JPH11264045A - Mulybdenum material and its production - Google Patents

Mulybdenum material and its production

Info

Publication number
JPH11264045A
JPH11264045A JP10082410A JP8241098A JPH11264045A JP H11264045 A JPH11264045 A JP H11264045A JP 10082410 A JP10082410 A JP 10082410A JP 8241098 A JP8241098 A JP 8241098A JP H11264045 A JPH11264045 A JP H11264045A
Authority
JP
Japan
Prior art keywords
sintered body
tac
molybdenum
mass
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10082410A
Other languages
Japanese (ja)
Other versions
JP3385552B2 (en
Inventor
Tomohiro Takita
朋広 瀧田
Tadashi Igarashi
廉 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP08241098A priority Critical patent/JP3385552B2/en
Publication of JPH11264045A publication Critical patent/JPH11264045A/en
Application granted granted Critical
Publication of JP3385552B2 publication Critical patent/JP3385552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce the molybdenum material in which crystal particles hardly change to coarse even if the material is heated at high temp. in a sintered body before being subjected to a plastic processing and excellent in toughness at low temp. and to provide the production method of the Mo material provided with a desired crystal particle size. SOLUTION: In the molybdenum sintered body in which 0.2-3.0 mass % tantalum carbide(TaC) is dispersed, at least either one of facts in which crystal particle size is 1-10 μm or ductility-brittleness transition temp. is <=-50 deg.C is satisfied. The sintered body having the crystal particle size within a range of 1.0-25 μm is produced by adding 0.2-3.0 mass % TaC powder to a molybdenum powder and subjecting the mixture to a mechanical alloying treatment, and after subjecting the produced powder to a hot isotropic press, subjecting the pressed matter to heat treatment and controlling a temp. and time of the heat treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,高温構造材料,焼
結部品およびブロック製品等の耐熱材料に用いられ,と
くに,低温延性に優れ,高温に加熱されても結晶粒が阻
大化しにくいモリブデン材料と,結晶粒を任意の大きさ
に調整できるモリブデン材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for heat-resistant materials such as high-temperature structural materials, sintered parts and block products. The present invention relates to a material and a method for producing a molybdenum material capable of adjusting crystal grains to an arbitrary size.

【0002】[0002]

【従来の技術】モリブデン(以下,Moと呼ぶ)は,融
点が高く,塑性加工性も良いため,耐熱材料として,と
くに1500℃以上の高温で広く使用されている。
2. Description of the Related Art Molybdenum (hereinafter referred to as Mo) is widely used as a heat-resistant material, particularly at a high temperature of 1500 ° C. or higher, because of its high melting point and good plastic workability.

【0003】しかしながら,純Mo加工材は1000℃
程度以上に加熱すると再結晶し脆化し,高温強度が著し
く低下する。さらに高温では,結晶粒が粗大化するため
に脆化する。また,この再結晶材の延性一脆性遷移温度
(以下,DBTTと呼ぶ)は室温近傍にあるために,こ
の温度以下では著しく脆くなる。これらの脆化は,Mo
の結晶粒界が本質的に脆いこと,即ち,粒界脆化に起因
するとされている。
[0003] However, pure Mo processed material is 1000 ° C.
If heated above this level, it will recrystallize and become brittle, and its high-temperature strength will be significantly reduced. At higher temperatures, the crystal grains become coarser and become brittle. Further, since the ductile-brittle transition temperature (hereinafter referred to as DBTT) of this recrystallized material is near room temperature, it becomes extremely brittle below this temperature. These embrittlements are due to Mo
Is essentially brittle, that is, due to grain boundary embrittlement.

【0004】この粒界脆化を改善するために,結晶粒界
がまったく存在しない単結晶化が行なわれているが,実
用的規模の大きさのものを得ることは工業的に容易でな
い。
[0004] In order to improve the grain boundary embrittlement, single crystallization without any crystal grain boundaries is performed, but it is not industrially easy to obtain a material having a practical size.

【0005】そのほか,ランタンや珪素,カリウムなど
の酸化物を添加し,長大結晶粒の積層組織に組織制御す
ることで,結晶粒界の影響を少なくする方法が行なわれ
ている。ところが,この組織制御には,熱間鍛造,熱間
圧延などによる高加工率の塑性加工が不可欠である,た
とえば,特公昭61−27459号公報,特開昭59−
150071号公報,及び米国特許第4514234号
明細書によると,アルミ,珪素,カリウムの元素のう
ち,一種または二種以上添加したモリブデン材料では,
85%以上の加工率の塑性加工が必要であるとされてい
る。
[0005] In addition, a method of reducing the influence of crystal grain boundaries by adding an oxide such as lanthanum, silicon, or potassium and controlling the structure of the laminated structure of long crystal grains has been performed. However, in order to control the structure, plastic working with a high working ratio by hot forging, hot rolling or the like is indispensable. For example, Japanese Patent Publication No. 61-27459, Japanese Patent Application Laid-Open No.
According to Japanese Patent No. 150071 and US Pat. No. 4,514,234, a molybdenum material to which one or more of aluminum, silicon and potassium elements are added is:
It is said that plastic working with a working ratio of 85% or more is required.

【0006】組織制御法による製造技術では,板厚の厚
いモリブデン焼結体の製造に限界がある。
[0006] In the manufacturing technique based on the structure control method, there is a limit in manufacturing a thick molybdenum sintered body.

【0007】例えば,圧延加工で厚さ50mmの板材を
得るには,少なくとも330mm以上のモリブデン焼結
体が必要になる計算となり,圧延機,加熱装置などの設
備上の問題あるいは材料の歩留まり,コストなどの問題
が生じる。すなわち,高加工率の塑性加工を必要とする
組織制御法では,粒界脆性を改善した板厚の厚い材料は
得難く,厚板やブロックおよび焼結部品などに適用は困
難である。
For example, in order to obtain a plate having a thickness of 50 mm by rolling, it is necessary to calculate a molybdenum sintered body having a thickness of at least 330 mm or more. And other problems. That is, it is difficult to obtain a material having a large thickness with improved grain boundary brittleness by a structure control method that requires plastic working at a high working rate, and it is difficult to apply the material to a thick plate, a block, or a sintered part.

【0008】[0008]

【発明が解決しようとする課題】高加工率の塑性加工を
必要としないで作製でき,粒界脆化を改善したMo材料
を開発するためには,塑性加工する前のMo焼結体その
ものの強度および靭性を向上させることが必要である。
SUMMARY OF THE INVENTION In order to develop a Mo material which can be manufactured without the need for plastic working at a high working ratio and has improved grain boundary embrittlement, it is necessary to develop a Mo sintered body itself before plastic working. It is necessary to improve strength and toughness.

【0009】高強度高靭性なMo焼結体が得られれば,
焼結体そのものとしても使用できるばかりでなく,若干
の塑性加工するだけでさらに高強度高靭性モリブデン材
料が得られるからである。
If a high-strength and tough Mo sintered body can be obtained,
This is because not only can the sintered body itself be used, but also a high-strength and high-toughness molybdenum material can be obtained by performing only a small amount of plastic working.

【0010】したがって,本発明の技術的課題は,塑性
加工する前の焼結体において,高温に加熱されても結晶
粒が粗大化しにくく,低温で靭性に富むMo材料を提供
することにある。
[0010] Therefore, a technical object of the present invention is to provide a Mo material which is hardly coarsened even when heated to a high temperature in a sintered body before plastic working, and which is rich in toughness at a low temperature.

【0011】また,本発明の他の技術的課題は,所望す
る結晶粒径を備えた上記Mo材料を得るための製造方法
を提供することにある。
Another technical object of the present invention is to provide a manufacturing method for obtaining the Mo material having a desired crystal grain size.

【0012】[0012]

【課題を解決するための手段】本発明によれば,0.2
〜3.0質量%(または重量%)の炭化タンタル(Ta
C)が分散したモリブデン焼結体であって,結晶粒径
(結晶粒子の平均粒子径)が1〜10μm以下であり,
延性−脆性遷移温度が−50℃以下であることを特徴と
するモリブデン材料が得られる。
According to the present invention, 0.2.
To 3.0 mass% (or weight%) of tantalum carbide (Ta
C) is a molybdenum sintered body in which the crystal grain size (average crystal grain size) is 1 to 10 μm or less;
A molybdenum material having a ductile-brittle transition temperature of −50 ° C. or lower is obtained.

【0013】ここで,本発明において,モリブデンへの
TaCの添加量の範囲を0.2〜3.0質量%と限定し
たのは,0.2質量%より少ない場合,Moの結晶粒界
の強化が乏しく,また高温における結晶粒の粗大化を抑
制しにくく,強度および靭性の向上が図れにくいためで
ある。一方,3.0質量%を越えると緻密化しにくく,
また脆化し,塑性加工した場合に割れが生じやすくな
り,歩留まりが低下するためである。また,本発明にお
いて,炭化タンタル(TaC)は,上記範囲の中でより
好ましくは,結晶粒径が3.3μmよりも小さな1.6
質量%である。
Here, in the present invention, the range of the amount of TaC added to molybdenum is limited to 0.2 to 3.0% by mass, when the content is less than 0.2% by mass. This is because the reinforcement is poor, it is difficult to suppress the coarsening of crystal grains at high temperatures, and it is difficult to improve the strength and toughness. On the other hand, if it exceeds 3.0% by mass, it is difficult to densify,
It is also because it becomes brittle and easily cracks when subjected to plastic working, which lowers the yield. Further, in the present invention, tantalum carbide (TaC) is more preferably in the above range, and the crystal grain size is 1.6 smaller than 3.3 μm.
% By mass.

【0014】また,本発明によれば,モリブデン粉末に
0.2〜3.0質量%のTaC粉末を混合してメカニカ
ルアロイング処理し,生成した粉末を熱間等方加圧した
後,熱処理を行い,当該熱処理の温度及び時間を制御す
ることによって,1.0〜25μmの範囲の結晶粒径
(結晶粒子の平均粒子径)を有するモリブデン焼結体を
得ることを特徴とするモリブデン材料の製造方法が得ら
れる。
Further, according to the present invention, the molybdenum powder is mixed with 0.2 to 3.0% by mass of TaC powder and subjected to mechanical alloying treatment. And controlling the temperature and time of the heat treatment to obtain a molybdenum sintered body having a crystal grain size (average crystal grain size) in the range of 1.0 to 25 μm. A manufacturing method is obtained.

【0015】さらに,本発明によれば,前記モリブデン
材料の製造方法において,前記メカニカルアロイング処
理及び前記熱間等方加圧は,大気にさらされない状態で
おこなわれることを特徴とするモリブデン材料の製造方
法が得られる。
Further, according to the present invention, in the method for producing a molybdenum material, the mechanical alloying treatment and the hot isostatic pressing are performed without being exposed to the atmosphere. A manufacturing method is obtained.

【0016】ここで,本発明において,TaCを用いた
のは,TaCは融点が高く熱的に安定で,Moの粒界強
度を高めることで,DBTTを低くすることを見い出し
たからである。また,TaCが結晶粒の粗大化を抑制す
る効果があることを見い出したからである。
The reason why TaC is used in the present invention is that TaC has a high melting point and is thermally stable, and it has been found that DBTT is lowered by increasing the grain boundary strength of Mo. In addition, it has been found that TaC has an effect of suppressing the coarsening of crystal grains.

【0017】また,本発明において,メカニカルアロイ
ング処理を施したのは,高エネルギーで混合することで
TaCを微粒化し,Mo中に分散させることで,TaC
とMoの結合力をさらに強化させ,その結果,強度およ
び靭性の向上が図れることを見い出したからである。こ
こで,本発明において,メカニカルアロイング処理と
は,合金化を目的とする狭義の粉末処理法を意味するも
のではなく,粉体を高エネルギーで混合することで粉末
の微細化あるいは分散粒子(ここでは,TaC)の金属
粉末(ここでは,Mo)への埋め込みを行う広義の粉末
処埋法を意味する。
Further, in the present invention, the mechanical alloying treatment is performed by mixing TaC at high energy to atomize TaC and dispersing it in Mo.
It has been found that the bonding force between Mo and Mo is further enhanced, and as a result, strength and toughness can be improved. Here, in the present invention, the mechanical alloying treatment does not mean a powder treatment method in a narrow sense for the purpose of alloying, but the powder is finely dispersed or dispersed particles ( Here, this means a broadly-defined powder embedding method of embedding TaC) in a metal powder (here, Mo).

【0018】また,本発明において,熱間等方加圧焼結
を施したのは,通常用いられる水素焼結に比べ,焼結温
度を低くし,緻密化することができることができるから
である。したがって,メカニカルアロイング処理し微粒
化した粉末を粗大化されることなぐ緻密化させることが
できる。また,低温焼結して緻密化した材料は,高温に
加熱されても結晶粒が粗大化しにくいことを見いだした
からである。尚,周知の通り,本発明において用いた質
量%は,重量%の同じ意味である。
Further, in the present invention, the hot isostatic pressing is performed because the sintering temperature can be lowered and the densification can be achieved as compared with the commonly used hydrogen sintering. . Therefore, the powder which has been subjected to the mechanical alloying process and made finer can be densified without being coarsened. In addition, it has been found that, in a material that has been densified by low-temperature sintering, crystal grains are unlikely to become coarse even when heated to a high temperature. Incidentally, as is well known, the mass% used in the present invention has the same meaning as the weight%.

【0019】[0019]

【発明の実施の形態】以下,本発明の実施の形態につい
て図面を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】(第1の実施の形態)平均粒径4.1μm
のMo粉末に平均粒径1.1μmのTaC粉末を0〜
3.2質量%添加し,超硬合金製容器およびボールを用
いた遊星型ボールミルで30時間メカニカルアロイング
(MA)処理した。なお,MA処理前後での粉末の取り
扱いは,高純度アルゴンガスで置換したグローブボック
ス中で行った。得られた粉末は,CIP成形後ガラス製
容器に封入したのち,1300℃,1500kgf/c
2 ,3時間で熱間等方加圧(HIP)焼結した。した
がって,HIP焼結後まで,材料は大気にさらされない
状態で作製し,緻密化させた。得られた焼結体(HIP
材)及びHIP材を1800℃で一時間加熱した材料
(1800加熱材)から厚さ1mm,幅2mm,長さ2
5mmの試験片を切り出し,−196〜90℃の温度範
囲で静的3点曲げ試験(支持ピン間距離16mm,負荷
速度1mm/分)し,DBTTを調べた。
(First Embodiment) Average particle size 4.1 μm
Of MoC powder with TaC powder having an average particle diameter of 1.1 μm
3.2% by mass was added, and a mechanical alloying (MA) treatment was performed for 30 hours in a planetary ball mill using a cemented carbide container and balls. The handling of the powder before and after the MA treatment was performed in a glove box replaced with high-purity argon gas. The obtained powder is sealed in a glass container after CIP molding, and then at 1300 ° C. and 1500 kgf / c.
Hot isostatic pressing (HIP) sintering was performed for m 2 , 3 hours. Thus, until after HIP sintering, the material was fabricated and densified without exposure to air. The obtained sintered body (HIP
Material) and a HIP material heated from 1800 ° C. for 1 hour (1800 heated material) to a thickness of 1 mm, a width of 2 mm, and a length of 2
A test piece of 5 mm was cut out and subjected to a static three-point bending test (a distance between support pins of 16 mm and a load speed of 1 mm / min) in a temperature range of -196 to 90 ° C to examine DBTT.

【0021】ここで,図1に示す降伏強度の温度曲線2
と最大強度の温度曲線1の交点5の温度6をDBTTと
した。この温度は延性を示す臨界温度であり,曲げ角は
ほどんど0度である。なお,比較材料として,結晶粒径
20μmの純Mo板についてもDBTTを調べた。
Here, the yield strength temperature curve 2 shown in FIG.
And the temperature 6 at the intersection 5 of the temperature curve 1 with the maximum strength was defined as DBTT. This temperature is a critical temperature showing ductility, and the bending angle is almost 0 degree. As a comparative material, DBTT was also examined on a pure Mo plate having a crystal grain size of 20 μm.

【0022】また,種々の温度,時問で加熱して,組織
観察して結晶粒径を求め,高温加熱による結晶粒成長に
ついて調べた。ここで,結晶粒径は面積計量法によって
測定した。
Further, the crystal grain size was determined by heating at various temperatures and times and observing the structure, and the crystal grain growth by high temperature heating was examined. Here, the crystal grain size was measured by the area measurement method.

【0023】下記表1に本発明の第1の実施の形態によ
るTaC分散Mo焼結体(HIP材)と,HIP材を1
800℃で1時間加熱(1800℃加熱材)した後の結
晶粒径とDBTTを示す。同時に比較例の純Mo板の結
晶粒径とDBTTも示す。
Table 1 below shows that the TaC-dispersed Mo sintered body (HIP material) according to the first embodiment of the present invention and the HIP material
The crystal grain size and DBTT after heating at 800 ° C. for 1 hour (heated material at 1800 ° C.) are shown. At the same time, the crystal grain size and DBTT of the pure Mo plate of the comparative example are also shown.

【0024】[0024]

【表1】 上記表1に示すように,結晶粒径において,HIP材の
場合,TaCを0.1質量%添加(試料2)すること
で,TaCを添加しないで作製した純MO焼結体(試料
1)に比べ,結晶粒径は小さい。1800℃加熱材の場
合,純Mo焼結体(試料1)は著しく粗大化している
が,TaCを0.1質量%添加(試料2)することで,
粗大化が抑制されている。
[Table 1] As shown in Table 1 above, in the case of the HIP material, in the case of the HIP material, by adding 0.1% by mass of TaC (Sample 2), a pure MO sintered body manufactured without adding TaC (Sample 1). The grain size is smaller than that of. In the case of the heating material at 1800 ° C., the pure Mo sintered body (sample 1) is extremely coarse, but by adding 0.1% by mass of TaC (sample 2),
Coarsening is suppressed.

【0025】また,TaCの添加量が増加すると,結晶
粒径はさらに小さくなり,結晶粒の成長は抑制されてい
るが,添加量が3.2質量%(試料No.8)では,密
度が上がらず,ポアが多かった。
When the amount of TaC added increases, the crystal grain size further decreases, and the growth of crystal grains is suppressed. However, when the addition amount is 3.2% by mass (sample No. 8), the density increases. It did not rise and had many pores.

【0026】また,DBTTにおいて,いずれのHIP
材および1800℃加熱材においても,TaCを0.1
質量%添加(試料2)することで,TaCを添加しない
で作製した純Mo焼結体(試料1)に比べDBTTは著
しく低下する。ただし,試料2の焼結体のDBTTは,
比較材料の純Mo板に比べほとんど変らない。
In the DBTT, any HIP
In the material and the 1800 ° C heating material, TaC is 0.1
By adding the mass% (sample 2), the DBTT is significantly reduced as compared with a pure Mo sintered body (sample 1) manufactured without adding TaC. However, the DBTT of the sintered body of Sample 2 is
There is almost no change compared to the pure Mo plate of the comparative material.

【0027】TaCの添加量が増加すると,DBTTは
低下するが,添加量が3.2質量%(試料8)では,密
度が上がらず,脆化した。
When the amount of TaC added increased, the DBTT decreased, but when the amount of addition was 3.2% by mass (sample 8), the density did not increase and embrittlement occurred.

【0028】下記表2に本発明の実施の形態によるTa
C分散Mo焼結体(HIP材)と,HIP材を2000
℃でl時間および100時間加熱した後の結晶粒径を示
す。
Table 2 below shows Ta according to the embodiment of the present invention.
C-dispersed Mo sintered body (HIP material) and HIP material of 2000
The crystal grain size after heating at 100C for 1 hour and 100 hours is shown.

【0029】TaCを0.2質量%以上添加すること
で,2000℃で100時間加熱しても,粗大化が抑制
されている。
By adding TaC in an amount of 0.2% by mass or more, coarsening is suppressed even when heating is performed at 2000 ° C. for 100 hours.

【0030】[0030]

【表2】 図2は,本発明の実施の形態による1.6質量%TaC
分散Mo焼結体(a)および純Mo焼結体(b)の金属
組織を示す光学顕微鏡組織写真である。また,図3は,
1800℃でl時間加熱後の1.6質量%TaC−Mo
焼結体(a)およびMo焼結体(b)の金属組織を示す
光学顕微鏡写真である。焼結後において,TaCを分散
することで,結晶粒が微細化する。1800℃でl時間
加熱すると,純Mo焼結体の結晶粒径は1〜2mmと,
結晶粒が粗大化しているのに対して,TaC分散Mo焼
結体の場合,結晶粒径は10μm程度と細かく,粒成長
が著しく抑制されている。
[Table 2] FIG. 2 shows 1.6% by mass TaC according to an embodiment of the present invention.
It is an optical microscope structure photograph which shows the metal structure of a dispersed Mo sintered compact (a) and a pure Mo sintered compact (b). Also, FIG.
1.6 mass% TaC-Mo after heating at 1800 ° C. for 1 hour
It is an optical microscope photograph which shows the metal structure of a sintered compact (a) and a Mo sintered compact (b). After sintering, the crystal grains are refined by dispersing TaC. When heated at 1800 ° C. for 1 hour, the crystal grain size of the pure Mo sintered body becomes 1-2 mm,
While the crystal grains are coarse, in the case of the TaC-dispersed Mo sintered body, the crystal grain size is as small as about 10 μm, and the grain growth is significantly suppressed.

【0031】図4は本発明の実施の形態による1.6質
量%TaC分散Mo焼結体(試料5)および純Mo焼結
体(試料1)の1800℃加熱材と純Mo板の曲げ角の
温度依存性を示す図である。図4において,TaC分散
Mo焼結体,曲線12は比較のための純Mo板,曲線1
3は純Mo焼結体の曲げ角と試験温度との関係を夫々示
している。図4から明らかなように,TaC分散Mo焼
結体(曲線11)は,比較のための純Mo板(曲線1
2)及び純Mo焼結体(曲線13)のDBTTが曲極め
て低く,低温延性に優れていることを示している。図4
において,曲線11に示すように,TaC分散Mo焼結
体のDBTTが,曲線12及び曲線13に示す純Mo板
及び純Mo焼結体に比べて極めて低く,低温延性に優れ
ていることを示している。
FIG. 4 is a graph showing a bending angle of a heating material at 1800 ° C. of a 1.6 mass% TaC-dispersed Mo sintered body (sample 5) and a pure Mo sintered body (sample 1) and a bending angle of a pure Mo plate according to an embodiment of the present invention. FIG. 3 is a diagram showing the temperature dependence of the present invention. In FIG. 4, a TaC-dispersed Mo sintered body, curve 12 is a pure Mo plate for comparison, curve 1
3 shows the relationship between the bending angle of the pure Mo sintered body and the test temperature, respectively. As is clear from FIG. 4, the TaC-dispersed Mo sintered body (curve 11) was a pure Mo plate for comparison (curve 1).
The DBTT of 2) and the pure Mo sintered body (curve 13) have extremely low curves, indicating that the low-temperature ductility is excellent. FIG.
As shown in curve 11, the DBTT of the TaC-dispersed Mo sintered body was extremely lower than that of the pure Mo plate and the pure Mo sintered body shown in the curves 12 and 13, indicating that the low-temperature ductility was excellent. ing.

【0032】[0032]

【発明の効果】以上説明したように,本発明によれば,
塑性加工する前の焼結体において,高温に加熱されても
結晶粒が粗大化しにくく,低温で靭性に富むMo材料を
提供することができる。
As described above, according to the present invention,
In the sintered body before the plastic working, the crystal grains are hardly coarsened even when heated at a high temperature, and a Mo material having a high toughness at a low temperature can be provided.

【0033】また,本発明によれば,上記利点を備え,
所望する結晶粒径を備えたMo材料を得るための製造方
法を提供することができる。
According to the present invention, the above-mentioned advantages are provided.
A manufacturing method for obtaining a Mo material having a desired crystal grain size can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】モリブデン材料の降伏強度,最大強度および曲
げ角の温度依存性を示した図である。
FIG. 1 is a graph showing the temperature dependence of the yield strength, maximum strength, and bending angle of a molybdenum material.

【図2】本発明の実施の形態による1.6質量%TaC
分散Mo焼結体(a)および純Mo焼結体(b)の金属
組織を示す光学顕微鏡組織写真である。
FIG. 2 shows 1.6% by mass TaC according to an embodiment of the present invention.
It is an optical microscope structure photograph which shows the metal structure of a dispersed Mo sintered compact (a) and a pure Mo sintered compact (b).

【図3】本発明の実施の形態による1.6質量%TaC
分散Mo焼結体(a)および純Mo焼結体(b)の18
00℃でl時間加熱後の金属組織を示す光学顕微鏡写真
である。
FIG. 3 shows 1.6% by mass TaC according to an embodiment of the present invention.
18 of the dispersed Mo sintered body (a) and the pure Mo sintered body (b)
It is an optical microscope photograph which shows the metal structure after heating at 00 degreeC for 1 hour.

【図4】本発明の実施の形態による1.6質量%TaC
分散Mo焼結体および純Mo焼結体の1800℃加熱材
と純Mo板の曲げ角の温度依存性を示した図である。
FIG. 4 shows 1.6 mass% TaC according to an embodiment of the present invention.
It is the figure which showed the 1800 degreeC heating material of a dispersion | distribution Mo sintered compact and a pure Mo sintered compact, and the temperature dependence of the bending angle of a pure Mo board.

【符号の説明】 1 最大強度の温度曲線 2 降伏強度の温度曲線 3 曲げ角の温度曲線 5 交点 6 交点におけるDBTT[Description of Signs] 1 Temperature curve of maximum strength 2 Temperature curve of yield strength 3 Temperature curve of bending angle 5 Intersection 6 DBTT at intersection

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 687 C22F 1/00 687 691 691Z ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 687 C22F 1/00 687 691 691Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 0.2〜3.0質量%の炭化タンタル
(TaC)が分散したモリブデン焼結体であって,結晶
粒径が1〜10μmであり,延性−脆性遷移温度が−5
0℃以下であることを特徴とするモリブデン材料。
1. A molybdenum sintered body in which 0.2 to 3.0% by mass of tantalum carbide (TaC) is dispersed, having a crystal grain size of 1 to 10 μm and a ductile-brittle transition temperature of -5.
A molybdenum material having a temperature of 0 ° C. or lower.
【請求項2】 モリブデン粉末に0.2〜3.0質量%
のTaC粉末を混合してメカニカルアロイング処理し,
生成した粉末を熱間等方加圧した後,熱処理を行い,当
該熱処理の温度及び時間を制御することによって,1.
0〜25μmの範囲の結晶粒径を有するモリブデン焼結
体を得ることを特徴とするモリブデン材料の製造方法。
2. 0.2 to 3.0 mass% of molybdenum powder
TaC powder is mixed and mechanically alloyed,
After the generated powder is hot isostatically pressed, heat treatment is performed, and by controlling the temperature and time of the heat treatment, 1.
A method for producing a molybdenum material, comprising obtaining a molybdenum sintered body having a crystal grain size in a range of 0 to 25 µm.
【請求項3】 請求項2記載のモリブデン材料の製造方
法において,前記メカニカルアロイング処理及び前記熱
間等方加圧は,大気にさらされない状態でおこなわれる
ことを特徴とするモリブデン材料の製造方法。
3. The method for producing a molybdenum material according to claim 2, wherein the mechanical alloying treatment and the hot isostatic pressing are performed without being exposed to the atmosphere. .
JP08241098A 1998-03-16 1998-03-16 Molybdenum material and manufacturing method thereof Expired - Fee Related JP3385552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08241098A JP3385552B2 (en) 1998-03-16 1998-03-16 Molybdenum material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08241098A JP3385552B2 (en) 1998-03-16 1998-03-16 Molybdenum material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11264045A true JPH11264045A (en) 1999-09-28
JP3385552B2 JP3385552B2 (en) 2003-03-10

Family

ID=13773828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08241098A Expired - Fee Related JP3385552B2 (en) 1998-03-16 1998-03-16 Molybdenum material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3385552B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413228B1 (en) 1998-12-28 2002-07-02 Pro Duct Health, Inc. Devices, methods and systems for collecting material from a breast duct
EP1953254A1 (en) * 2005-10-27 2008-08-06 Kabushiki Kaisha Toshiba Molybdenum alloy, and making use of the same, x-ray tube rotating anode target, x-ray tube and melting crucible

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413228B1 (en) 1998-12-28 2002-07-02 Pro Duct Health, Inc. Devices, methods and systems for collecting material from a breast duct
EP1953254A1 (en) * 2005-10-27 2008-08-06 Kabushiki Kaisha Toshiba Molybdenum alloy, and making use of the same, x-ray tube rotating anode target, x-ray tube and melting crucible
EP1953254A4 (en) * 2005-10-27 2009-11-18 Toshiba Kk Molybdenum alloy, and making use of the same, x-ray tube rotating anode target, x-ray tube and melting crucible
US7860220B2 (en) 2005-10-27 2010-12-28 Kabushiki Kaisha Toshiba Molybdenum alloy; and X-ray tube rotary anode target, X-ray tube and melting crucible using the same

Also Published As

Publication number Publication date
JP3385552B2 (en) 2003-03-10

Similar Documents

Publication Publication Date Title
JP3271040B2 (en) Molybdenum alloy and method for producing the same
JP5920793B2 (en) Process for producing transition metal carbide tungsten alloy and transition metal carbide tungsten alloy
US20090148334A1 (en) Nanophase dispersion strengthened low cte alloy
JP2002371301A (en) Tungsten sintered compact and manufacturing method therefor
CN112410634B (en) Alloying powder, tungsten-based alloy, preparation method thereof and stirring tool
Wananuruksawong et al. High-strain-rate superplasticity in nanocrystalline silicon nitride ceramics under compression
CL et al. Synthesis of Nb/Nb5Si3 in-situ composites by mechanical milling and reactive spark plasma sintering
Batalha et al. Microstructure and properties of TiB 2-reinforced Ti–35Nb–7Zr–5Ta processed by laser-powder bed fusion
JP6885900B2 (en) Ti-Fe-based sintered alloy material and its manufacturing method
JPH11264045A (en) Mulybdenum material and its production
CN109439990A (en) A kind of preparation process of high-compactness high-content molybdenum niobium alloy target
CN113798488B (en) Aluminum-based powder metallurgy material and preparation method thereof
JP2000129389A (en) Molybdenum sintered compact and its manufacture
US20050118052A1 (en) Stabilized grain size refractory metal powder metallurgy mill products
Takida et al. The role of dispersed particles in strengthening and fracture mechanisms in a Mo-ZrC alloy processed by mechanical alloying
JPS63171847A (en) Molybdenum crucible and its production
JP3045366B2 (en) High toughness ceramic composite material, ceramic composite powder, and method for producing them
Guo et al. High-Performance Ti-6554 Alloy Manufactured Using Irregular Powder via Vacuum Pressureless Sintering Followed by Forging
JPH11139874A (en) Silicon nitride-base ceramics and its production
Nieh et al. Creep of a niobium beryllide, Nb2Be17
JP4925202B2 (en) Composition-gradient molybdenum-niobium alloy powder
JPH07242483A (en) Precipitation hardening molybdenum single crystal and production thereof
JP6860300B2 (en) Lightweight tungsten alloy, tools and friction stir welding equipment
Batalha et al. Microstructure and properties of TiB
Goodarzia et al. Mechanics of Advanced Composite Structures

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021204

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140110

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees