JPH0857319A - Method for activating metal oxide catalyst - Google Patents

Method for activating metal oxide catalyst

Info

Publication number
JPH0857319A
JPH0857319A JP6199561A JP19956194A JPH0857319A JP H0857319 A JPH0857319 A JP H0857319A JP 6199561 A JP6199561 A JP 6199561A JP 19956194 A JP19956194 A JP 19956194A JP H0857319 A JPH0857319 A JP H0857319A
Authority
JP
Japan
Prior art keywords
metal oxide
catalyst
oxide catalyst
acid
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6199561A
Other languages
Japanese (ja)
Inventor
Takashi Ushikubo
孝 牛窪
Itaru Sawaki
至 沢木
Kazunori Oshima
一典 大島
Toru Ogoshi
徹 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP6199561A priority Critical patent/JPH0857319A/en
Publication of JPH0857319A publication Critical patent/JPH0857319A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

PURPOSE: To further enhance the activity of a metal oxide catalyst contg. Mo and/or V for a vapor phase catalytic oxidation reaction of hydrocarbon through a simple operation by subjecting the catalyst to acid treatment. CONSTITUTION: A metal oxide catalyst contg. Mo and/or V for a vapor phase catalytic oxidation reaction of hydrocarbon is subjected to acid treatment. The atomic ratio of Mo to V in the metal oxide is preferably 0.1-2. The acid treatment is carried out by immersing the catalyst in an about 0.1-50wt.% aq. soln. of an inorg. or org. acid at room temp. to 90 deg.C. After the acid treatment, the catalyst is separated from the acid soln. by a method such as filtration or centrifugal separation. The separated catalyst is usually washed with water in some degree, dried and used as a catalyst. The dried catalyst may be heated at about 100-700 deg.C if necessary before use.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭化水素の気相接触酸化
反応用のモリブデン及び/又はバナジウムを含有する金
属酸化物触媒の活性化方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for activating a metal oxide catalyst containing molybdenum and / or vanadium for vapor phase catalytic oxidation of hydrocarbons.

【0002】[0002]

【従来の技術】モリブデン及び/又はバナジウムを含有
する金属酸化物触媒は、特に炭化水素の気相接触酸化反
応による各種の有機化合物の製造、特に、炭化水素の部
分酸化反応によるアクリル酸、無水マレイン酸等の含酸
素有機化合物、又は、炭化水素とアンモニアの接触酸化
反応によるアクリロニトリル、メタクリロニトリル等の
ニトリルを製造するために工業的に重要なものである。
2. Description of the Related Art A metal oxide catalyst containing molybdenum and / or vanadium is used to produce various organic compounds by a gas phase catalytic oxidation reaction of hydrocarbons, particularly acrylic acid and maleic anhydride by a partial oxidation reaction of hydrocarbons. It is industrially important for producing an oxygen-containing organic compound such as an acid or a nitrile such as acrylonitrile or methacrylonitrile by a catalytic oxidation reaction of hydrocarbon and ammonia.

【0003】モリブデン及び/又はバナジウムを含有す
る金属酸化物触媒の報告例は多数知られている。例え
ば、炭化水素のアルカンとアンモニアの接触酸化反応に
よるニトリル製造用でモリブデンを必須元素として含む
触媒だけでも、Mo−Bi−P系触媒(特開昭48−1
6887号)、V−Sb−W系酸化物とMo−Bi−C
e−W系酸化物を機械的に混合して得た触媒(特開昭6
4−38051号)、Mo−Ag−Bi−V系触媒(特
開平3−58961号)、Mo−V−Sn−Bi−P系
触媒(特開平4−247060号)、Mo−Cr−Te
系触媒(米国特許5171876号)、MoとMn、C
oなどの元素からなる複合金属酸化物触媒(特開平5−
194347号)、Mo−V−Te系触媒(特開平2−
257号、特開平5−148212号、特開平5−20
8136号)、Mo−Cr−Bi系触媒(特願平4−2
65192号、特願平5−305361号)、Mo−T
e系触媒(特願平5−309345号)などが例示され
る。
There are many known examples of metal oxide catalysts containing molybdenum and / or vanadium. For example, only a catalyst containing Mo as an essential element for the production of nitrile by catalytic oxidation reaction of hydrocarbon alkane and ammonia is used as a Mo-Bi-P-based catalyst (JP-A-48-1).
6887), V-Sb-W based oxides and Mo-Bi-C.
A catalyst obtained by mechanically mixing an e-W-based oxide (Japanese Patent Laid-Open No. Sho 6-62).
4-38051), Mo-Ag-Bi-V based catalyst (JP-A-3-58961), Mo-V-Sn-Bi-P based catalyst (JP-A-4-247060), Mo-Cr-Te.
-Based catalyst (US Pat. No. 5,171,876), Mo and Mn, C
Complex metal oxide catalysts composed of elements such as o
194347), Mo-V-Te based catalysts (JP-A-2-
No. 257, JP-A-5-148212, and JP-A-5-20.
No. 8136), Mo-Cr-Bi based catalyst (Japanese Patent Application No. 4-2).
65192, Japanese Patent Application No. 5-305361), Mo-T
Examples include e-based catalysts (Japanese Patent Application No. 5-309345).

【0004】また、バナジウムを必須成分として含むが
モリブデンは必須成分でない触媒として、V−Sb系触
媒(特開昭47−33783号、特公昭50−2301
6号、特開平1−268668号、特開平2−1806
37号)、V−Sb−U−Ni系触媒(特公昭47−1
4371号)、V−Sb−W−P系触媒(特開平2−9
5439号)、V−W−Te系触媒(特願平5−189
18号)などが例示される。
As a catalyst containing vanadium as an essential component but not molybdenum, a V-Sb type catalyst (Japanese Patent Laid-Open No. 47-33783, Japanese Patent Publication No. 50-2301) is used.
No. 6, JP-A-1-268668, and JP-A-2-1806.
37), V-Sb-U-Ni-based catalyst (Japanese Patent Publication No. 47-1)
No. 4371), a V-Sb-WP catalyst (JP-A 2-9).
5439), V-W-Te based catalyst (Japanese Patent Application No. 5-189).
No. 18) and the like are exemplified.

【0005】かかる金属属酸化物の調製方法としては、
主に、次の2つの方法があげられる。第1の方法は、金
属酸化物の構成元素を含む水もしくは有機溶媒の溶液又
はスラリーを調製後に乾燥するか、もしくは溶液のpH
を調整して固形物を沈殿させる方法、あるいは、溶液又
はスラリーを加熱反応させて目的とする金属酸化物を合
成した後で固形物を回収する方法を実施し、更に一般に
は得られた固形物を焼成して触媒とする方法である。
As a method for preparing such a metal-group oxide,
The following two methods are mainly used. The first method is to dry a solution or slurry of water or an organic solvent containing the constituent elements of the metal oxide after preparation, or to adjust the pH of the solution.
To prepare a solid matter, or to carry out a method of recovering the solid matter after synthesizing the target metal oxide by heating and reacting the solution or slurry, and more generally, the obtained solid matter. Is a method of calcination to obtain a catalyst.

【0006】第2の方法は、金属酸化物の構成金属元素
の酸化物を所定量ずつ粉砕・混合し、高温に保持して固
相反応により調製する方法である。
The second method is a method in which the oxides of the constituent metal elements of the metal oxide are pulverized and mixed in predetermined amounts, and the mixture is maintained at a high temperature and prepared by a solid-phase reaction.

【0007】[0007]

【発明が解決しようとする課題】触媒の活性はその組成
に大きく依存する。しかしながら、触媒の組成を最適化
して本質的には優れた触媒活性が期待できるにもかかわ
らず、その調製方法などにより十分な触媒活性が発現で
きない場合が非常に多い。特に、上記のような複合金属
酸化物からなる触媒においては、その調製操作が煩雑で
あり、微妙な調製条件の変更によって、期待される触媒
活性が再現性よく得られないという問題がある。
The activity of the catalyst depends largely on its composition. However, in spite of the fact that an excellent catalyst activity can be expected by optimizing the composition of the catalyst, it is often the case that sufficient catalyst activity cannot be expressed due to the preparation method and the like. In particular, in the case of a catalyst composed of the above-mentioned composite metal oxide, there is a problem that the preparation operation is complicated and the expected catalyst activity cannot be obtained with good reproducibility due to subtle changes in the preparation conditions.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記の課
題を考慮しつつ、モリブデン及び/又はバナジウムを含
有する金属酸化物触媒の製造方法について検討を継続し
た結果、金属酸化物触媒を酸処理することにより触媒が
活性化され、特に炭化水素の選択的な気相接触酸化反応
において優れた性能を示すことを見いだし、本発明に到
達したものである。
DISCLOSURE OF THE INVENTION The inventors of the present invention continued to study a method for producing a metal oxide catalyst containing molybdenum and / or vanadium while considering the above problems, and as a result, The present invention has been accomplished by discovering that the catalyst is activated by the acid treatment and that it exhibits excellent performance particularly in the selective gas-phase catalytic oxidation reaction of hydrocarbons.

【0009】すなわち、本発明の要旨は、炭化水素の気
相接触酸化反応用のモリブデン及び/又はバナジウムを
含有する金属酸化物触媒を、酸処理することを特徴とす
る金属酸化物触媒の活性化方法に存する。以下、本発明
を詳細に説明する。本発明で活性化できる触媒は、前述
のようなモリブデン及び/又はバナジウムを含有する金
属酸化物触媒であれば特に限定されないが、好ましくは
モリブデンとバナジウムの両者を必須元素として含有す
る金属酸化物触媒である。金属酸化物中のモリブデン原
子とバナジウム原子との原子比(V/Mo)は、通常
0.01〜10、好ましくは0.1〜2である。該金属
酸化物は、通常は触媒としての性能を高めるために種々
の任意金属成分を含有し、その組成は以下の実験式
(1)で表される。
That is, the gist of the present invention is to activate a metal oxide catalyst containing a molybdenum and / or vanadium-containing metal oxide catalyst for vapor-phase catalytic oxidation of hydrocarbons by acid treatment. In the way. Hereinafter, the present invention will be described in detail. The catalyst that can be activated in the present invention is not particularly limited as long as it is a metal oxide catalyst containing molybdenum and / or vanadium as described above, but preferably a metal oxide catalyst containing both molybdenum and vanadium as essential elements. Is. The atomic ratio (V / Mo) of molybdenum atoms to vanadium atoms in the metal oxide is usually 0.01 to 10, preferably 0.1 to 2. The metal oxide usually contains various optional metal components in order to enhance the performance as a catalyst, and the composition thereof is represented by the following empirical formula (1).

【0010】[0010]

【化3】Moa b x n (1) (式(1)において、XはTe,Nb,Ta,W,T
i,Al,Zr,Cr,Mn,Fe,Ru,Co,R
h,Ni,Pd,Pt,Sb,Bi,B,In及びCe
の中から選ばれた1つ又はそれ以上の元素を表し、 a=1とするとき、 b=0.01〜10 x=0〜2.0 であり、また、nは他の元素の酸化状態により決定され
る。)
Embedded image Mo a V b X x O n (1) (In the formula (1), X is Te, Nb, Ta, W, T.
i, Al, Zr, Cr, Mn, Fe, Ru, Co, R
h, Ni, Pd, Pt, Sb, Bi, B, In and Ce
Represents one or more elements selected from among the following, and when a = 1, b = 0.01-10 x = 0-2.0, and n is the oxidation state of another element. Determined by )

【0011】また、上記の金属酸化物触媒においては、
モリブデン、バナジウムに加えてテルルを必須成分とし
て含む触媒が特に好ましい。このモリブデン−バナジウ
ム−テルル系触媒は、炭化水素の中でも反応性の低いア
ルカンの部分酸化反応においても優れた触媒活性を有
し、気相接触酸化反応の条件を適宜選択することによ
り、アクリロニトリル等のニトリル類の製造(特開平2
−257号、特開平5−148212号、特開平5−2
08136号)、アクリル酸等のα、β−不飽和カルボ
ン酸類の製造(特願平5−12616号、特願平5−1
53651号)あるいは無水マレイン酸等の無水不飽和
カルボン酸類の製造(特願平5−17560号)等の種
々の反応に利用が可能であり、かつ、本発明における酸
処理による活性化の効果が特に顕著である。かかるモリ
ブデン−バナジウム−テルル系金属酸化物の組成は以下
の実験式(2)で表される。
In the above metal oxide catalyst,
A catalyst containing tellurium as an essential component in addition to molybdenum and vanadium is particularly preferable. This molybdenum-vanadium-tellurium catalyst has excellent catalytic activity even in the partial oxidation reaction of alkane, which has low reactivity among hydrocarbons, and by appropriately selecting the conditions of the gas phase catalytic oxidation reaction, acrylonitrile or the like can be obtained. Production of nitriles
-257, JP-A 5-148212, and JP-A 5-2.
No. 08136), and production of α, β-unsaturated carboxylic acids such as acrylic acid (Japanese Patent Application Nos. 5-12616 and 5-1).
No. 53651) or the production of unsaturated carboxylic acid anhydrides such as maleic anhydride (Japanese Patent Application No. 5-17560), and the effect of activation by the acid treatment in the present invention can be obtained. It is especially remarkable. The composition of the molybdenum-vanadium-tellurium metal oxide is represented by the following empirical formula (2).

【0012】[0012]

【化4】Moa b Tec y n (2) (式(2)において、YはNb,Ta,W,Ti,A
l,Zr,Cr,Mn,Fe,Ru,Co,Rh,N
i,Pd,Pt,Sb,Bi,B,In及びCeの中か
ら選ばれた1つ又はそれ以上の元素を表し、 a=1とするとき、 b=0.01〜1.0、好ましくは0.1〜0.6、 c=0.01〜1.0、好ましくは0.05〜0.4、 y=0.01〜1.0、好ましくは0.1〜0.6、 であり、また、nは他の元素の酸化状態により決定され
る。)
Embedded image Mo a V b Te c Y y O n (2) (In the formula (2), Y is Nb, Ta, W, Ti, A
1, Zr, Cr, Mn, Fe, Ru, Co, Rh, N
represents one or more elements selected from i, Pd, Pt, Sb, Bi, B, In and Ce, and when a = 1, b = 0.01 to 1.0, preferably 0.1-0.6, c = 0.01-1.0, preferably 0.05-0.4, y = 0.01-1.0, preferably 0.1-0.6 , And n is determined by the oxidation states of other elements. )

【0013】上記式(1)(2)の金属酸化物は単独で
も触媒として使用できるが、Si,Al,Zr,Ti,
アルカリ土類金属酸化物の1種以上の酸化物を担体成分
とした混合物を触媒として使用してもよく、例えば担体
成分を1〜90重量%程度含んだ混合物の状態で本発明
の酸処理を実施してもよい。
The metal oxides of the above formulas (1) and (2) can be used alone as catalysts, but Si, Al, Zr, Ti,
A mixture containing one or more oxides of alkaline earth metal oxides as a carrier component may be used as a catalyst. For example, the acid treatment of the present invention may be carried out in a mixture containing about 1 to 90% by weight of the carrier component. You may implement.

【0014】金属酸化物の原料としては、モリブデン、
バナジウム、その他の任意金属成分のカルボン酸塩、カ
ルボン酸アンモニウム塩、ハロゲン化アンモニウム塩、
酸化物、ハロゲン化物、水素酸、アセチルアセトナー
ト、アルコキシド、ハロゲン化物等を使用することがで
きる。金属酸化物の調製方法は、特に限定はなく、前述
のように金属酸化物の原料水もしくは有機溶媒の溶液又
はスラリーより調製する方法と、金属酸化物の原料を混
合して高温固相反応により調製する方法の主に2つがあ
る。しかしながら、より活性に優れた触媒を得るという
点では前者の方法、特にモリブデン及び/又はバナジウ
ムの化合物を含む水溶液又はスラリーを調製後、乾燥
し、焼成する方法が好ましい。
As the raw material of the metal oxide, molybdenum,
Carboxylic acid salts of vanadium and other optional metal components, carboxylic acid ammonium salts, ammonium halide salts,
Oxides, halides, hydrogen acids, acetylacetonates, alkoxides, halides and the like can be used. The method for preparing the metal oxide is not particularly limited, and as described above, a method of preparing from the solution or slurry of the raw material water of the metal oxide or the organic solvent, and the high temperature solid-phase reaction by mixing the raw material of the metal oxide. There are two main methods of preparation. However, from the viewpoint of obtaining a catalyst having more excellent activity, the former method, particularly the method of preparing an aqueous solution or slurry containing a compound of molybdenum and / or vanadium, followed by drying and calcining is preferable.

【0015】本発明は、以上のモリブデン及び/又はバ
ナジウムを含有する金属酸化物触媒を、酸処理して金属
酸化物触媒を更に活性化することを特徴とする。この酸
処理を行う金属酸化物触媒としては、上記のような方法
で新たに調製した金属酸化物を対象とするほか、既に反
応で使用して触媒活性の低下した金属酸化物も対象とさ
れる。
The present invention is characterized in that the above metal oxide catalyst containing molybdenum and / or vanadium is acid-treated to further activate the metal oxide catalyst. As the metal oxide catalyst for this acid treatment, not only the metal oxide newly prepared by the above-mentioned method but also the metal oxide whose catalytic activity has been already reduced in the reaction are also targeted. .

【0016】酸処理の方法としては、金属酸化物触媒を
酸溶液に接触処理する。例えば、金属酸化物触媒を、無
機酸又は有機酸の通常0.1〜50重量%程度の水溶液
中に、室温〜90℃で浸漬処理する。なお、場合によっ
ては酸処理を行なう際に、金属酸化物触媒を粉砕処理し
ておいてもよい。酸処理に使用される無機酸としては、
塩酸、硫酸、硝酸、リン酸、ホウ酸などが有効である。
また、有機酸として、炭素数1〜12程度の脂肪族カル
ボン酸、芳香族カルボン酸が例示されるが、特にシュウ
酸、クエン酸、酒石酸、マロン酸、コハク酸、マレイン
酸などの脂肪族多塩基酸が有効である。これらの酸は単
独でもあるいは複数種を任意に混合して使用してもよ
い。
As the acid treatment method, the metal oxide catalyst is subjected to contact treatment with an acid solution. For example, the metal oxide catalyst is immersed in an aqueous solution of an inorganic acid or an organic acid of about 0.1 to 50% by weight at room temperature to 90 ° C. In some cases, the metal oxide catalyst may be crushed before the acid treatment. As the inorganic acid used for the acid treatment,
Hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and boric acid are effective.
Examples of the organic acid include an aliphatic carboxylic acid having 1 to 12 carbon atoms and an aromatic carboxylic acid. Particularly, an aliphatic polycarboxylic acid such as oxalic acid, citric acid, tartaric acid, malonic acid, succinic acid, and maleic acid is used. Basic acids are effective. These acids may be used alone or in a mixture of plural kinds.

【0017】この酸処理により触媒が更に活性化される
理由の詳細は明らかではないが、酸処理により触媒の表
面あるいは内部の化学的な状態が変化したり、あるい
は、反応にとって好ましくない副反応の原因となる成分
を溶解除去したり、また、表面積のような物理的性質が
改善されたり、あるいは、反応の活性、選択性に有利な
表面が現われることなどによると推定される。
Although the details of the reason why the catalyst is further activated by this acid treatment are not clear, the acid treatment changes the chemical state of the surface or the inside of the catalyst, or causes a side reaction which is not preferable for the reaction. It is presumed that the causative component is dissolved and removed, physical properties such as surface area are improved, or a surface advantageous for reaction activity and selectivity appears.

【0018】酸処理した後は、酸溶液から、金属酸化物
触媒を濾過又は遠心分離などの方法で分離する。そし
て、通常は水で金属酸化物触媒をある程度洗浄し、次い
で、乾燥してから、触媒として使用する。また、必要に
応じて、100〜700℃程度の範囲で加熱処理を行っ
てから触媒として使用してもよい。以上の方法で活性化
されたモリブデン及び/又はバナジウムを含有する金属
酸化物触媒は、炭化水素の気相接触酸化反応による有機
化合物の製造に利用される。本発明における炭化水素の
気相接触酸化反応とは、炭化水素を酸素と気相接触反応
させるものであるが、酸素のほかにアンモニアや水蒸気
などを反応系に存在させるような反応も含まれ,含酸素
有機化合物、脱水素化有機化合物、ニトリル類などの各
種の有機化合物の製造に適用される。そして、本発明で
の活性化触媒の使用条件は、各触媒系において既に公知
の反応条件と同じ条件にすればよく、活性化されていな
い触媒を使用した場合と比較して、目的とする生成物を
より高選択率、高収率で得ることができる。
After the acid treatment, the metal oxide catalyst is separated from the acid solution by a method such as filtration or centrifugation. Then, the metal oxide catalyst is usually washed to some extent with water, then dried and used as a catalyst. Moreover, you may use as a catalyst, after heat-processing in about 100-700 degreeC as needed. The metal oxide catalyst containing molybdenum and / or vanadium activated by the above method is used for producing an organic compound by vapor-phase catalytic oxidation reaction of hydrocarbon. The gas-phase catalytic oxidation reaction of hydrocarbon in the present invention is a reaction of a hydrocarbon with oxygen in a gas-phase catalytic reaction, and includes a reaction in which ammonia or water vapor is present in the reaction system in addition to oxygen. It is applied to the production of various organic compounds such as oxygen-containing organic compounds, dehydrogenated organic compounds and nitriles. The conditions of use of the activated catalyst in the present invention may be the same as the reaction conditions already known in each catalyst system, and compared with the case of using a non-activated catalyst, the target production The product can be obtained with higher selectivity and higher yield.

【0019】反応原料の炭化水素としては、炭素数3〜
8程度のアルカン又はアルケン、炭素数6〜12程度の
芳香族炭化水素などが挙げられる。その反応例として
は、アルケン又はアルカンとアンモニアとの気相接触酸
化反応によるニトリルの製造(例えば、プロピレン又は
プロパンとアンモニアからのアクリロニトリルの製造、
イソブテン又はイソブタンとアンモニアからのアクリロ
ニトリルの製造)アルカン又はアルケンの部分酸化反応
による不飽和アルデヒド、不飽和カルボン酸の製造(例
えば、プロパン又はプロピレンからのアクロレイン、ア
クリル酸の製造、イソブタン又はイソブテンからのメタ
クロレイン、メタクリル酸の製造)、飽和カルボン酸の
酸化脱水素反応(例えば、イソ酪酸からメタクリル酸の
製造)、炭化水素の酸化脱水素反応(例えば、ブテンか
らのブタジエンの製造)、各種炭化水素の部分酸化反応
による酸無水物の製造(例えば、ナフタレン又はキシレ
ンからの無水フタル酸の製造、ブタン又はブテンからの
無水マレイン酸の製造)などがある。
The hydrocarbon as the reaction raw material has 3 to 10 carbon atoms.
Examples thereof include about 8 alkanes or alkenes, aromatic hydrocarbons having about 6 to 12 carbon atoms, and the like. As an example of the reaction, production of nitrile by gas phase catalytic oxidation reaction of alkene or alkane and ammonia (for example, production of acrylonitrile from propylene or propane and ammonia,
Production of acrylonitrile from isobutene or isobutane and ammonia) Production of unsaturated aldehydes and unsaturated carboxylic acids by partial oxidation reaction of alkanes or alkenes (for example, production of acrolein or acrylic acid from propane or propylene, methacrolein from isobutane or isobutene) Rhein, production of methacrylic acid), oxidative dehydrogenation of saturated carboxylic acid (eg, production of methacrylic acid from isobutyric acid), oxidative dehydrogenation of hydrocarbon (eg, production of butadiene from butene), various hydrocarbons Production of an acid anhydride by a partial oxidation reaction (for example, production of phthalic anhydride from naphthalene or xylene, production of maleic anhydride from butane or butene), and the like.

【0020】更に、本発明の活性化方法で特に顕著な効
果を有する前述の式(2)で示されるモリブデン−バナ
ジウム−テルル系触媒における炭化水素の気相接触酸化
反応の条件をについて述べる。該触媒は、他の気相接触
酸化反応用の金属酸化物触媒と比較して、通常500℃
以下の比較的低温下においてもアルカンの部分酸化活性
が高いという特性を有する。該触媒を用いた気相接触酸
化反応においては、反応温度が300〜500℃、好ま
しくは350〜450℃程度であり、気相反応における
ガス空間速度SVが100〜10000hr-1、好まし
くは300〜6000hr-1の範囲であり、反応は通常
大気圧下で実施できるが、低度の加圧下または減圧下で
もよい。。また、空間速度と酸素分圧を調整するための
希釈ガスとして、窒素、アルゴン、ヘリウム等の不活性
ガスを用いることができる。反応方式は固定床、流動層
等のいずれも採用できるが、発熱反応であるため、流動
層方式の方が反応温度の制御が容易である。
Further, the conditions for the vapor phase catalytic oxidation reaction of hydrocarbons in the molybdenum-vanadium-tellurium catalyst represented by the above formula (2), which has a particularly remarkable effect in the activation method of the present invention, will be described. The catalyst is usually 500 ° C. in comparison with other metal oxide catalysts for gas phase catalytic oxidation reaction.
It has the characteristic that the partial oxidation activity of alkane is high even at the following relatively low temperatures. In the gas phase catalytic oxidation reaction using the catalyst, the reaction temperature is 300 to 500 ° C., preferably about 350 to 450 ° C., and the gas space velocity SV in the gas phase reaction is 100 to 10,000 hr −1 , preferably 300 to It is in the range of 6000 hr -1 , and the reaction can usually be carried out under atmospheric pressure, but it may be under elevated pressure or reduced pressure. . Further, as a diluent gas for adjusting the space velocity and the oxygen partial pressure, an inert gas such as nitrogen, argon or helium can be used. Although a fixed bed, a fluidized bed, or the like can be adopted as the reaction system, the reaction temperature is easier to control in the fluidized bed system because it is an exothermic reaction.

【0021】このモリブデン−バナジウム−テルル系触
媒は、アルカンとアンモニアとの気相接触酸化反応によ
るニトリルの製造、特にプロパンからのアクリロニトリ
ルの製造に有効である。この反応おいて、反応系に供給
する酸素の割合が生成するアクリロニトリルの選択率に
関して重要であり、酸素はプロパンに対して特に0.2
〜4モル倍量の範囲で高いアクリロニトリル選択率を示
す。また、反応に供与するアンモニアの割合は、プロパ
ンに対して特に0.5〜3モル倍量の範囲が好適であ
る。
This molybdenum-vanadium-tellurium catalyst is effective for the production of nitrile by the vapor-phase catalytic oxidation reaction of alkane and ammonia, especially for the production of acrylonitrile from propane. In this reaction, the ratio of oxygen supplied to the reaction system is important with respect to the selectivity of acrylonitrile to be produced, and oxygen is preferably 0.2 to propane.
It shows a high acrylonitrile selectivity in the range of up to 4 molar times. Further, the ratio of ammonia to be supplied to the reaction is particularly preferably in the range of 0.5 to 3 times the molar amount of propane.

【0022】同じモリブデン−バナジウム−テルル系触
媒を用い、プロパンの気相接触酸化反応を行うことによ
り高収率でアクリル酸を得ることができる。反応原料ガ
スとしてはプロパンと酸素含有ガスを使用するが、更
に、水蒸気を用いるのが好ましく、水蒸気によりアクリ
ル酸の選択性を更に向上させることができる。原料ガス
のモル分率としては、好ましくは(プロパン):(酸
素):(水蒸気)=1:(1〜5):(5〜40)であ
る。
By using the same molybdenum-vanadium-tellurium catalyst, a vapor phase catalytic oxidation reaction of propane can be performed to obtain acrylic acid in high yield. Although propane and an oxygen-containing gas are used as the reaction raw material gas, it is preferable to use steam, and the steam can further improve the selectivity of acrylic acid. The molar fraction of the raw material gas is preferably (propane) :( oxygen) :( steam) = 1: (1-5) :( 5-40).

【0023】[0023]

【実施例】以下、本発明を、実施例を挙げてさらに詳細
に説明するが、本発明はその要旨を超えないかぎりこれ
らの実施例に限定されるものではない。なお、以下の実
施例および比較例におけるプロパン転化率(%)、アク
リロニトリル選択率(%)、アクリロニトリル収率
(%)は、各々以下の式で示される。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples as long as the gist thereof is not exceeded. The propane conversion (%), acrylonitrile selectivity (%), and acrylonitrile yield (%) in the following Examples and Comparative Examples are shown by the following formulas, respectively.

【0024】[0024]

【数1】プロパンの転化率(%)=(消費プロパンのモ
ル数/供給プロパンのモル数)×100 アクリロニトリルの選択率(%)=(生成アクリロニト
リルのモル数/消費プロパンのモル数)×100 アクリロニトリルの収率(%)=(生成アクリロニトリ
ルのモル数/供給プロパンのモル数)×100
## EQU1 ## Propane conversion (%) = (moles of consumed propane / moles of propane fed) × 100 Acrylonitrile selectivity (%) = (moles of acrylonitrile produced / moles of consumed propane) × 100 Acrylonitrile yield (%) = (mol acrylonitrile produced / mol propane fed) × 100

【0025】比較例1 実験式Mo10.3Te0.23Nb0.18nとSiO2の混合
物(重量比70:30)をを次のように調製した。温水
22.7Lに、パラモリブデン酸アンモニウム塩5.5
2kg、メタバナジン酸アンモニウム塩1.10kg、
テルル酸1.65kgを溶解し、均一な水溶液を調製し
た。更に、シリカ含量が20重量%のシリカゾル15k
gおよびニオブの濃度が0.659mol/kgのシュ
ウ酸ニオブアンモニウム水溶液8.55kgを混合し、
スラリ−を調製した。このスラリーを約120ml/分
の速度で噴霧乾燥機に供給し、加熱された空気を供給し
つつ水分を除去し、乾燥した。この時、噴霧乾燥機の中
心部分の温度は約160℃であった。この乾燥物をアン
モニア臭がなくなるまで約300℃で加熱処理した後、
窒素気流中600℃で2時間焼成した。
[0025] was prepared in Comparative Example 1 empirical formula Mo 1 V 0.3 Te 0.23 Nb 0.18 O n and a mixture of SiO 2 (weight ratio 70:30) was as follows. 22.7 L of warm water, 5.5 ammonium paramolybdate salt
2 kg, ammonium metavanadate 1.10 kg,
Telluric acid (1.65 kg) was dissolved to prepare a uniform aqueous solution. Furthermore, silica sol with silica content of 20% by weight 15k
g and 8.55 kg of an ammonium niobium oxalate aqueous solution having a niobium concentration of 0.659 mol / kg were mixed,
A slurry was prepared. This slurry was supplied to a spray dryer at a rate of about 120 ml / min to remove water while supplying heated air and dried. At this time, the temperature of the central part of the spray dryer was about 160 ° C. After heat-treating the dried product at about 300 ° C. until the smell of ammonia disappears,
Firing was performed at 600 ° C. for 2 hours in a nitrogen stream.

【0026】以上のように調製された金属酸化物0.7
gを反応器に充填し、反応温度410℃、空間速度SV
を880hr-1に固定して、プロパン:アンモニア:空
気=1:1.2:15のモル比でガスを供給し気相接触
酸化反応を行った。反応結果を表−1に示す。
Metal oxide 0.7 prepared as described above
g into a reactor, reaction temperature 410 ° C., space velocity SV
Was fixed at 880 hr -1 , and gas was supplied at a molar ratio of propane: ammonia: air = 1: 1.2: 15 to carry out a gas phase catalytic oxidation reaction. The reaction results are shown in Table 1.

【0027】実施例1 10重量%シュウ酸水溶液100gを50℃に加温し、
ここに比較例1で調製したMo1V0.3Te0.23
Nb0.18OnとSiO2の混合物(重量比70:3
0)10g添加し、攪拌を行いながら、50℃に1.5
時間保持した。室温まで放冷した後、該液から固体を濾
過分離した。この固体を別の容器に移し、脱イオン水1
00mlを加え、室温で5分間攪拌を行い、濾過を行っ
た。更に、この洗浄操作を3回繰り返した。室温で乾燥
した後、窒素気流中、600℃で2時間焼成した。以上
の処理を行った金属酸化物を用いて、比較例1と同様条
件でプロパンとアンモニアを気相接触酸化反応を行っ
た。反応結果を表−1に示す。
Example 1 100 g of an aqueous 10 wt% oxalic acid solution was heated to 50 ° C.,
Here, Mo1V0.3Te0.23 prepared in Comparative Example 1
Mixture of Nb0.18On and SiO2 (weight ratio 70: 3
0) Add 10 g and stir at 50 ° C. for 1.5
Held for hours. After allowing to cool to room temperature, solids were separated by filtration from the liquid. Transfer this solid to another container and add 1 part of deionized water.
00 ml was added, and the mixture was stirred at room temperature for 5 minutes and filtered. Furthermore, this washing operation was repeated 3 times. After drying at room temperature, it was baked at 600 ° C. for 2 hours in a nitrogen stream. Using the metal oxide treated as above, propane and ammonia were subjected to a gas phase catalytic oxidation reaction under the same conditions as in Comparative Example 1. The reaction results are shown in Table 1.

【0028】比較例2 実験式Mo10.24Te0.23Nb0.12nとSiO2の混
合物(重量比50:50)を次のように調製した。温水
3019mlに、パラモリブデン酸アンモニウム塩80
8.6g、メタバナジン酸アンモニウム塩128.6
g、テルル酸241.9gを溶解し、均一な水溶液を調
製した。更に、シリカ含量が20wt%のシリカゾル5
000g、およびニオブの濃度が0.435mol/k
gのシュウ酸ニオブアンモニウム水溶液1268gを混
合し、スラリ−を調製した。このスラリーを約120m
l/分の速度で噴霧乾燥機に供給し、加熱された空気を
供給しつつ水分を除去し、乾燥した。この時、噴霧乾燥
機の中心部分の温度は約160℃であった。
Comparative Example 2  Empirical formula Mo1V0.24Te0.23Nb0.12OnAnd SiO2A mixture of
Compound (weight ratio 50:50) was prepared as follows. Hot water
3019 ml of ammonium paramolybdate 80
8.6 g, ammonium metavanadate 128.6
g and telluric acid 241.9 g are dissolved to prepare a uniform aqueous solution.
Made. Furthermore, silica sol 5 having a silica content of 20 wt%
000 g, and the concentration of niobium is 0.435 mol / k
1268 g of an aqueous solution of ammonium niobium oxalate is mixed.
And a slurry was prepared. This slurry is about 120m
Feed the spray dryer at a rate of 1 / min to heat the air.
Water was removed while being supplied, and the product was dried. At this time, spray drying
The temperature in the center of the machine was about 160 ° C.

【0029】この乾燥物をアンモニア臭がなくなるまで
約300℃で加熱処理した後、窒素気流中600℃で2
時間焼成した。以上のように調製された金属酸化物1.
0gを反応器に充填し、反応温度410℃、空間速度S
Vを440hr-1に固定して、プロパン:アンモニア:
空気=1:1.2:15のモル比でガスを供給し気相接
触酸化反応を行った。反応結果を表−1に示す。
The dried product was heat-treated at about 300 ° C. until the smell of ammonia disappeared, and then the dried product was heated at 600 ° C. in a nitrogen stream for 2 hours.
Burned for hours. Metal oxide prepared as described above 1.
0 g was charged into a reactor, reaction temperature was 410 ° C., space velocity S
V was fixed at 440 hr -1 , and propane: ammonia:
Gas was supplied at a molar ratio of air = 1: 1.2: 15 to carry out a gas phase catalytic oxidation reaction. The reaction results are shown in Table 1.

【0030】実施例2 5重量%シュウ酸水溶液100gを50℃に加温し、こ
こに比較例2で調製したMo10.24Te0.23Nb0.12
nとSiO2の混合物(重量比50:50)10g添加
し、攪拌を行いながら、50℃に1.5時間保持した。
室温まで放冷した後、該液から固体を濾過分離した。こ
の固体を別の容器に移し、脱イオン水100mlを加
え、室温で5分間攪拌し、濾過を行った。更に、この洗
浄操作を3回繰り返した。室温で乾燥した後、窒素気流
中、600℃で2時間焼成した。以上の処理を行った金
属酸化物を用いて、比較例1と同様の条件でプロパンと
アンモニアを気相接触酸化反応を行った。反応結果を表
−1に示す。
Example 2 100 g of a 5 wt% oxalic acid aqueous solution was heated to 50 ° C., and the Mo 1 V 0.24 Te 0.23 Nb 0.12 prepared in Comparative Example 2 was added thereto.
O n and a mixture of SiO 2 (weight ratio 50:50) 10 g was added, while stirring, and held for 1.5 hours to 50 ° C..
After allowing to cool to room temperature, solids were separated by filtration from the liquid. The solid was transferred to another container, 100 ml of deionized water was added, the mixture was stirred at room temperature for 5 minutes, and filtered. Furthermore, this washing operation was repeated 3 times. After drying at room temperature, it was baked at 600 ° C. for 2 hours in a nitrogen stream. Using the metal oxide treated as described above, propane and ammonia were subjected to a gas phase catalytic oxidation reaction under the same conditions as in Comparative Example 1. The reaction results are shown in Table 1.

【0031】実施例3 実施例2と同様にシュウ酸水溶液による処理を行なった
が、処理、乾燥の後の窒素気流中での焼成を行なうこと
なしに、実施例2と同様の条件で、プロパンとアンモニ
アとの気相接触酸化反応を行った。反応結果を表−1に
示す。 実施例4 実施例2のシュウ酸水溶液の温度を80℃とした以外は
実施例2と同様の処理を行い、、実施例2と同様の条件
でプロパンとアンモニアとの気相接触酸化反応を行っ
た。反応結果を表−1に示す。
Example 3 Treatment with an oxalic acid aqueous solution was carried out in the same manner as in Example 2, but propane was treated under the same conditions as in Example 2 without firing in a nitrogen stream after the treatment and drying. Gas-phase catalytic oxidation reaction with ammonia was carried out. The reaction results are shown in Table 1. Example 4 The same treatment as in Example 2 was carried out except that the temperature of the oxalic acid aqueous solution in Example 2 was changed to 80 ° C., and the vapor phase catalytic oxidation reaction of propane and ammonia was carried out under the same conditions as in Example 2. It was The reaction results are shown in Table 1.

【0032】実施例5 5重量%クエン酸水溶液100gを70℃に加温し、こ
こに比較例2で調製した金属酸化物10g添加し、攪拌
を行いながら、70℃に1.5時間保持した。室温まで
放冷した後、該液から固体を濾過分離した。この固体を
別の容器に移し、脱イオン水100mlを加え、室温で
5分間攪拌し、濾過を行った。更に、この洗浄操作を3
回繰り返した。室温で乾燥した後、窒素気流中、600
℃で2時間焼成した。以上の処理を行った金属酸化物を
用いて、実施例2と同様の条件でプロパンとアンモニア
を気相接触酸化反応を行った。反応結果を表−1に示
す。
Example 5 100 g of a 5 wt% citric acid aqueous solution was heated to 70 ° C., 10 g of the metal oxide prepared in Comparative Example 2 was added thereto, and the mixture was kept at 70 ° C. for 1.5 hours while stirring. . After allowing to cool to room temperature, solids were separated by filtration from the liquid. The solid was transferred to another container, 100 ml of deionized water was added, the mixture was stirred at room temperature for 5 minutes, and filtered. In addition, this washing operation
Repeated times. After drying at room temperature, 600 in a nitrogen stream
Calcination was carried out for 2 hours. Using the metal oxide treated as described above, propane and ammonia were subjected to a vapor phase catalytic oxidation reaction under the same conditions as in Example 2. The reaction results are shown in Table 1.

【0033】実施例6 5重量%酒石酸水溶液100gに、比較例2で調製した
金属酸化物10gを添加し、攪拌行いながら、室温で2
0時間保持した。室温まで放冷した後、該液から固体を
濾過分離した。この固体を別の容器に移し、脱イオン水
100mlを加え、室温で5分間攪拌し、濾過を行っ
た。更に、この洗浄操作を3回繰り返した。室温で乾燥
した後、窒素気流中、600℃で2時間焼成した。以上
の処理を行った金属酸化物を用いて、実施例2と同様の
条件でプロパンとアンモニアを気相接触酸化反応を行っ
た。反応結果を表−1に示す。 実施例7 実施例5の5重量%クエン酸水溶液の代わりに5重量%
塩酸水溶液を使用した以外は実施例5と同様の処理を行
い、実施例5と同様の条件でプロパンとアンモニアとの
気相接触酸化反応を行った。反応結果を表−1に示す。
Example 6 To 100 g of a 5 wt% tartaric acid aqueous solution, 10 g of the metal oxide prepared in Comparative Example 2 was added, and the mixture was stirred at room temperature for 2 hours.
Hold for 0 hours. After allowing to cool to room temperature, solids were separated by filtration from the liquid. The solid was transferred to another container, 100 ml of deionized water was added, the mixture was stirred at room temperature for 5 minutes, and filtered. Furthermore, this washing operation was repeated 3 times. After drying at room temperature, it was baked at 600 ° C. for 2 hours in a nitrogen stream. Using the metal oxide treated as described above, propane and ammonia were subjected to a vapor phase catalytic oxidation reaction under the same conditions as in Example 2. The reaction results are shown in Table 1. Example 7 5 wt% instead of the 5 wt% aqueous citric acid solution of Example 5
The same treatment as in Example 5 was carried out except that an aqueous hydrochloric acid solution was used, and a vapor phase catalytic oxidation reaction of propane and ammonia was performed under the same conditions as in Example 5. The reaction results are shown in Table 1.

【0034】実施例8 実施例5の5重量%クエン酸水溶液の代わりに5重量%
リン酸水溶液を使用した以外は実施例5と同様の処理を
行い、実施例5と同様の条件でプロパンとアンモニアと
の気相接触酸化反応を行った。反応結果を表−1に示
す。 比較例3 実施例2の5重量%シュウ酸水溶液の代わりに温水10
0g使用した以外は実施例2と同様の処理を行い、実施
例2と同様の条件でプロパンとアンモニアとの気相接触
酸化反応を行った。反応結果を表−1に示す。
Example 8 5 wt% instead of the 5 wt% citric acid aqueous solution of Example 5
The same treatment as in Example 5 was performed except that the phosphoric acid aqueous solution was used, and the vapor phase catalytic oxidation reaction of propane and ammonia was performed under the same conditions as in Example 5. The reaction results are shown in Table 1. Comparative Example 3 Instead of the 5 wt% oxalic acid aqueous solution of Example 2, warm water 10 was used.
The same treatment as in Example 2 was carried out except that 0 g was used, and the vapor phase catalytic oxidation reaction of propane and ammonia was carried out under the same conditions as in Example 2. The reaction results are shown in Table 1.

【0035】比較例4 実験式Mo10.3Te0.23Nb0.12nとSiO2の混合
物(重量比50:50)を次のように調製した。温水1
6.3Lに、パラモリブデン酸アンモニウム塩3.94
kg、メタバナジン酸アンモニウム塩0.784kg、
テルル酸1.18kgを溶解し、均一な水溶液を調製し
た。更に、シリカ含量が20wt%のシリカゾル25k
g、およびニオブの濃度が0.435mol/kgのシ
ュウ酸ニオブアンモニウム水溶液6.16kgを混合
し、スラリ−を調製した。このスラリーを約120ml
/分の速度で噴霧乾燥機に供給し、加熱された空気を供
給しつつ水分を除去し、乾燥した。この時、噴霧乾燥機
の中心部分の温度は約160℃であった。
[0035] was prepared in Comparative Example 4 the empirical formula Mo 1 V 0.3 Te 0.23 Nb 0.12 O n and a mixture of SiO 2 (weight ratio 50:50) as follows. Hot water 1
To 6.3 L, ammonium paramolybdate 3.94
kg, ammonium metavanadate 0.784 kg,
Telluric acid (1.18 kg) was dissolved to prepare a uniform aqueous solution. Furthermore, silica sol having a silica content of 20 wt% 25k
g, and 6.16 kg of an aqueous solution of ammonium niobium oxalate having a niobium concentration of 0.435 mol / kg were mixed to prepare a slurry. About 120 ml of this slurry
It was supplied to a spray dryer at a rate of 1 / min to remove moisture while supplying heated air and dried. At this time, the temperature of the central part of the spray dryer was about 160 ° C.

【0036】この乾燥物をアンモニア臭がなくなるまで
約300℃で加熱処理した後、窒素気流中600℃で2
時間焼成した。以上のように調製された金属酸化物1.
0gを反応器に充填し、反応温度410℃、空間速度S
Vを440hr-1に固定して、プロパン:アンモニア:
空気=1:1.2:15のモル比でガスを供給し気相接
触酸化反応を行った。反応結果を表−1に示す。
The dried product was heat-treated at about 300 ° C. until the smell of ammonia disappeared, and then the dried product was heated at 600 ° C. in a nitrogen stream for 2 hours.
Burned for hours. Metal oxide prepared as described above 1.
0 g was charged into a reactor, reaction temperature was 410 ° C., space velocity S
V was fixed at 440 hr -1 , and propane: ammonia:
Gas was supplied at a molar ratio of air = 1: 1.2: 15 to carry out a gas phase catalytic oxidation reaction. The reaction results are shown in Table 1.

【0037】実施例9 5重量%シュウ酸水溶液100gを65℃に加温し、こ
こに比較例4で調製したMo10.3Te0.23Nb0.12
nとSiO2の混合物(重量比50:50)10g添加
し、攪拌を行いながら、65℃に1.5時間保持した。
室温まで放冷した後、該液から固体を濾過分離した。こ
の固体を別の容器に移し、脱イオン水100mlを加
え、室温で5分間攪拌し、濾過を行った。更に、この洗
浄操作を3回繰り返した。室温で乾燥した後、窒素気流
中、600℃で2時間焼成した。 以上の処理を行った
金属酸化物を用いて、比較例4と同様の条件でプロパン
とアンモニアを気相接触酸化反応を行った。反応結果を
表−1に示す。
Example 9 100 g of a 5 wt% oxalic acid aqueous solution was heated to 65 ° C., and the Mo 1 V 0.3 Te 0.23 Nb 0.12 O prepared in Comparative Example 4 was added thereto.
10 g of a mixture of n and SiO 2 (weight ratio 50:50) was added, and the mixture was kept at 65 ° C. for 1.5 hours while stirring.
After allowing to cool to room temperature, solids were separated by filtration from the liquid. The solid was transferred to another container, 100 ml of deionized water was added, the mixture was stirred at room temperature for 5 minutes, and filtered. Furthermore, this washing operation was repeated 3 times. After drying at room temperature, it was baked at 600 ° C. for 2 hours in a nitrogen stream. Using the metal oxide treated as described above, propane and ammonia were subjected to a gas phase catalytic oxidation reaction under the same conditions as in Comparative Example 4. The reaction results are shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【発明の効果】本発明によれば、炭化水素の気相接触酸
化反応に有効な金属酸化物触媒をより活性化することが
できるので、工業原料として有用なアクリロニトリル、
アクリル酸、無水マレイン等を高収率で製造することが
できる。
EFFECTS OF THE INVENTION According to the present invention, the metal oxide catalyst effective for the gas phase catalytic oxidation reaction of hydrocarbons can be further activated, and therefore acrylonitrile useful as an industrial raw material,
Acrylic acid, maleic anhydride, etc. can be produced in high yield.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/652 23/88 Z 27/057 Z 38/60 C07C 253/24 255/08 9357−4H // C07B 61/00 300 (72)発明者 大越 徹 神奈川県横浜市緑区鴨志田町1000番地 三 菱化成株式会社総合研究所内Continuation of the front page (51) Int.Cl. 6 Identification code Reference number within the agency FI Technical display location B01J 23/652 23/88 Z 27/057 Z 38/60 C07C 253/24 255/08 9357-4H // C07B 61/00 300 (72) Inventor Toru Ogoshi 1000 Kamoshida-cho, Midori-ku, Yokohama-shi, Kanagawa Sanryo Kasei Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 炭化水素の気相接触酸化反応用のモリブ
デン及び/又はバナジウムを含有する金属酸化物触媒
を、酸処理することを特徴とする金属酸化物触媒の活性
化方法。
1. A method for activating a metal oxide catalyst, which comprises subjecting a metal oxide catalyst containing molybdenum and / or vanadium for a gas phase catalytic oxidation reaction of hydrocarbon to an acid treatment.
【請求項2】 モリブデン及び/又はバナジウムを含有
する金属酸化物触媒が、モリブデン及び/又はバナジウ
ムの化合物を含む水溶液又はスラリーを乾燥し、焼成し
て得たものであることを特徴とする請求項1の金属酸化
物触媒の活性化方法。
2. The metal oxide catalyst containing molybdenum and / or vanadium is obtained by drying and calcining an aqueous solution or slurry containing a compound of molybdenum and / or vanadium. 1. A method for activating a metal oxide catalyst according to 1.
【請求項3】 有機酸で酸処理することを特徴とする請
求項1又は2に記載の金属酸化物触媒の活性化方法。
3. The method for activating a metal oxide catalyst according to claim 1, wherein the acid treatment is performed with an organic acid.
【請求項4】 金属酸化物触媒が下記の実験式(1)で
表されることを特徴とする請求項1ないし3のいずれか
に記載の金属酸化物触媒の活性化方法。 【化1】Moa b x n (1) (式(1)において、XはTe,Nb,Ta,W,T
i,Al,Zr,Cr,Mn,Fe,Ru,Co,R
h,Ni,Pd,Pt,Sb,Bi,B,In及びCe
の中から選ばれた1つ又はそれ以上の元素を表し、 a=1とするとき、 b=0.01〜10 x=0〜2.0 であり、また、nは他の元素の酸化状態により決定され
る。)
4. The method for activating a metal oxide catalyst according to claim 1, wherein the metal oxide catalyst is represented by the following empirical formula (1). Embedded image Mo a V b X x O n (1) (In the formula (1), X is Te, Nb, Ta, W, T.
i, Al, Zr, Cr, Mn, Fe, Ru, Co, R
h, Ni, Pd, Pt, Sb, Bi, B, In and Ce
Represents one or more elements selected from among the following, and when a = 1, b = 0.01-10 x = 0-2.0, and n is the oxidation state of another element. Determined by )
【請求項5】 金属酸化物触媒が下記の実験式(2)で
表されることを特徴とする請求項1ないし3のいずれか
に記載の金属酸化物触媒の活性化方法。 【化2】Moa b Tec y n (2) (式(2)において、YはNb,Ta,W,Ti,A
l,Zr,Cr,Mn,Fe,Ru,Co,Rh,N
i,Pd,Pt,Sb,Bi,B,In及びCeの中か
ら選ばれた1つ又はそれ以上の元素を表し、 a=1とするとき、 b=0.01〜1.0 c=0.01〜1.0 y=0.01〜1.0 であり、また、nは他の元素の酸化状態により決定され
る。)
5. The method for activating a metal oxide catalyst according to claim 1, wherein the metal oxide catalyst is represented by the following empirical formula (2). Embedded image Mo a V b Te c Y y O n (2) (In the formula (2), Y is Nb, Ta, W, Ti, A
1, Zr, Cr, Mn, Fe, Ru, Co, Rh, N
Represents one or more elements selected from i, Pd, Pt, Sb, Bi, B, In and Ce, and when a = 1, b = 0.01 to 1.0 c = 0 0.01 to 1.0 y = 0.01 to 1.0, and n is determined by the oxidation states of other elements. )
【請求項6】 金属酸化物触媒が、アンモニアの存在
下、プロパンより気相接触酸化反応によりアクリロニト
リルを製造するための触媒であることを特徴とする請求
項1ないし5のいずれかに記載の金属酸化物触媒の活性
化方法。
6. The metal according to claim 1, wherein the metal oxide catalyst is a catalyst for producing acrylonitrile from propane by a gas phase catalytic oxidation reaction in the presence of ammonia. Method for activating oxide catalyst.
JP6199561A 1994-08-24 1994-08-24 Method for activating metal oxide catalyst Pending JPH0857319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6199561A JPH0857319A (en) 1994-08-24 1994-08-24 Method for activating metal oxide catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6199561A JPH0857319A (en) 1994-08-24 1994-08-24 Method for activating metal oxide catalyst

Publications (1)

Publication Number Publication Date
JPH0857319A true JPH0857319A (en) 1996-03-05

Family

ID=16409880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6199561A Pending JPH0857319A (en) 1994-08-24 1994-08-24 Method for activating metal oxide catalyst

Country Status (1)

Country Link
JP (1) JPH0857319A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022421A1 (en) * 1996-11-15 1998-05-28 Mitsubishi Chemical Corporation Process for the simultaneous preparation of acrylonitrile and acrylic acid
US5907052A (en) * 1997-08-11 1999-05-25 Asahi Kasei Kogyo Kabushiki Kaisha Process for producing acrylonitrile or methacrylonitrile from propane or isobutane by ammoxidation
US6036880A (en) * 1997-08-05 2000-03-14 Asahi Kasei Kogyo Kabushiki Kaisha Niobium-containing aqueous solution for use in producing niobium-containing oxide-catalyst
US6043186A (en) * 1997-10-15 2000-03-28 Asahi Kasei Kogyo Kabushiki Kaisha Ammoxidation catalyst for use in producing acrylonitrile or methacrylonitrile from propane or isobutane by ammoxidation
US6063728A (en) * 1997-08-05 2000-05-16 Asahi Kasei Kogyo Kabushiki Kaisha Ammoxidation catalyst for use in producing acrylonitrile or methacrylonitrile from propane or isobutane by ammoxidation
US6143690A (en) * 1998-05-07 2000-11-07 Asahi Kasei Kogyo Kabushiki Kaisha Ammoxidation catalyst for use in producing acrylonitrile or methacrylonitrile from propane or isobutane
US6475948B1 (en) 1999-09-09 2002-11-05 Japan Science And Technology Corporation Sb-Re composite oxide catalyst ammoxidation
EP1254707A1 (en) * 2001-04-25 2002-11-06 Rohm And Haas Company Method for improving a vanadium based mixed metal oxide catalyst by treating it with a liquid, the catalyst thereby obtainable and its use in oxidation and ammoxidation reactions
EP1306129A1 (en) * 2001-10-26 2003-05-02 Rohm And Haas Company Preparation of a mixed metal oxide catalyst and its use in oxidation and ammoxidation reactions
JP2004504288A (en) * 2000-07-18 2004-02-12 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing acrylic acid by gas phase oxidation of propane by heterogeneous catalysis
WO2006008177A1 (en) * 2004-07-22 2006-01-26 Fritz Haber Institut Der Max Planck Gesellschaft Metal oxide catalyst and method for the preparation thereof
EP1574255A3 (en) * 2004-03-10 2006-04-05 Rohm And Haas Company Modified Mo-V-Nb-based metal oxide catalysts
US7026506B2 (en) 2001-04-17 2006-04-11 Basf Aktiengesellschaft Method for producing acrylic acid by heterogeneously catalyzed gas-phase oxidation of propene with molecular oxygen in a reaction zone
US7038082B2 (en) 2002-10-17 2006-05-02 Basf Aktiengesellschaft Preparation of a multimetal oxide material
JP2006130373A (en) * 2004-11-02 2006-05-25 Nippon Kayaku Co Ltd Method for manufacturing compound metal oxide catalyst and catalyst
WO2006072447A1 (en) * 2004-12-29 2006-07-13 Hte Aktiengesellschaft Phosphor-treated multimetallic oxide compounds
US7321058B2 (en) 2000-06-14 2008-01-22 Basf Aktiengesellschaft Method for producing acrolein and/or acrylic acid
DE102009017443A1 (en) 2008-04-15 2009-11-05 Basf Se Partial oxidation of an alkylaromatic compound e.g. toluene and o-xylol, in the gas phase under the use of catalyst, whose catalytically active mass contains a multimetal oxide compound
JP2010510882A (en) * 2006-12-01 2010-04-08 エルジー・ケム・リミテッド Novel heteropolyacid catalyst and method for producing the same
CN104511290A (en) * 2014-12-31 2015-04-15 中国地质大学(武汉) Preparation method of visible-light-driven photocatalyst nano spherical MoSe2 material

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022421A1 (en) * 1996-11-15 1998-05-28 Mitsubishi Chemical Corporation Process for the simultaneous preparation of acrylonitrile and acrylic acid
US6036880A (en) * 1997-08-05 2000-03-14 Asahi Kasei Kogyo Kabushiki Kaisha Niobium-containing aqueous solution for use in producing niobium-containing oxide-catalyst
US6063728A (en) * 1997-08-05 2000-05-16 Asahi Kasei Kogyo Kabushiki Kaisha Ammoxidation catalyst for use in producing acrylonitrile or methacrylonitrile from propane or isobutane by ammoxidation
US5907052A (en) * 1997-08-11 1999-05-25 Asahi Kasei Kogyo Kabushiki Kaisha Process for producing acrylonitrile or methacrylonitrile from propane or isobutane by ammoxidation
US6043186A (en) * 1997-10-15 2000-03-28 Asahi Kasei Kogyo Kabushiki Kaisha Ammoxidation catalyst for use in producing acrylonitrile or methacrylonitrile from propane or isobutane by ammoxidation
US6143690A (en) * 1998-05-07 2000-11-07 Asahi Kasei Kogyo Kabushiki Kaisha Ammoxidation catalyst for use in producing acrylonitrile or methacrylonitrile from propane or isobutane
US6475948B1 (en) 1999-09-09 2002-11-05 Japan Science And Technology Corporation Sb-Re composite oxide catalyst ammoxidation
US7321058B2 (en) 2000-06-14 2008-01-22 Basf Aktiengesellschaft Method for producing acrolein and/or acrylic acid
US6867328B2 (en) 2000-07-18 2005-03-15 Basf Aktiengesellschaft Method for producing acrylic acid by the heterogeneously catalysed gas-phase oxidation of propane
JP2004504288A (en) * 2000-07-18 2004-02-12 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing acrylic acid by gas phase oxidation of propane by heterogeneous catalysis
US7026506B2 (en) 2001-04-17 2006-04-11 Basf Aktiengesellschaft Method for producing acrylic acid by heterogeneously catalyzed gas-phase oxidation of propene with molecular oxygen in a reaction zone
US6781008B2 (en) 2001-04-25 2004-08-24 Rohm And Haas Company Catalyst
US6642173B2 (en) 2001-04-25 2003-11-04 Rohm And Haas Company Catalyst
EP1254707A1 (en) * 2001-04-25 2002-11-06 Rohm And Haas Company Method for improving a vanadium based mixed metal oxide catalyst by treating it with a liquid, the catalyst thereby obtainable and its use in oxidation and ammoxidation reactions
EP1306129A1 (en) * 2001-10-26 2003-05-02 Rohm And Haas Company Preparation of a mixed metal oxide catalyst and its use in oxidation and ammoxidation reactions
US7091377B2 (en) 2002-10-17 2006-08-15 Basf Aktiengesellschaft Multimetal oxide materials
US7038082B2 (en) 2002-10-17 2006-05-02 Basf Aktiengesellschaft Preparation of a multimetal oxide material
EP1574255A3 (en) * 2004-03-10 2006-04-05 Rohm And Haas Company Modified Mo-V-Nb-based metal oxide catalysts
US7304014B2 (en) 2004-03-10 2007-12-04 Rohm And Haas Company Modified catalysts and process
WO2006008177A1 (en) * 2004-07-22 2006-01-26 Fritz Haber Institut Der Max Planck Gesellschaft Metal oxide catalyst and method for the preparation thereof
JP2008506522A (en) * 2004-07-22 2008-03-06 フリッツ・ハーバー・インスティトゥート・デア・マックス・プランク・ゲゼルシャフト Metal oxide catalyst and method for producing the same
JP2006130373A (en) * 2004-11-02 2006-05-25 Nippon Kayaku Co Ltd Method for manufacturing compound metal oxide catalyst and catalyst
WO2006072447A1 (en) * 2004-12-29 2006-07-13 Hte Aktiengesellschaft Phosphor-treated multimetallic oxide compounds
JP2010510882A (en) * 2006-12-01 2010-04-08 エルジー・ケム・リミテッド Novel heteropolyacid catalyst and method for producing the same
DE102009017443A1 (en) 2008-04-15 2009-11-05 Basf Se Partial oxidation of an alkylaromatic compound e.g. toluene and o-xylol, in the gas phase under the use of catalyst, whose catalytically active mass contains a multimetal oxide compound
CN104511290A (en) * 2014-12-31 2015-04-15 中国地质大学(武汉) Preparation method of visible-light-driven photocatalyst nano spherical MoSe2 material

Similar Documents

Publication Publication Date Title
JPH0857319A (en) Method for activating metal oxide catalyst
JP3769866B2 (en) Method for producing catalyst for gas phase catalytic oxidation
US6710207B2 (en) Methods for producing unsaturated carboxylic acids and unsaturated nitriles
US20060052634A1 (en) Single crystalline phase catalyst
JP2003047854A (en) Mixed metal oxide catalyst
TW548133B (en) NOx treated mixed metal oxide catalyst
US20170361309A1 (en) Catalyst for ethane odh
JPH08141401A (en) Catalyst for production of nitrile
JPH1142434A (en) Production of vapor phase catalytic oxidation reaction catalyst of hydrocarbon and vapor phase catalytic oxidation reaction method of hydrocarbon using the same
JPH11226408A (en) Production of metal oxide catalyst
JPH09157241A (en) Production of nitrile
JPH1157479A (en) Gas phase catalytic oxidation reaction catalyst for hydrocarbon and preparation thereof
JP2002537085A (en) Catalyst for oxidation of ethane to acetic acid
JPH09316023A (en) Production of (meth)acrylic acid
JPH11169716A (en) Catalyst for preparing unsaturated nitrile and/or unsaturated carboxylic acid
JPH1147598A (en) Preparation of catalyst
JP3974989B2 (en) Preparation of vanadium antimonate-based catalysts using SnO2 xH2O
US7355062B2 (en) Catalyst for selective oxidation and amoxidation of alkanes and/or alkenes, particularly in processes for obtaining acrylic acid, acrylonitrile and the derivatives thereof
JPH10310539A (en) Vapor-phase, catalytic oxidation of hydrocarbon
JPH07144132A (en) Production of catalyst for producing nitrile
JPH07289907A (en) Production of catalyst for producing nitrile
JPH11263745A (en) Vapor-phase catalytic oxidation of hydrocarbon
JP3502526B2 (en) Vanadium-phosphorus oxide, method for producing the same, catalyst for gas phase oxidation comprising the oxide, and method for partial gas phase oxidation of hydrocarbons
EP1155741B1 (en) Process for making highly active and selective catalysts for the production of unsaturated nitriles
JP3117265B2 (en) Method for producing α, β-unsaturated nitrile

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040406