JPH11263745A - Vapor-phase catalytic oxidation of hydrocarbon - Google Patents

Vapor-phase catalytic oxidation of hydrocarbon

Info

Publication number
JPH11263745A
JPH11263745A JP10294795A JP29479598A JPH11263745A JP H11263745 A JPH11263745 A JP H11263745A JP 10294795 A JP10294795 A JP 10294795A JP 29479598 A JP29479598 A JP 29479598A JP H11263745 A JPH11263745 A JP H11263745A
Authority
JP
Japan
Prior art keywords
gas
catalyst
catalytic oxidation
phase catalytic
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10294795A
Other languages
Japanese (ja)
Inventor
Hisao Kinoshita
久夫 木下
Tatsuya Ihara
達也 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP10294795A priority Critical patent/JPH11263745A/en
Publication of JPH11263745A publication Critical patent/JPH11263745A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably obtain the objective product while suppressing reduction in catalytic performances, by providing a process for bringing a catalyst into contact with a specific gas in subjecting a prescribed hydrocarbon to a gas-phase catalytic oxidation in a reactor in the presence of a specified catalyst. SOLUTION: In this method for subjecting a 2-8C hydrocarbon to a gas-phase catalytic oxidation in a reactor in the presence of a compound oxide catalyst, a process or a zone for bringing at least a part of the catalyst into contact with a gas having the concentration of a combustible component lower than that of a reaction product gas and an oxygen concentration higher than that of the reaction product gas is provided to activate the deteriorated catalyst. For example, when raw material propane, raw material ammonia, a recycle gas, etc., are supplied from a reducing gas feed opening 4 and an oxidizing gas is fed from oxidizing gas feed openings 5 and 5' to the reactor 1, the oxidizing gas forms a zone having a high oxygen concentration at a regeneration zone A and the catalyst recycled as a dotted line arrow 7 is brought into contact with oxygen in the zone A and regenerated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炭化水素の気相接触
酸化の反応方法に関する。
[0001] The present invention relates to a reaction method for gas phase catalytic oxidation of hydrocarbons.

【0002】[0002]

【従来の技術】炭化水素の気相接触酸化反応は、その生
成物の有用性や製造方法の経済性などから工業的に広く
実施されている。具体的には、炭化水素の部分酸化反応
によるアクリル酸、無水マレイン酸等の含酸素有機化合
物、又は、炭化水素とアンモニアの接触酸化反応による
アクリロニトリル、メタクリロニトリル等のニトリルを
製造する方法として工業的に実施されている。このほか
にも飽和炭素−炭素結合を不飽和結合に変換する反応、
例えば、エタン、プロパン、ブタンなどのアルカンを相
当するアルケン、すなわち、エチレン、プロピレン、ブ
テン類などに変換する気相接触酸化脱水素反応も提案さ
れている。
2. Description of the Related Art Gas phase catalytic oxidation of hydrocarbons has been widely practiced industrially because of the usefulness of the products and the economics of the production method. Specifically, industrial methods are used to produce oxygen-containing organic compounds such as acrylic acid and maleic anhydride by a partial oxidation reaction of hydrocarbons, or nitriles such as acrylonitrile and methacrylonitrile by a catalytic oxidation reaction of hydrocarbons and ammonia. Has been implemented. In addition, a reaction for converting a saturated carbon-carbon bond into an unsaturated bond,
For example, a gas-phase catalytic oxidative dehydrogenation reaction for converting alkanes such as ethane, propane, and butane into the corresponding alkenes, that is, ethylene, propylene, butenes, and the like has been proposed.

【0003】これら炭化水素の気相接触酸化反応に関し
ては、これまで多数の触媒や反応方式が提案されてい
る。特に、原料の価格を考えるとアルケンよりもアルカ
ンを原料とする気相接触酸化反応が注目されている。ア
ルカンの気相接触酸化反応の触媒としては、例えば、プ
ロパンとアンモニアとの気相接触酸化反応によるアクリ
ロニトリルの製造に関する触媒としては、Mo−Bi−
P系触媒(特開昭48−16887号)、Mo−Cr−
Te系触媒(米国特許5171876号)、Mo−V−
Te系触媒(特開平2−257号、特開平5−1482
12号、特開平5−208136号、特開平6−279
351号、特開平6−287146号、特開平7−10
8101号など)、Mo−V−Sb系触媒(特開平9−
157241号)、Mo−Cr−Bi系触媒(特開平7
−215925号)、V−Sb系触媒(特開昭47−3
3783号、特公昭50−23016号、特開平1−2
68668号、特開平2−180637号)、V−Sb
−U−Ni系触媒(特公昭47−14371号)、V−
Sb−W−P系触媒(特開平2−95439号)などが
例示される。また、プロパンの気相接触酸化反応方法に
よるアクリル酸の製造に関しては、触媒の提案として、
Bi−Mo−V系および/ またはピロリン酸ジバナジル
触媒(特開平3−170445号、第11回国際触媒会議
要旨集1205-1214 頁)、P−Mo−Sb−W系触媒(ベ
ルギー国出願9500449号)、Mo−V−Te系触
媒(特開平6−279351号)などが提案されてい
る。
A number of catalysts and reaction systems have been proposed for the gas phase catalytic oxidation reaction of these hydrocarbons. In particular, considering the price of the raw material, a gas-phase catalytic oxidation reaction using an alkane as a raw material rather than an alkene has attracted attention. As a catalyst for the gas phase catalytic oxidation reaction of alkanes, for example, as a catalyst for producing acrylonitrile by a gas phase catalytic oxidation reaction of propane and ammonia, Mo-Bi-
P-based catalyst (JP-A-48-16887), Mo-Cr-
Te-based catalyst (US Pat. No. 5,171,876), Mo-V-
Te-based catalysts (JP-A-2-257, JP-A-5-1482)
12, JP-A-5-208136, JP-A-6-279
No. 351, JP-A-6-287146, JP-A-7-10
No. 8101), a Mo-V-Sb-based catalyst (Japanese Unexamined Patent Publication No.
No. 157241), a Mo-Cr-Bi-based catalyst (Japanese Unexamined Patent Publication No.
215925), V-Sb-based catalysts (JP-A-47-3)
No. 3783, Japanese Patent Publication No. 50-23016, Japanese Patent Laid-Open No. 1-2
68668, JP-A-2-180637), V-Sb
-U-Ni catalyst (JP-B-47-14371), V-
Sb-WP catalysts (JP-A-2-95439) are exemplified. Regarding the production of acrylic acid by the gas phase catalytic oxidation reaction method of propane, as a proposal for a catalyst,
Bi-Mo-V-based and / or divanadyl pyrophosphate catalysts (Japanese Unexamined Patent Publication (Kokai) No. 3-170445, Abstracts of the 11th International Conference on Catalysts, pp. 1205-1214), P-Mo-Sb-W-based catalysts (Belgian application 9550049) ), Mo-V-Te-based catalysts (JP-A-6-279351) and the like have been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
の触媒では、初期の収率、選択率について検討されてい
るが、触媒を工業的に使用するためには目的生成物の収
率や選択率のみでなく、触媒の性能の経時的な低下を抑
えて、目的生成物を安定に生産させることが必要であ
る。
However, the initial yield and selectivity of these catalysts have been studied, but in order to use the catalyst industrially, only the yield and selectivity of the target product are required. Rather, it is necessary to stably produce the target product while preventing the performance of the catalyst from decreasing over time.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記の課
題に鑑み鋭意検討した結果、反応器内の複合酸化物触媒
の少なくとも一部を、特定の気体と接触させることによ
り触媒性能を長時間にわたり維持させることができるこ
とを見いだし本発明に到達したものである。すなわち、
本発明の要旨は、炭素数2〜8の炭化水素を複合酸化物
触媒の存在下、反応器において気相接触酸化させる方法
において、反応器内の複合酸化物触媒の少なくとも一部
を、反応生成ガスよりも可燃物成分の濃度が低く、か
つ、反応生成ガスより酸素濃度の高い気体と接触させる
工程またはゾーンを有することを特徴とする炭化水素の
気相接触酸化方法に存する。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in view of the above problems, and as a result, at least a part of the composite oxide catalyst in the reactor was brought into contact with a specific gas to improve the catalytic performance. The inventors have found that the present invention can be maintained for a long time, and have reached the present invention. That is,
The gist of the present invention is to provide a method for subjecting a hydrocarbon having 2 to 8 carbon atoms to gas-phase catalytic oxidation in a reactor in the presence of a composite oxide catalyst. The present invention provides a gas phase catalytic oxidation method for hydrocarbons, which comprises a step or a zone in which the concentration of a combustible component is lower than that of a gas and the oxygen concentration is higher than that of a reaction product gas.

【0006】[0006]

【本発明の実施の形態】以下、本発明を詳細に説明す
る。炭素数2〜8の炭化水素は、通常炭素数2〜8のア
ルカンであり、具体的には、エタン、プロパン、ブタ
ン、ペンタン、ヘキサン、シクロヘキサンなどが挙げら
れ、好ましくはプロパン、イソブタンが用いられる。こ
れらの炭化水素の気相接触酸化反応としては、プロパン
からのアクロレインおよび/ またはアクリル酸、n-ブタ
ンからの無水マレイン酸、イソブタンからのメタクロレ
インおよび/ またはメタクリル酸、アンモニア存在下で
のプロパンからのアクリロニトリル、イソブタンからの
メタクリロニトリル、アンモニア存在下でのプロパンか
らのアクリロニトリルとアクリル酸の同時生成などが挙
げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The hydrocarbon having 2 to 8 carbon atoms is usually an alkane having 2 to 8 carbon atoms, and specific examples thereof include ethane, propane, butane, pentane, hexane, and cyclohexane. Preferably, propane and isobutane are used. . The gas phase catalytic oxidation reaction of these hydrocarbons includes acrolein and / or acrylic acid from propane, maleic anhydride from n-butane, methacrolein and / or methacrylic acid from isobutane, and propane in the presence of ammonia. Acrylonitrile, methacrylonitrile from isobutane, and simultaneous production of acrylonitrile and acrylic acid from propane in the presence of ammonia.

【0007】本発明で用いる複合酸化物としては、通
常、モリブデン、バナジウムを含む複合酸化物、好まし
くは、モリブデン、バナジウム、テルルを含む複合酸化
物、モリブデン、バナジウム、アンチモンを含む複合酸
化物が挙げられ、特に好ましくは、モリブデン、バナジ
ウム、X、Zおよび酸素(Xはテルルおよびアンチモン
のうちの少なくとも1種、Zはニオブ、タンタル、タン
グステン、チタン、アルミニウム、ジルコニウム、クロ
ム、マンガン、鉄、ルテニウム、コバルト、ロジウム、
ニッケル、パラジウム、白金、ビスマス、ホウ素、イン
ジウム、リン、希土類元素、アルカリ金属、アルカリ土
類金属からなる群から選ばれた1種以上の元素を示す)
を必須成分とし、酸素を除く上記各必須成分の存在割合
が、下記式
The composite oxide used in the present invention generally includes a composite oxide containing molybdenum and vanadium, preferably a composite oxide containing molybdenum, vanadium and tellurium, and a composite oxide containing molybdenum, vanadium and antimony. And particularly preferably molybdenum, vanadium, X, Z and oxygen (X is at least one of tellurium and antimony, Z is niobium, tantalum, tungsten, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, Cobalt, rhodium,
(Indicates one or more elements selected from the group consisting of nickel, palladium, platinum, bismuth, boron, indium, phosphorus, rare earth elements, alkali metals, and alkaline earth metals.)
Is an essential component, and the proportion of each of the above essential components excluding oxygen is represented by the following formula:

【0008】[0008]

【数2】0.25<rMo<0.98 0.003<rV<0.5 0.003<rX<0.5 0.003<rZ<0.5## EQU2 ## 0.25 <rMo <0.98 0.003 <rV <0.5 0.003 <rX <0.5 0.003 <rZ <0.5

【0009】(ただし、rMo,rV,rX,rZは酸
素を除く上記必須成分の合計に対するMo,V,Xおよ
びZのモル分率を表わす)を満たす複合酸化物が用いら
れる。これらの複合酸化物触媒は、特に、プロパンから
のアクリル酸の製造、アンモニア存在下でのプロパンか
らのアクリロニトリルの製造に好適に用いられ、反応条
件によっては、アンモニア存在下でプロパンからアクリ
ロニトリルとアクリル酸とを同時に製造することもでき
る。
(Where rMo, rV, rX, and rZ represent the mole fractions of Mo, V, X, and Z with respect to the total of the above essential components excluding oxygen). These composite oxide catalysts are particularly suitable for use in the production of acrylic acid from propane and acrylonitrile from propane in the presence of ammonia.Depending on the reaction conditions, acrylonitrile and acrylic acid can be used in the presence of ammonia in propane. Can also be manufactured at the same time.

【0010】複合酸化物触媒は単独で用いることも可能
であるが、周知の担体成分、例えば、シリカ、アルミ
ナ、チタニア、ジルコニア、アルミノシリケ−ト、珪藻
土などを1〜90重量%程度含んだ混合物として使用す
ることもできる。気相接触酸化の条件は、原料となる炭
化水素、目的物、触媒などによって異なるが、反応器に
供給されるガス中の炭素数2〜8の炭化水素の濃度は、
通常0.1〜70体積%、好ましくは2〜50体積%、
酸素濃度は通常0.1〜40体積%、好ましくは1〜3
0体積%である。アンモニアの存在下で気相接触酸化を
行う場合、反応器に供給されるガス中のアンモニア濃度
は、通常0.1〜25体積%、好ましくは1〜15体積
%である。
Although the composite oxide catalyst can be used alone, it can be used as a mixture containing known carrier components such as silica, alumina, titania, zirconia, aluminosilicate, and diatomaceous earth in an amount of about 1 to 90% by weight. Can also be used. The conditions of the gas phase catalytic oxidation are different depending on the hydrocarbon as the raw material, the target substance, the catalyst, etc., but the concentration of the hydrocarbon having 2 to 8 carbon atoms in the gas supplied to the reactor is as follows:
Usually 0.1 to 70% by volume, preferably 2 to 50% by volume,
The oxygen concentration is usually 0.1 to 40% by volume, preferably 1 to 3%.
0% by volume. When performing gas phase catalytic oxidation in the presence of ammonia, the concentration of ammonia in the gas supplied to the reactor is usually 0.1 to 25% by volume, preferably 1 to 15% by volume.

【0011】例えば、プロパンと酸素との気相接触酸化
やプロパン、アンモニア、酸素の気相接触酸化において
は、反応温度は、通常300〜500℃、好ましくは3
50〜480℃、気相反応におけるガス空間速度SV
は、通常100〜10000hr-1、好ましくは300
〜6000hr-1である。反応は、通常大気圧下で行わ
れるが、低度の加圧下または減圧下で行ってもよい。ま
た、空間速度と酸素分圧を調整するための希釈ガスとし
て、窒素、アルゴン、ヘリウム等の不活性ガスを用いる
ことができる。
For example, in the gas phase catalytic oxidation of propane and oxygen or in the gas phase catalytic oxidation of propane, ammonia and oxygen, the reaction temperature is usually 300 to 500 ° C., preferably 3 to 500 ° C.
50-480 ° C, gas space velocity SV in gas phase reaction
Is usually 100 to 10,000 hr -1 , preferably 300
66000 hr −1 . The reaction is usually carried out under atmospheric pressure, but may be carried out under low pressure or low pressure. As a diluent gas for adjusting the space velocity and the oxygen partial pressure, an inert gas such as nitrogen, argon, and helium can be used.

【0012】気相接触酸化は、流動層反応器、固定床流
通型反応器など公知の反応器が用いられる。気相接触酸
化は発熱反応であるため、流動層反応器が好ましく使用
される。気相接触酸化を行うことにより、反応器から
は、反応生成物を含むガス、すなわち反応生成ガスが排
出される。気相接触酸化の反応を継続して行うと、触媒
の活性が次第に低下し、選択率や転換率などが低下す
る。本発明の特徴は、このように劣化した触媒を、可燃
物成分濃度が、反応生成ガスより低く、好ましくは反応
生成ガスの1/2以下の濃度、さらに好ましくは実質的
にゼロであり、かつ、酸素濃度が、反応生成ガスよりも
高い、好ましくは0.5〜75体積%、さらに好ましく
は1〜50体積%の気体と接触させる(以下「再生処
理」ということもある)ことにある。
For the gas phase catalytic oxidation, a known reactor such as a fluidized bed reactor and a fixed bed flow reactor is used. Since gas phase catalytic oxidation is an exothermic reaction, a fluidized bed reactor is preferably used. By performing the gas phase catalytic oxidation, a gas containing a reaction product, that is, a reaction product gas is discharged from the reactor. When the reaction of the gas phase catalytic oxidation is continuously performed, the activity of the catalyst gradually decreases, and the selectivity and the conversion rate decrease. A feature of the present invention is that the catalyst thus degraded has a combustible component concentration lower than that of the reaction product gas, preferably less than half the concentration of the reaction product gas, more preferably substantially zero, and The gas is brought into contact with a gas having an oxygen concentration higher than that of the reaction product gas, preferably 0.5 to 75% by volume, and more preferably 1 to 50% by volume (hereinafter also referred to as "regeneration treatment").

【0013】可燃物成分とは、反応生成ガスに存在する
酸素、不活性ガス以外の成分のことで、例えば、アンモ
ニアの存在下でプロパンの気相接触反応を行った場合、
反応生成ガス中の可燃物成分としては、アクリロニトリ
ルの他に、副生物である、青酸、アセトニトリル、プロ
ピレン、一酸化炭素、アクリル酸など、未反応のアクリ
ロニトリル、アンモニアである。
The combustible component is a component other than oxygen and an inert gas present in the reaction product gas. For example, when a gas phase catalytic reaction of propane is carried out in the presence of ammonia,
The combustible components in the reaction product gas include unreacted acrylonitrile and ammonia such as hydrocyanic acid, acetonitrile, propylene, carbon monoxide, and acrylic acid, in addition to acrylonitrile.

【0014】このような可燃物成分濃度が反応生成ガス
より低く、かつ酸素濃度が反応生成ガスより高い気体と
接触させることにより、劣化した触媒を活性化させるこ
とができる。再生処理に供される触媒は、気相接触酸化
反応を行って活性が低下した触媒である。複合酸化物触
媒は、炭化水素の気相接触酸化反応雰囲気下に長時間曝
されると、複合酸化物触媒は次第に還元状態になり、活
性が劣化し、還元状態になった触媒を本発明の再生処理
を施すことにより、触媒活性の構造の変質を抑えること
ができるものと推測される。
[0014] By contacting with such a gas having a combustible component concentration lower than the reaction product gas and an oxygen concentration higher than the reaction product gas, the deteriorated catalyst can be activated. The catalyst used for the regeneration treatment is a catalyst whose activity has been reduced by performing a gas phase catalytic oxidation reaction. When the composite oxide catalyst is exposed to a hydrocarbon gas phase catalytic oxidation reaction atmosphere for a long time, the composite oxide catalyst gradually becomes a reduced state, the activity is degraded, and the reduced catalyst is replaced by the catalyst of the present invention. It is presumed that the regeneration treatment can suppress the deterioration of the catalytic activity structure.

【0015】なお、劣化がしきい値を越えると不可逆的
な触媒活性構造の変質がおこり、本発明の再生処理を行
っても活性の回復は不十分となる。例えば、モリブデン
を主成分として含む複合酸化物触媒においては、モリブ
デンが還元されると、触媒の活性が低下がみられる。具
体的には、気相接触酸化反応に供する以前の触媒のモリ
ブデンの酸化数が+6である場合、気相接触酸化反応に
供してモリブデンの酸化数が+5より小さくなる前に、
本発明の再生処理を行うのが効果的である。モリブデン
の酸化数が+5より小さくなるまで還元が進むと、還元
が不可逆的となり、本発明の処理を行っても、+6の状
態に戻すのは容易ではない。
If the deterioration exceeds the threshold value, irreversible deterioration of the catalytically active structure occurs, and even if the regeneration treatment of the present invention is performed, the recovery of the activity becomes insufficient. For example, in a composite oxide catalyst containing molybdenum as a main component, when molybdenum is reduced, the activity of the catalyst decreases. Specifically, when the oxidation number of molybdenum of the catalyst before subjecting to the gas phase catalytic oxidation reaction is +6, before the catalyst is subjected to the gas phase catalytic oxidation reaction and the oxidation number of molybdenum becomes smaller than +5,
It is effective to perform the reproduction processing of the present invention. If the reduction proceeds until the oxidation number of molybdenum becomes smaller than +5, the reduction becomes irreversible, and it is not easy to return to the state of +6 even with the treatment of the present invention.

【0016】再生処理を行う温度は、通常300〜50
0℃、好ましくは350〜480℃である。気相接触反
応温度に類似した温度で行うことにより、所定の温度に
到達させるまでの時間のロスを低減させることが可能で
ある。時間は、通常1秒〜5時間、好ましくは5秒〜2
時間である。再生処理は、反応器から触媒の一部を連続
的あるいはバッチで抜き出して再生処理を施した後、反
応器に戻したり、反応器に供給するガス組成を変化させ
て反応器内の触媒全体を一度に再生したりする再生処理
工程で行われても、反応器に供給する炭化水素、アンモ
ニアなどの還元性ガスと酸素などの酸化性ガスの反応器
への供給口の位置を工夫することにより、反応器内の一
部分を反応生成ガスよりも可燃物成分の濃度が低く、か
つ、反応生成ガスより酸素濃度の高い条件に保ち、触媒
の一部を再生するという再生処理ゾーンで行われてもよ
い。
The temperature at which the regeneration process is performed is usually 300 to 50
0 ° C., preferably 350-480 ° C. By performing the reaction at a temperature similar to the gas phase contact reaction temperature, it is possible to reduce the loss of time required to reach a predetermined temperature. The time is usually 1 second to 5 hours, preferably 5 seconds to 2 hours.
Time. In the regeneration process, a part of the catalyst is continuously or batch-extracted from the reactor and subjected to the regeneration process.Then, the catalyst is returned to the reactor or the gas composition supplied to the reactor is changed to remove the entire catalyst in the reactor. Even if it is performed in a regeneration process step that regenerates at once, by devising the position of the supply port of the reducing gas such as hydrocarbons, ammonia, etc. and the oxidizing gas such as oxygen to the reactor to be supplied to the reactor Even if the reaction is carried out in a regeneration treatment zone in which a part of the reactor is kept at a condition where the concentration of combustible components is lower than the reaction product gas and the oxygen concentration is higher than the reaction product gas, and a part of the catalyst is regenerated. Good.

【0017】図1において、再生処理ゾーンAを有する
流動床型の反応器の断面のモデルの一例を示す。図1に
おいて、原料プロパン、原料アンモニア、リサイクルガ
スなどが還元性ガス供給口4より反応器1に供給され、
酸素などの酸化性ガスは、触媒の循環が妨げられないよ
う切り欠きを有する仕切り板2により仕切られた領域に
酸化性ガス供給口5,5′から供給される。反応器に供
給された酸化性ガスは、分散板3を通って、Aの場所で
酸素濃度の高いゾーンを形成し、点線矢印7のように循
環している触媒は、Aの場所で酸素と接触することによ
り再生される。
FIG. 1 shows an example of a cross-sectional model of a fluidized bed reactor having a regeneration treatment zone A. In FIG. 1, raw material propane, raw material ammonia, recycled gas, and the like are supplied to the reactor 1 through a reducing gas supply port 4,
The oxidizing gas such as oxygen is supplied from the oxidizing gas supply ports 5 and 5 'to a region partitioned by the partition plate 2 having a notch so as not to hinder circulation of the catalyst. The oxidizing gas supplied to the reactor passes through the dispersion plate 3 to form a zone having a high oxygen concentration at the location A, and the circulating catalyst as indicated by the dotted arrow 7 is mixed with oxygen at the location A. It is regenerated by contact.

【0018】[0018]

【実施例】以下、本発明を、実施例を挙げてさらに詳細
に説明する。本発明はその要旨を超えない限りこれらの
実施例に限定されるものではない。なお、以下の実施例
および比較例におけるプロパン転化率(%)、アクリロ
ニトリルおよびアクリル酸の選択率(%)、アクリロニ
トリルおよびアクリル酸の収率(%)は各々以下の式で
示される。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to these examples unless it exceeds the gist. The propane conversion (%), the selectivity (%) of acrylonitrile and acrylic acid, and the yield (%) of acrylonitrile and acrylic acid in the following Examples and Comparative Examples are each represented by the following formulas.

【0019】[0019]

【数3】プロパンの転化率(%)=(消費プロパンのモ
ル数/供給プロパンのモル数)×100 アクリロニトリルの選択率(%)=(生成アクリロニト
リルのモル数/消費プロパンのモル数)×100 アクリロニトリルの収率(%)=(生成アクリロニトリ
ルのモル数/供給プロパンのモル数)×100 アクリル酸の選択率(%)=(生成アクリル酸のモル数
/消費プロパンのモル数)×100 アクリル酸の収率(%)=(生成アクリル酸のモル数/
供給プロパンのモル数)×100
## EQU3 ## Conversion of propane (%) = (moles of propane consumed / moles of supplied propane) × 100 Selectivity for acrylonitrile (%) = (moles of acrylonitrile formed / moles of propane consumed) × 100 Acrylonitrile yield (%) = (moles of acrylonitrile produced / moles of propane supplied) × 100 Selectivity of acrylic acid (%) = (moles of produced acrylic acid / moles of propane consumed) × 100 acrylic acid Yield (%) = (moles of acrylic acid produced /
Number of moles of propane supplied) x 100

【0020】<参考例1> 複合酸化物触媒の調製 実験式がMo1 0.3 Te0.23Nb0.12On で表される
複合酸化物と担体であるシリカとを、複合酸化物/Si
2 =90/10(重量比)の割合で混合した触媒を次
のように調製した。温水5.68リットルに、パラモリ
ブデン酸アンモニウム塩1.380kg、メタバナジン
酸アンモニウム塩0.275kg、テルル酸0.413
kgを溶解し、均一な水溶液を調製した。更に、この水
溶液に、20重量%シリカゾル0.972kg及びニオ
ブの濃度が0.446mol/kgのシュウ酸ニオブア
ンモニウム水溶液2.105kgを混合し、スラリ−を
調製した。このスラリーを乾燥させ水分を除去した。次
いで、この乾燥物をアンモニア臭がなくなるまで約30
0℃で加熱処理した後、窒素気流中600℃で2時間焼
成した。
Reference Example 1 Preparation of Composite Oxide Catalyst A composite oxide having an empirical formula of Mo 1 V 0.3 Te 0.23 Nb 0.12 On and silica as a carrier were mixed with a composite oxide / Si
A catalyst mixed at a ratio of O 2 = 90/10 (weight ratio) was prepared as follows. To 5.68 liters of warm water, 1.380 kg of ammonium paramolybdate, 0.275 kg of ammonium metavanadate, 0.413 of telluric acid
kg was dissolved to prepare a uniform aqueous solution. Further, 0.972 kg of a 20% by weight silica sol and 2.105 kg of an aqueous niobium ammonium oxalate solution having a niobium concentration of 0.446 mol / kg were mixed with the aqueous solution to prepare a slurry. The slurry was dried to remove water. Then, the dried product is removed for about 30 minutes until the smell of ammonia disappears.
After heat treatment at 0 ° C., it was baked at 600 ° C. for 2 hours in a nitrogen stream.

【0021】<参考例2> 複合酸化物触媒の調製 実験式がMo1 0.3 Sb0.2 Nb0.05On で表される
複合酸化物担体であるシリカとを、複合酸化物/SiO
2 =90/10(重量比)の割合で混合した触媒を次の
ように調製した。温水2.1リットルに122gのメタ
バナジン酸アンモニウム塩、三酸化アンチモン102g
を添加し90℃で6時間スラリーを加熱処理し、水分を
除去して約3/4に濃縮した。これをスラリーAとす
る。一方、温水1.23kgにパラモリブデン酸アンモ
ニウム塩614gを添加し溶解させた後40℃に加温し
てモリブデンを含む水溶液を調製した。また、温水4.
62kgにシュウ酸ニオブアンモニウム77g溶解させ
た後40℃に加温しニオブを含む水溶液を調製した。こ
れらのスラリーおよび水溶液を約30℃に冷却し、スラ
リーAに前述のモリブデンを含む水溶液、次いでシリカ
含量が20重量%のシリカゾル400g、さらに前述の
ニオブを含む水溶液を添加し、攪拌、混合した後、噴霧
乾燥機により水分を除去し乾燥させた。次いでこの乾燥
物をアンモニア臭がなくなるまで約300℃で加熱処理
した後、窒素気流中600℃で2時間焼成した。
Reference Example 2 Preparation of Composite Oxide Catalyst Silica, which is a composite oxide carrier whose empirical formula is represented by Mo 1 V 0.3 Sb 0.2 Nb 0.05 On, was mixed with composite oxide / SiO.
A catalyst mixed at a ratio of 2 = 90/10 (weight ratio) was prepared as follows. 122 g of ammonium metavanadate and 102 g of antimony trioxide in 2.1 liters of warm water
Was added thereto, and the slurry was heated at 90 ° C. for 6 hours to remove water and concentrated to about 3. This is called slurry A. On the other hand, 614 g of ammonium paramolybdate was added and dissolved in 1.23 kg of warm water, and then heated to 40 ° C. to prepare an aqueous solution containing molybdenum. Also, hot water 4.
77 g of niobium ammonium oxalate was dissolved in 62 kg, and then heated to 40 ° C. to prepare an aqueous solution containing niobium. The slurry and the aqueous solution were cooled to about 30 ° C., and the above-mentioned aqueous solution containing molybdenum, then 400 g of a silica sol having a silica content of 20% by weight, and the above-mentioned aqueous solution containing niobium were added to slurry A, followed by stirring and mixing. The water was removed by a spray drier and dried. Next, the dried product was heated at about 300 ° C. until the smell of ammonia disappeared, and then calcined at 600 ° C. for 2 hours in a nitrogen stream.

【0022】<実施例1>参考例1の複合酸化物触媒
0.55gを固定床流通型の反応器に充填し、反応器の
温度を370℃に設定して、プロパン:アンモニア:酸
素:窒素=1:0.4:3.15:11.85のモル
比、ガス空間速度約900h-1、プロパンの質量基準空
間速度WHSV0.109h-1でガスを30分間供給し
て気相接触酸化を行い、次いでプロパンとアンモニアの
供給を停止し、反応器の温度を380℃に設定し、酸素
と窒素のみ(酸素濃度21体積%)の供給を10分間継
続して再生処理を行った。その後、再度、反応器を37
0℃に設定して、当初と同じ条件でプロパン、アンモニ
ア、酸素、窒素の混合ガスを30分間供給して気相接触
酸化を行った。このように、気相接触酸化30分間/再
生処理10分間を繰り返し行った。気相接触酸化反応を
行なった時間のみを積算し、100 時間後、200 時間後の
反応成績を表−1に示す。
Example 1 0.55 g of the composite oxide catalyst of Reference Example 1 was charged into a fixed bed flow type reactor, the temperature of the reactor was set at 370 ° C., and propane: ammonia: oxygen: nitrogen = 1: 0.4: 3.15: 11.85 molar ratio, gas space velocity about 900 h -1 , and gas based space velocity of propane WHSV 0.109 h -1 , gas is supplied for 30 minutes to perform gas phase catalytic oxidation. Then, the supply of propane and ammonia was stopped, the temperature of the reactor was set at 380 ° C., and the supply of only oxygen and nitrogen (oxygen concentration: 21% by volume) was continued for 10 minutes to perform a regeneration treatment. Thereafter, the reactor was again set to 37
The temperature was set to 0 ° C., and a mixed gas of propane, ammonia, oxygen, and nitrogen was supplied for 30 minutes under the same conditions as at the beginning to perform gas phase catalytic oxidation. In this manner, the gas phase catalytic oxidation was repeated for 30 minutes / the regeneration treatment for 10 minutes. Only the time during which the gas phase catalytic oxidation reaction was performed is integrated, and the reaction results after 100 hours and 200 hours are shown in Table 1.

【0023】<比較例1>参考例1の複合酸化物触媒
0.55gを固定床流通型の反応器に充填し、反応器の
温度を370℃に設定して、プロパン:アンモニア:酸
素:窒素=1:0.4:3.15:11.85のモル
比、ガス空間速度約900h-1、プロパンの質量基準空
間速度WHSV0.109h-1でガスを供給し気相接触
酸化反応を行なった。反応開始直後、100 時間後、200
時間後の反応成績を表−1に示す。なお、反応器出口に
おける反応生成ガスの酸素濃度、および可燃物成分(ア
クリロニトリル、アクリル酸、青酸、アセトニトリル、
一酸化炭素、プロピレン、プロパン、アンモニア)の合
量の濃度は反応開始10時間後にはそれぞれ11.3、
6.8体積%であった。
Comparative Example 1 0.55 g of the composite oxide catalyst of Reference Example 1 was charged into a fixed bed flow type reactor, and the temperature of the reactor was set at 370 ° C., and propane: ammonia: oxygen: nitrogen Gas was supplied at a molar ratio of 1: 0.4: 3.15: 11.85, a gas space velocity of about 900 h -1 , and a propane-based mass space velocity WHSV of 0.109 h -1 to perform a gas phase catalytic oxidation reaction. . Immediately after the start of the reaction, 100 hours later, 200 hours
Table 1 shows the reaction results after the lapse of time. The oxygen concentration of the reaction product gas at the reactor outlet and the combustible components (acrylonitrile, acrylic acid, hydrocyanic acid, acetonitrile,
10 hours after the start of the reaction, the total concentration of carbon monoxide, propylene, propane, and ammonia) was 11.3,
It was 6.8% by volume.

【0024】<実施例2>実施例1に示したプロパンと
アンモニアの気相接触酸化反応を、気相接触酸化60分
間/再生処理6分間とした他は、実施例1と同様に気相
接触酸化反応を行なった。気相接触酸化反応を行なった
時間のみを積算し、100 時間後、200 時間後の反応成績
を表−1に示す。
<Example 2> [0024] Except that the gas phase catalytic oxidation reaction of propane and ammonia shown in Example 1 was changed to gas phase catalytic oxidation 60 minutes / regeneration treatment 6 minutes, gas phase catalytic oxidation was performed in the same manner as in Example 1. An oxidation reaction was performed. Only the time during which the gas phase catalytic oxidation reaction was performed is integrated, and the reaction results after 100 hours and 200 hours are shown in Table 1.

【0025】<実施例3>参考例1の複合酸化物触媒
0.2gを固定床流通型の反応器に充填し、反応器の温
度を400℃に設定して、プロパン:アンモニア:酸
素:窒素=1:0.3:1.5:3.5のモル比、ガス
空間速度約1500h-1、プロパンの質量基準空間速度
WHSV0.984h-1でガスを25分間供給して気相
接触酸化を行い、次いでプロパンとアンモニアの供給を
停止し、反応器の温度を400℃に設定し、酸素と窒素
のみ(酸素濃度30体積%)の供給を10分間継続して
再生処理を行った。その後、再度、反応器を400℃に
設定して、当初と同じ条件でプロパン、アンモニア、酸
素、窒素の混合ガスを25分間供給して気相接触酸化を
行った。このように、気相接触酸化25分間/再生処理
10分間を繰り返して行った。気相接触酸化反応を行な
った時間のみを積算し、100 時間後、1000時間後の反応
成績を表−1に示す。
Example 3 0.2 g of the composite oxide catalyst of Reference Example 1 was charged into a fixed bed flow-type reactor, the temperature of the reactor was set to 400 ° C., and propane: ammonia: oxygen: nitrogen. Gas is supplied for 25 minutes at a molar ratio of 1: 0.3: 1.5: 3.5, a gas hourly space velocity of about 1500 h −1 , and a mass-based hourly space velocity of propane of 0.984 h −1 to perform gas phase catalytic oxidation. Then, the supply of propane and ammonia was stopped, the temperature of the reactor was set to 400 ° C., and the supply of only oxygen and nitrogen (oxygen concentration 30% by volume) was continued for 10 minutes to perform a regeneration treatment. Thereafter, the temperature of the reactor was set again to 400 ° C., and a mixed gas of propane, ammonia, oxygen, and nitrogen was supplied for 25 minutes under the same conditions as at the beginning to perform gas phase catalytic oxidation. In this manner, the gas phase catalytic oxidation was repeated for 25 minutes / regeneration treatment for 10 minutes. Only the time during which the gas phase catalytic oxidation reaction was performed is integrated, and the reaction results after 100 hours and 1000 hours are shown in Table 1.

【0026】<比較例2>参考例1の複合酸化物触媒
0.2gを固定床流通型の反応器に充填し、反応器の温
度を400℃に設定して、プロパン:アンモニア:酸
素:窒素=1:0.3:1.5:3.5のモル比、ガス
空間速度約1500h-1、プロパンの質量基準空間速度
WHSV0.984h-1でガスを供給し気相接触酸化反
応を行なった。反応開始直後、100 時間後、1000時間後
の反応成績を表−1に示す。なお、反応器出口における
反応生成ガス中の酸素濃度、および可燃物成分の合量の
濃度は反応開始10時間後にはそれぞれ6.4、16.
3体積%であった。
Comparative Example 2 0.2 g of the composite oxide catalyst of Reference Example 1 was charged into a fixed bed flow type reactor, and the temperature of the reactor was set to 400 ° C., and propane: ammonia: oxygen: nitrogen A gas was supplied at a molar ratio of 1: 0.3: 1.5: 3.5, a gas hourly space velocity of about 1500 h -1 , and a mass hourly space velocity of propane of 0.984 h -1 to perform a gas phase catalytic oxidation reaction. . Table 1 shows the reaction results immediately after the start of the reaction, 100 hours later, and 1000 hours later. The concentration of oxygen in the reaction product gas at the outlet of the reactor and the concentration of the total amount of combustible components were 6.4 and 16.
It was 3% by volume.

【0027】<実施例3>参考例2の複合酸化物触媒
0.55gを固定床流通型の反応器に充填し、反応器の
温度を380℃に設定して、プロパン:アンモニア:酸
素:窒素=1:0.4:3.15:11.85のモル
比、ガス空間速度約900h-1、プロパンの質量基準空
間速度WHSV0.109h-1でガスを30分間供給し
て気相接触酸化を行い、次いでプロパンとアンモニアの
供給を停止し、反応器の温度を380℃に設定し、酸素
と窒素のみ(酸素濃度21体積%)の供給を10分間継
続して再生処理を行った。その後、再度、反応器を38
0℃に設定して、当初と同じ条件でプロパン、アンモニ
ア、酸素、窒素の混合ガスを30分間供給して気相接触
酸化を行った。このように気相接触酸化30分間/再生
処理10分間を繰り返して行った。気相接触酸化反応を
行なった時間のみを積算し、100 時間後、1000時間後の
反応成績を表−1に示す。
Example 3 0.55 g of the composite oxide catalyst of Reference Example 2 was charged into a fixed bed flow type reactor, and the temperature of the reactor was set at 380 ° C., and propane: ammonia: oxygen: nitrogen = 1: 0.4: 3.15: 11.85 molar ratio, gas space velocity about 900 h -1 , and gas based space velocity of propane WHSV 0.109 h -1 , gas is supplied for 30 minutes to perform gas phase catalytic oxidation. Then, the supply of propane and ammonia was stopped, the temperature of the reactor was set at 380 ° C., and the supply of only oxygen and nitrogen (oxygen concentration: 21% by volume) was continued for 10 minutes to perform a regeneration treatment. Thereafter, the reactor was again charged to 38
The temperature was set to 0 ° C., and a mixed gas of propane, ammonia, oxygen, and nitrogen was supplied for 30 minutes under the same conditions as at the beginning to perform gas phase catalytic oxidation. In this manner, the gas phase catalytic oxidation was repeated for 30 minutes / the regeneration treatment for 10 minutes. Only the time during which the gas phase catalytic oxidation reaction was performed is integrated, and the reaction results after 100 hours and 1000 hours are shown in Table 1.

【0028】<比較例3>参考例2の複合酸化物触媒
0.55gを固定床流通型の反応器に充填し、反応器の
温度を380℃に設定して、プロパン:アンモニア:酸
素:窒素=1:0.4:3.15:11.85のモル
比、ガス空間速度約900h-1、プロパンの質量基準空
間速度WHSV0.109h-1でガスを供給し気相接触
酸化反応を行なった。反応開始直後、100 時間後、1000
時間後の反応成績を表−1に示す。なお、反応器出口に
おける反応生成ガスの酸素濃度、および可燃物成分の合
計の濃度は反応開始10時間後にはそれぞれ11.2、
6.4体積%であった。
Comparative Example 3 0.55 g of the composite oxide catalyst of Reference Example 2 was charged into a fixed bed flow type reactor, and the temperature of the reactor was set to 380 ° C., and propane: ammonia: oxygen: nitrogen Gas was supplied at a molar ratio of 1: 0.4: 3.15: 11.85, a gas space velocity of about 900 h -1 , and a propane-based mass space velocity WHSV of 0.109 h -1 to perform a gas phase catalytic oxidation reaction. . Immediately after the start of the reaction, 100 hours later, 1000
Table 1 shows the reaction results after the lapse of time. The oxygen concentration of the reaction product gas at the reactor outlet and the total concentration of combustible components were 11.2 and 10 hours after the start of the reaction, respectively.
It was 6.4% by volume.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】本発明によれば、長期間触媒の活性を維
持することができる。
According to the present invention, the activity of the catalyst can be maintained for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に用いられる流動床型の反応器の断面
のモデル図
FIG. 1 is a model diagram of a cross section of a fluidized bed type reactor used in the present invention.

【符号の説明】[Explanation of symbols]

1 反応器 2 仕切板 3 分散板 4 還元性ガス供給口 5,5′ 酸化性ガス供給口 6 反応生成ガス取出口 7 触媒の動き A 再生処理ゾーン DESCRIPTION OF SYMBOLS 1 Reactor 2 Partition plate 3 Dispersion plate 4 Reducing gas supply port 5, 5 'Oxidizing gas supply port 6 Reaction product gas outlet 7 Catalyst movement A Regeneration zone

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07C 255/08 C07C 255/08 // C07B 61/00 300 C07B 61/00 300 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI C07C 255/08 C07C 255/08 // C07B 61/00 300 C07B 61/00 300

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 炭素数2〜8の炭化水素を複合酸化物触
媒の存在下、反応器において気相接触酸化させる方法に
おいて、反応器内の複合酸化物触媒の少なくとも一部
を、反応生成ガスよりも可燃物成分の濃度が低く、か
つ、反応生成ガスより酸素濃度の高い気体と接触させる
工程またはゾーンを有することを特徴とする炭化水素の
気相接触酸化方法。
1. A method for subjecting a hydrocarbon having 2 to 8 carbon atoms to gas-phase catalytic oxidation in a reactor in the presence of a composite oxide catalyst, wherein at least a part of the composite oxide catalyst in the reactor is reacted with a reaction product gas. A gas phase catalytic oxidation method for hydrocarbons, comprising a step or zone of contacting with a gas having a lower concentration of a combustible component and a higher oxygen concentration than a reaction product gas.
【請求項2】 炭素数2〜8の炭化水素をアンモニア存
在下で気相接触酸化することを特徴とする請求項1に記
載の気相接触酸化方法。
2. The gas phase catalytic oxidation method according to claim 1, wherein the hydrocarbon having 2 to 8 carbon atoms is subjected to gas phase catalytic oxidation in the presence of ammonia.
【請求項3】 不飽和ニトリルを製造することを特徴と
する請求項2に記載の気相接触酸化方法。
3. The method according to claim 2, wherein unsaturated nitrile is produced.
【請求項4】 不飽和カルボン酸を製造させることを特
徴とする請求項1〜3いずれか1項に記載の気相接触酸
化方法。
4. The method according to claim 1, wherein an unsaturated carboxylic acid is produced.
【請求項5】 炭化水素がプロパンおよび/ またはイソ
ブタンであることを特徴とする請求項1〜4いずれか1
項に記載の気相接触酸化方法。
5. The method according to claim 1, wherein the hydrocarbon is propane and / or isobutane.
Item 8. A gas phase catalytic oxidation method according to item 1.
【請求項6】 触媒がモリブデン、バナジウム、X、Z
および酸素(Xはテルルおよびアンチモンのうちの少な
くとも1種、Zはニオブ、タンタル、タングステン、チ
タン、アルミニウム、ジルコニウム、クロム、マンガ
ン、鉄、ルテニウム、コバルト、ロジウム、ニッケル、
パラジウム、白金、ビスマス、ホウ素、インジウム、リ
ン、希土類元素、アルカリ金属、アルカリ土類金属から
なる群から選ばれた1種以上の元素を示す)を必須成分
とし、酸素を除く上記各必須成分の存在割合が、下記式 【数1】0.25<rMo<0.98 0.003<rV<0.5 0.003<rX<0.5 0.003<rZ<0.5 (ただし、rMo,rV,rX,rZは酸素を除く上記
必須成分の合計に対するMo,V,XおよびZのモル分
率を表わす)を満たす複合酸化物を含有することを特徴
とする請求項1〜5のいずれか1項に記載の気相接触酸
化方法。
6. The catalyst according to claim 1, wherein the catalyst is molybdenum, vanadium, X, Z.
And oxygen (X is at least one of tellurium and antimony, Z is niobium, tantalum, tungsten, titanium, aluminum, zirconium, chromium, manganese, iron, ruthenium, cobalt, rhodium, nickel,
Palladium, platinum, bismuth, boron, indium, phosphorus, a rare earth element, an alkali metal, and at least one element selected from the group consisting of alkaline earth metals) as essential components, and excluding oxygen. The existence ratio is expressed by the following formula: 0.25 <rMo <0.98 0.003 <rV <0.5 0.003 <rX <0.5 0.003 <rZ <0.5 (where rMo , RV, rX, and rZ each represent a mole fraction of Mo, V, X, and Z with respect to the sum of the essential components excluding oxygen). The gas phase catalytic oxidation method according to claim 1 or 2.
【請求項7】 反応生成ガスよりも可燃物成分の濃度が
低く、かつ、反応生成ガスよりも酸素濃度が高い気体と
接触させることを特徴とする気体接触酸化触媒の再生方
法。
7. A method for regenerating a gas-catalyzed oxidation catalyst, comprising contacting a gas having a lower concentration of a combustible component than a reaction product gas and having a higher oxygen concentration than the reaction product gas.
JP10294795A 1997-10-29 1998-10-16 Vapor-phase catalytic oxidation of hydrocarbon Pending JPH11263745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10294795A JPH11263745A (en) 1997-10-29 1998-10-16 Vapor-phase catalytic oxidation of hydrocarbon

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-296861 1997-10-29
JP29686197 1997-10-29
JP10294795A JPH11263745A (en) 1997-10-29 1998-10-16 Vapor-phase catalytic oxidation of hydrocarbon

Publications (1)

Publication Number Publication Date
JPH11263745A true JPH11263745A (en) 1999-09-28

Family

ID=26559997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10294795A Pending JPH11263745A (en) 1997-10-29 1998-10-16 Vapor-phase catalytic oxidation of hydrocarbon

Country Status (1)

Country Link
JP (1) JPH11263745A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265431A (en) * 2001-03-06 2002-09-18 Daiyanitorikkusu Kk Method for stopping ammoxidation reaction
US6867328B2 (en) 2000-07-18 2005-03-15 Basf Aktiengesellschaft Method for producing acrylic acid by the heterogeneously catalysed gas-phase oxidation of propane
JP2005126416A (en) * 2003-09-29 2005-05-19 Mitsubishi Gas Chem Co Inc Method for producing alkyl and/or cycloalkyl-substituted cyclic nitrile
US7026506B2 (en) 2001-04-17 2006-04-11 Basf Aktiengesellschaft Method for producing acrylic acid by heterogeneously catalyzed gas-phase oxidation of propene with molecular oxygen in a reaction zone
US7109144B2 (en) 2000-12-13 2006-09-19 Asahi Kasei Kabushiki Kaisha Oxide catalyst for oxidation or ammoxidation
US7321058B2 (en) 2000-06-14 2008-01-22 Basf Aktiengesellschaft Method for producing acrolein and/or acrylic acid
WO2014054408A1 (en) * 2012-10-01 2014-04-10 旭化成ケミカルズ株式会社 Method for stopping ammoxidation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7321058B2 (en) 2000-06-14 2008-01-22 Basf Aktiengesellschaft Method for producing acrolein and/or acrylic acid
US6867328B2 (en) 2000-07-18 2005-03-15 Basf Aktiengesellschaft Method for producing acrylic acid by the heterogeneously catalysed gas-phase oxidation of propane
US7109144B2 (en) 2000-12-13 2006-09-19 Asahi Kasei Kabushiki Kaisha Oxide catalyst for oxidation or ammoxidation
US7378541B2 (en) 2000-12-13 2008-05-27 Asahi Kasei Kabushiki Kaisha Oxide catalyst for oxidation or ammoxidation
US7498463B2 (en) 2000-12-13 2009-03-03 Asahi Kasei Kabushiki Kaisha Oxide catalyst for oxidation or ammoxidation
JP2002265431A (en) * 2001-03-06 2002-09-18 Daiyanitorikkusu Kk Method for stopping ammoxidation reaction
US7026506B2 (en) 2001-04-17 2006-04-11 Basf Aktiengesellschaft Method for producing acrylic acid by heterogeneously catalyzed gas-phase oxidation of propene with molecular oxygen in a reaction zone
JP2005126416A (en) * 2003-09-29 2005-05-19 Mitsubishi Gas Chem Co Inc Method for producing alkyl and/or cycloalkyl-substituted cyclic nitrile
WO2014054408A1 (en) * 2012-10-01 2014-04-10 旭化成ケミカルズ株式会社 Method for stopping ammoxidation
US9346747B2 (en) 2012-10-01 2016-05-24 Asahi Kasei Chemicals Corporation Method for stopping ammoxidation reaction
JPWO2014054408A1 (en) * 2012-10-01 2016-08-25 旭化成株式会社 Stopping the ammoxidation reaction

Similar Documents

Publication Publication Date Title
US6710207B2 (en) Methods for producing unsaturated carboxylic acids and unsaturated nitriles
US7326668B2 (en) Single crystalline phase catalyst
MXPA02003870A (en) Improved catalyst.
US20090287019A1 (en) Process for producing an unsaturated carboxylic acid from an alkane
US7015173B2 (en) High temperature mixing
JP4698603B2 (en) Process for producing unsaturated carboxylic acid from alkane
JPH0857319A (en) Method for activating metal oxide catalyst
US5534650A (en) Method for producing a nitrile
JPH08176019A (en) Preparation of olefinic unsaturated compound
US20060020142A1 (en) Catalytic (AMM)oxidation process for conversion of lower alkanes to carboxylic acids and nitriles
JPH11263745A (en) Vapor-phase catalytic oxidation of hydrocarbon
JP2002537085A (en) Catalyst for oxidation of ethane to acetic acid
JPH1142434A (en) Production of vapor phase catalytic oxidation reaction catalyst of hydrocarbon and vapor phase catalytic oxidation reaction method of hydrocarbon using the same
JPH1157479A (en) Gas phase catalytic oxidation reaction catalyst for hydrocarbon and preparation thereof
US6337424B1 (en) Catalysts oxidation of lower olefins to unsaturated aldehydes, methods of making and using the same
JPH11226408A (en) Production of metal oxide catalyst
JPH1036311A (en) Production of alpha, beta-unsaturated carboxylic acid
JP4331433B2 (en) Catalyst for oxidizing unsaturated aldehydes to produce carboxylic acids, methods for making and using the same
US3969390A (en) Catalytic process for preparing unsaturated nitriles from olefins, ammonia and oxygen
JPH07289907A (en) Production of catalyst for producing nitrile
JP2001055355A (en) Vapor phase catalytic oxidation reaction of hydrocarbon
JPH1081660A (en) Production of unsaturated nitrile
JP2002080443A (en) Acrylonitrile and method for producing the same
JPH07215925A (en) Production of nitrile
JPH07215926A (en) Production of nitrile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203