれば良い。そして、粗Mnは1250〜150
0℃で予備溶解を行う。予備溶解は、MgO,Al23
等のルツボを用いて不活性ガス雰囲気で保持時間1時間
以上で行う。1250℃未満ではMnが溶解せず、15
00℃を超えるとルツボからの汚染及びMnの蒸発が激
しくなるため好ましくない。また、保持時間1時間未満
では未溶解Mnが残るため好ましくない。ここで、予備
溶解を行うのは、揮発性の成分を除去するためである。
The raw material crude Mn is commercially available electrolytic M
n may be used. And the crude Mn is 1250 to 150
Predissolve at 0 ° C. Pre-dissolution is performed using MgO, Al 2 O 3
The holding is performed in an inert gas atmosphere using a crucible such as above for a holding time of 1 hour or more. If the temperature is lower than 1250 ° C., Mn does not dissolve,
If the temperature exceeds 00 ° C., contamination from the crucible and evaporation of Mn become intense, which is not preferable. If the holding time is less than 1 hour, undissolved Mn remains, which is not preferable. Here, the preliminary dissolution is performed to remove volatile components.

【0014】予備溶解の後、1100〜1500℃で真
空蒸留を行う。1100℃未満では、蒸留時間が長くな
り過ぎ、1500℃を超えると蒸発速度が大きく不純物
を巻き込みやすくなるため好ましくない。
After the pre-dissolution, vacuum distillation is performed at 1100 to 1500 ° C. If the temperature is lower than 1100 ° C., the distillation time is too long. If the temperature is higher than 1500 ° C., the evaporation rate is high and impurities are easily involved.

【0015】真空蒸留の際の真空度は5×10-5〜10
Torrとする。5×10-5Torr未満では凝縮物
が得られなくなり、10 Torrを超えるとMnの蒸
留にかかる時間が長くなるため好ましくない。また、真
空蒸留の際のルツボは、Al23 等の二重ルツボとす
るのが好ましい。なお、真空蒸留は、残留物が約50%
以下となるまで行うのが好ましい。
The degree of vacuum at the time of vacuum distillation is 5 × 10 -5 to 10
Torr. If it is less than 5 × 10 −5 Torr, no condensate can be obtained, and if it exceeds 10 Torr, the time required for distillation of Mn becomes long, which is not preferable. Further, the crucible for vacuum distillation is preferably a double crucible such as Al 2 O 3 . In addition, vacuum distillation shows that the residue is about 50%
It is preferred to carry out until the following.

【0016】一方、Ir原料についてもできるだけ高純
度のものを使用するのが望ましく、市販品を使用する場
合には純度3N以上のガス成分不純物の少ない高純度品
を用いるべきである。このようなIr原料に対して10
00〜1500℃で脱ガス処理した後、電子ビーム溶解
を行いガス成分や揮発成分を除去する。なお、脱ガス処
理に先だってIrと低融点合金をつくり酸に溶解する金
属を添加し低融点Ir合金を製造した後、該Ir合金を
酸により浸出することによってIr以外の不純物成分を
溶解除去することによってさらに高純度なIr原料を得
ることができる。
On the other hand, it is desirable to use the Ir raw material having a purity as high as possible. When a commercial product is used, a high purity product having a purity of 3N or more and containing few gaseous impurities should be used. For such Ir raw material, 10
After degassing at 00 to 1500 ° C, electron beam melting is performed to remove gas components and volatile components. Prior to the degassing process, a low melting point alloy is formed with Ir and a metal that dissolves in an acid is added to produce a low melting point Ir alloy. Then, the Ir alloy is leached with an acid to dissolve and remove impurity components other than Ir. By doing so, a higher purity Ir raw material can be obtained.

【0017】上記のような方法で得られた高純度Mnと
高純度Irとを溶解し合金化した後鋳造する。得られた
Mn−Ir合金インゴットを加工し、スパッタリングタ
ーゲット材とする。基本的には、ターゲットの純度はイ
ンゴットと同等である。そしてここで得られたスパッタ
リングターゲットをスパッタリングすることによって磁
性薄膜を形成することが可能である。
The high-purity Mn and high-purity Ir obtained by the above method are melted, alloyed, and then cast. The obtained Mn-Ir alloy ingot is processed and used as a sputtering target material. Basically, the purity of the target is equivalent to that of the ingot. Then, a magnetic thin film can be formed by sputtering the sputtering target obtained here.

【0018】[0018]

【実施例】以下、実施例に基づいて説明するが、本発明
はこれによって制限されるものではない。
The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0019】(実施例1)原料となる電解MnをMgO
坩堝を用いて1300℃で予備溶解した後、真空蒸留
した。真空度は10-2 Torr 、蒸留温度1400
℃、保持時間30分とした。蒸留したMnは、酸素:1
00ppm、S:50ppm、C:100ppm、H:
0.7ppmであった。一方、市販の3NのIr粉末
(酸素:1300ppm、S:<10ppm、C:76
0ppm、H:50ppm)をAr雰囲気下で1000
℃、2hrの脱ガス処理を行った後、電子ビーム溶解し
て、Ir粉末(酸素:150ppm、S:<10pp
m、C:10ppm、H:1ppm)を得た。得られた
高純度Mnと高純度Irとを1:1でCaO坩堝で溶解
し合金化した。その結果、酸素:150ppm、S:2
0ppm、C:20ppm、H:0.7ppmのMn−
Ir 合金が得られた。各原料及びMn−Ir合金の組
成を表1に示す。
(Example 1) Electrolytic Mn as a raw material was changed to MgO
After preliminarily melting at 1300 ° C. using a crucible, vacuum distillation was performed. Vacuum degree is 10 -2 Torr, distillation temperature is 1400
° C and a holding time of 30 minutes. Distilled Mn is oxygen: 1
00 ppm, S: 50 ppm, C: 100 ppm, H:
0.7 ppm. On the other hand, commercially available 3N Ir powder (oxygen: 1300 ppm, S: <10 ppm, C: 76
0 ppm, H: 50 ppm) in an Ar atmosphere at 1000 ppm.
After degassing at 2 ° C. for 2 hours, the mixture was melted with an electron beam to obtain Ir powder (oxygen: 150 ppm, S: <10 pp.
m, C: 10 ppm, H: 1 ppm). The obtained high-purity Mn and high-purity Ir were melted and alloyed at a ratio of 1: 1 in a CaO crucible. As a result, oxygen: 150 ppm, S: 2
0 ppm, C: 20 ppm, H: 0.7 ppm Mn-
An Ir alloy was obtained. Table 1 shows the composition of each raw material and Mn-Ir alloy.

【0020】[0020]

【表1】 [Table 1]

【0021】得られたMn−Ir合金の一部を約10m
m角で切り出し、耐食性試験用のブロック試片とした。
耐食性試験用のブロック試片は、観察面を鏡面研磨した
後、温度35℃、湿度98%の湿潤試験器内に入れた。
72時間後、試料を取り出し錆の発生状況を目視で観察
した。残りのMn−Ir合金は、機械加工を行い、直径
50mm、厚さ5mmの円板状のスパッタリングターゲ
ットとした。このスパッタリングターゲットをIn−S
n合金はんだを用いて銅製のバッキングプレートと接合
し、マグネトロンスパッタ装置を用いてスパッタ試験を
行い、3インチスライドガラス上にMn−Ir合金薄膜
を15nm形成した。この際のスライドガラス上に存在
する直径0.3μm以上のパーティクル数を測定した。
また、薄膜の断面の組織観察を行った。
A part of the obtained Mn-Ir alloy is about 10 m
It was cut out in m-square and used as a block specimen for corrosion resistance test.
The block specimen for the corrosion resistance test was placed in a wet tester at a temperature of 35 ° C. and a humidity of 98% after the observation surface was mirror-polished.
After 72 hours, the sample was taken out and the occurrence of rust was visually observed. The remaining Mn-Ir alloy was machined to obtain a disk-shaped sputtering target having a diameter of 50 mm and a thickness of 5 mm. This sputtering target is In-S
It joined to the copper backing plate using n alloy solder, performed the sputter test using the magnetron sputtering apparatus, and formed the 15-nm-thick Mn-Ir alloy thin film on the 3-inch slide glass. At this time, the number of particles having a diameter of 0.3 μm or more existing on the slide glass was measured.
The structure of the cross section of the thin film was observed.

【0022】(実施例2)原料となる電解MnをAl2
3 坩堝を用いて1400℃で予備溶解した後、真空蒸
留した。真空度は10-2 Torr 、蒸留温度1300
℃、保持時間30分とした。蒸留したMnは、酸素:3
0ppm、S:<10ppm、C:10ppm、H:
0.8ppmであった。一方、市販の3NのIr粉末
(酸素:1300ppm、S:<10ppm、C:76
0ppm、H:50ppm)をAr雰囲気下で1400
℃、2hrの脱ガス処理を行った後、電子ビーム溶解し
て、Ir粉末(酸素:40ppm、S:<10ppm、
C:10ppm、H:1ppm)を得た。得られた高純
度Mnと高純度Irとを1:1でCaO坩堝で溶解し合
金化した。その結果、酸素:70ppm、S:10pp
m、C:10ppm、H:0.2ppmのMn−Ir
合金が得られた。各原料及びMn−Ir合金の組成を表
2に示す。
(Example 2) Electrolytic Mn as a raw material was changed to Al 2
After pre-melting at 1400 ° C. using an O 3 crucible, vacuum distillation was performed. Vacuum degree is 10 -2 Torr, distillation temperature is 1300
° C and a holding time of 30 minutes. Distilled Mn is oxygen: 3
0 ppm, S: <10 ppm, C: 10 ppm, H:
0.8 ppm. On the other hand, commercially available 3N Ir powder (oxygen: 1300 ppm, S: <10 ppm, C: 76
0 ppm, H: 50 ppm) in an Ar atmosphere at 1400
After degassing at 2 ° C. for 2 hours, the mixture was melted with an electron beam to obtain Ir powder (oxygen: 40 ppm, S: <10 ppm,
C: 10 ppm, H: 1 ppm). The obtained high-purity Mn and high-purity Ir were melted and alloyed at a ratio of 1: 1 in a CaO crucible. As a result, oxygen: 70 ppm, S: 10 pp
m, C: 10 ppm, H: 0.2 ppm Mn-Ir
An alloy was obtained. Table 2 shows the composition of each raw material and the Mn-Ir alloy.

【0023】[0023]

【表2】 [Table 2]

【0024】実施例1と同様に耐食性試験を行い、さら
にスパッタリングターゲットを作製してパーティクルの
評価試験及び薄膜の組織観察を行った。
A corrosion resistance test was carried out in the same manner as in Example 1, and a sputtering target was prepared, and a particle evaluation test and a structure observation of the thin film were carried out.

【0025】(比較例1)純度3Nの原料Mn粉末(酸
素:1500ppm、S:600ppm、C:150p
pm、H:120ppm)と、市販の純度3NのIr粉
末(酸素:1300ppm、S:<10ppm、C:7
60ppm、H:50ppm)とを1:1で溶解し合金
化した。その結果、酸素:800ppm、S:310p
pm、C:230ppm、H:2ppmのMn−Ir合
金が得られた。各原料及びMn−Ir合金の組成を表3
に示す。
Comparative Example 1 Raw material Mn powder having a purity of 3N (oxygen: 1500 ppm, S: 600 ppm, C: 150 p)
pm, H: 120 ppm) and commercially available Ir powder having a purity of 3N (oxygen: 1300 ppm, S: <10 ppm, C: 7)
(60 ppm, H: 50 ppm) at a ratio of 1: 1 to form an alloy. As a result, oxygen: 800 ppm, S: 310 p
A Mn-Ir alloy having pm, C: 230 ppm and H: 2 ppm was obtained. Table 3 shows the composition of each raw material and Mn-Ir alloy.
Shown in

【0026】[0026]

【表3】 [Table 3]

【0027】実施例と同様に耐食性試験を行い、さらに
スパッタリングターゲットを作製してパーティクルの評
価試験及び薄膜の組織観察を行った。
A corrosion resistance test was carried out in the same manner as in the examples, and a sputtering target was produced, and a particle evaluation test and a structure observation of the thin film were carried out.

【0028】(結果)実施例1〜2、及び比較例1の耐
食性試験結果、スパッタ試験におけるパーティクル数測
定結果、および薄膜の組織観察結果を表4に示す。
(Results) Table 4 shows the results of the corrosion resistance test, the measurement results of the number of particles in the sputter test, and the observation results of the structure of the thin films of Examples 1 and 2 and Comparative Example 1.

【0029】[0029]

【表4】 [Table 4]

【0030】その結果、酸素含有量が1000ppm以
下、S含有量が300ppm以下,C含有量が100p
pm以下、水素含有量が1ppm以下であることを特徴
とする本発明のMn−Ir合金は比較例に比べて耐食性
に優れていた。また、本発明のターゲットを用いた場合
には、スパッタの際に発生するパーティクル数も比較例
に比べて格段に少ないものであった。さらに、本発明の
Mn−Ir合金スパッタリングターゲットをスパッタリ
ングすることによって得られたMn−Ir合金薄膜も、
酸素含有量が1000pm以下、S含有量が300pp
m以下,C含有量が100ppm以下、水素含有量が1
ppm以下とターゲット組成と同様の高純度なものであ
り、その結晶組織は柱状晶であり、結晶組織の大きさも
粗大なものを得ることができ、その磁気特性は良好なも
のであったた。これに対して、比較例のターゲットを用
いて得られた薄膜は不純物含有量が多く、結晶組織は微
細な等軸晶であり、その磁気特性は不満足なものであっ
た。
As a result, the oxygen content was 1000 ppm or less, the S content was 300 ppm or less, and the C content was 100 ppm.
The Mn-Ir alloy of the present invention, which is characterized by having a hydrogen content of 1 ppm or less and a hydrogen content of 1 ppm or less, was excellent in corrosion resistance as compared with the comparative example. Further, when the target of the present invention was used, the number of particles generated at the time of sputtering was much smaller than that of the comparative example. Furthermore, a Mn-Ir alloy thin film obtained by sputtering the Mn-Ir alloy sputtering target of the present invention,
Oxygen content is less than 1000 pm, S content is 300 pp
m, C content is 100 ppm or less, and hydrogen content is 1
ppm or less, which was as high as the target composition, the crystal structure was columnar, the crystal structure could be coarse, and the magnetic properties were good. On the other hand, the thin film obtained by using the target of the comparative example had a high impurity content, had a fine crystal structure of equiaxed crystals, and had unsatisfactory magnetic properties.

【0031】[0031]

【発明の効果】本発明の酸素含有量が1000ppm以
下、S含有量が300ppm以下,C含有量が100p
pm以下、水素含有量が1ppm以下であることを特徴
とする磁性薄膜形成用Mn−Ir合金スパッタリングタ
ーゲットを用いることによって、パーティクル発生が少
なく、耐食性に優れ、磁気特性も良好なた反磁性膜を形
成することが可能であり、磁性薄膜形成用材料として有
用である。
According to the present invention, the oxygen content of the present invention is 1000 ppm or less, the S content is 300 ppm or less, and the C content is 100 p.
pm or less, by using a Mn-Ir alloy sputtering target for forming a magnetic thin film characterized by having a hydrogen content of 1 ppm or less, a diamagnetic film having less particle generation, excellent corrosion resistance, and excellent magnetic properties can be obtained. It can be formed and is useful as a material for forming a magnetic thin film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01F 41/18 H01F 41/18 H01L 43/10 H01L 43/10 43/12 43/12 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01F 41/18 H01F 41/18 H01L 43/10 H01L 43/10 43/12 43/12

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 酸素含有量が1000ppm以下、S含
有量が300ppm以下、炭素含有量が100ppm以
下、水素含有量が1ppm以下であることを特徴とする
磁性薄膜形成用Mn−Ir合金スパッタリングターゲッ
ト。
An Mn-Ir alloy sputtering target for forming a magnetic thin film, wherein the oxygen content is 1000 ppm or less, the S content is 300 ppm or less, the carbon content is 100 ppm or less, and the hydrogen content is 1 ppm or less.
【請求項2】 酸素含有量が100ppm以下、S含有
量が10ppm以下、炭素含有量が50ppm以下、水
素含有量が0.5ppm以下であることを特徴とする磁
性薄膜形成用Mn−Ir合金スパッタリングターゲッ
ト。
2. A Mn-Ir alloy sputtering for forming a magnetic thin film, wherein the oxygen content is 100 ppm or less, the S content is 10 ppm or less, the carbon content is 50 ppm or less, and the hydrogen content is 0.5 ppm or less. target.
【請求項3】 請求項1または2に記載の磁性薄膜形成
用Mn−Ir合金スパッタリングターゲットをスパッタ
リングすることにより形成されたことを特徴とする磁性
薄膜。
3. A magnetic thin film formed by sputtering the Mn-Ir alloy sputtering target for forming a magnetic thin film according to claim 1 or 2.
【請求項4】 酸素含有量が1000ppm以下、S含
有量が300ppm以下、炭素含有量が100ppm以
下、水素含有量が1ppm以下であり、結晶組織が柱状
晶であることを特徴とするMn−Ir合金磁性薄膜。
4. An Mn-Ir having an oxygen content of 1000 ppm or less, an S content of 300 ppm or less, a carbon content of 100 ppm or less, a hydrogen content of 1 ppm or less, and a columnar crystal structure. Alloy magnetic thin film.
【請求項5】 原料Mnを1250〜1500℃で予備
溶解した後、1100〜1500℃で真空蒸留すること
によって得た高純度Mn材料と、原料Ir粉末を100
0〜1500℃で脱ガス処理した後、電子ビーム溶解す
ることによって得た高純度Ir材料とを溶解し合金化し
た後、鋳造することを特徴とする磁性薄膜形成用Mn−
Ir合金スパッタリングターゲットの製造方法。
5. A high-purity Mn material obtained by preliminarily dissolving a raw material Mn at 1250 to 1500 ° C. and performing vacuum distillation at 1100 to 1500 ° C. and a raw material Ir powder of 100%.
After degassing at 0 to 1500 ° C., a high-purity Ir material obtained by electron beam melting is melted and alloyed, and then cast to form a magnetic thin film-forming Mn—.
A method for producing an Ir alloy sputtering target.
JP08824098A 1998-03-18 1998-03-18 Mn-Ir alloy sputtering target for forming magnetic thin film and Mn-Ir alloy magnetic thin film Expired - Lifetime JP3396420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08824098A JP3396420B2 (en) 1998-03-18 1998-03-18 Mn-Ir alloy sputtering target for forming magnetic thin film and Mn-Ir alloy magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08824098A JP3396420B2 (en) 1998-03-18 1998-03-18 Mn-Ir alloy sputtering target for forming magnetic thin film and Mn-Ir alloy magnetic thin film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002202464A Division JP3822145B2 (en) 2002-07-11 2002-07-11 Method for producing Mn-Ir alloy sputtering target for magnetic thin film formation

Publications (2)

Publication Number Publication Date
JPH11264070A true JPH11264070A (en) 1999-09-28
JP3396420B2 JP3396420B2 (en) 2003-04-14

Family

ID=13937345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08824098A Expired - Lifetime JP3396420B2 (en) 1998-03-18 1998-03-18 Mn-Ir alloy sputtering target for forming magnetic thin film and Mn-Ir alloy magnetic thin film

Country Status (1)

Country Link
JP (1) JP3396420B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086184A1 (en) * 2001-04-16 2002-10-31 Nikko Materials Company, Limited Manganese alloy sputtering target and method for producing the same
JP2003064473A (en) * 2001-08-24 2003-03-05 Toshiba Corp Sputtering target, antiferromagnetic film, magnetoresistance effect element provided with the film, magnetic head, and magnetoresistance effect type random access memory
JP2005220444A (en) * 2005-03-31 2005-08-18 Nikko Materials Co Ltd High purity metal, sputtering target composed of high purity metal, thin film deposited by sputtering, and method for producing high purity metal
JP2007291522A (en) * 2001-04-16 2007-11-08 Nikko Kinzoku Kk Manganese alloy sputtering target
JP2009001913A (en) * 2008-09-16 2009-01-08 Nikko Kinzoku Kk Sputtering target composed of high purity manganese, and thin film composed of high purity manganese formed by sputtering
JP2011068992A (en) * 2010-09-29 2011-04-07 Toshiba Corp Method for producing sputtering target
JP2012072498A (en) * 2011-11-16 2012-04-12 Jx Nippon Mining & Metals Corp Sputtering target consisting of high purity manganese and thin film consisting of high purity manganese which is formed by sputtering

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086184A1 (en) * 2001-04-16 2002-10-31 Nikko Materials Company, Limited Manganese alloy sputtering target and method for producing the same
EP1568796A1 (en) * 2001-04-16 2005-08-31 Nikko Materials Co., Ltd. Manganese alloy sputtering target
CN1311096C (en) * 2001-04-16 2007-04-18 日矿金属株式会社 Manganese alloy sputtering target and mehtod for producing the same
US7229510B2 (en) 2001-04-16 2007-06-12 Nippon Mining & Metals, Co., Ltd. Manganese alloy sputtering target and method for producing the same
JP2007291522A (en) * 2001-04-16 2007-11-08 Nikko Kinzoku Kk Manganese alloy sputtering target
US7713364B2 (en) 2001-04-16 2010-05-11 Nippon Mining & Metals Co., Ltd. Manganese alloy sputtering target and method for producing the same
JP4685059B2 (en) * 2001-04-16 2011-05-18 Jx日鉱日石金属株式会社 Manganese alloy sputtering target
JP2003064473A (en) * 2001-08-24 2003-03-05 Toshiba Corp Sputtering target, antiferromagnetic film, magnetoresistance effect element provided with the film, magnetic head, and magnetoresistance effect type random access memory
JP2005220444A (en) * 2005-03-31 2005-08-18 Nikko Materials Co Ltd High purity metal, sputtering target composed of high purity metal, thin film deposited by sputtering, and method for producing high purity metal
JP2009001913A (en) * 2008-09-16 2009-01-08 Nikko Kinzoku Kk Sputtering target composed of high purity manganese, and thin film composed of high purity manganese formed by sputtering
JP2011068992A (en) * 2010-09-29 2011-04-07 Toshiba Corp Method for producing sputtering target
JP2012072498A (en) * 2011-11-16 2012-04-12 Jx Nippon Mining & Metals Corp Sputtering target consisting of high purity manganese and thin film consisting of high purity manganese which is formed by sputtering

Also Published As

Publication number Publication date
JP3396420B2 (en) 2003-04-14

Similar Documents

Publication Publication Date Title
JP3544293B2 (en) Mn alloy material for magnetic material, Mn alloy sputtering target and magnetic thin film
JP4013999B2 (en) Manufacturing method of high purity Mn material
JP3962690B2 (en) Pt-Co sputtering target
JP5253781B2 (en) Alloy target material for soft magnetic film layer in perpendicular magnetic recording media
US9605339B2 (en) Sputtering target for magnetic recording film and process for production thereof
JPH11335821A (en) Nickel-iron alloy sputtering target for forming magnetic thin film, production of magnetic thin film and nickel-iron alloy sputtering target for forming magnetic thin film
KR100598420B1 (en) Manganese alloy sputtering target and method for producing the same
JP2005530925A (en) High PTF sputtering target and manufacturing method thereof
US2882146A (en) High temperature niobium base alloy
JPH11264070A (en) Manganese-iridium alloy sputtering target for forming magnetic thin film, magnetic thin film and production of manganese-iridium alloy sputtering target for forming magnetic thin film
JP3822145B2 (en) Method for producing Mn-Ir alloy sputtering target for magnetic thin film formation
KR20060046479A (en) Low oxygen content alloy compositions
JP2007081308A (en) Magnetic membrane
JP3891549B2 (en) Mn alloy material for magnetic material, Mn alloy sputtering target and magnetic thin film
JP4477017B2 (en) High purity Mn material for thin film formation
TWI616545B (en) Strong magnetic material sputtering target
JPH05247642A (en) Target member and manufacture therefor
JPH11246967A (en) Target for irmn series alloy film formation, its production and antiferromagnetic film using it
JP3803797B2 (en) Manufacturing method of high purity Ir material
JP2004211203A (en) Mn ALLOY MATERIAL FOR MAGNETIC MATERIAL, Mn ALLOY SPUTTERING TARGET AND MAGNETIC THIN FILM
Bostanjoglo et al. Stabilization of amorphous films by stress
JP2758836B2 (en) Method for producing sintered compact for high oxygen chromium target
JP2001279432A (en) Low oxygen containing sputtering target
JPH0641734A (en) Target member and its production
JPH06264159A (en) Raw material for high oxygen chromium target and its manufacture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020611

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030121

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140207

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term