JPH11263692A - Method for pulling up silicon single crystal - Google Patents

Method for pulling up silicon single crystal

Info

Publication number
JPH11263692A
JPH11263692A JP6598498A JP6598498A JPH11263692A JP H11263692 A JPH11263692 A JP H11263692A JP 6598498 A JP6598498 A JP 6598498A JP 6598498 A JP6598498 A JP 6598498A JP H11263692 A JPH11263692 A JP H11263692A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
crystal rod
silicon
pulled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6598498A
Other languages
Japanese (ja)
Other versions
JP3598800B2 (en
Inventor
Naoki Ono
直樹 小野
Jun Furukawa
純 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Silicon Corp
Original Assignee
Mitsubishi Materials Silicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Silicon Corp filed Critical Mitsubishi Materials Silicon Corp
Priority to JP6598498A priority Critical patent/JP3598800B2/en
Publication of JPH11263692A publication Critical patent/JPH11263692A/en
Application granted granted Critical
Publication of JP3598800B2 publication Critical patent/JP3598800B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PROBLEM TO BE SOLVED: To make the generation of grown-in defect in the single crystal bar suppressible by reducing the density of point defects within the crystal of a single crystal bar under pulling-up operation. SOLUTION: A carbon heater is placed in such a way that a quartz crucible 13 is encircled with the heater and a silicon melt 12 reserved in the quartz crucible 13 is heated with the carbon heater and further, a silicon single crystal bar 15 is pulled up from the silicon melt 12 in such a way that each isothermal surface within the crystal of the single crystal bar 15 in the region of 1,300 to 1,100 deg.C of the temp. distribution within this crystal is reversed from an upwardly convex state to a downwardly convex state by a temp. distribution reversion means 26 surrounding the periphery of the silicon single crystal bar 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリコン単結晶を
引上げて育成する方法に関するものである。
The present invention relates to a method for pulling and growing a silicon single crystal.

【0002】[0002]

【従来の技術】従来、シリコン単結晶の引上げ装置とし
て、図7に示すように、チャンバ内にシリコン融液2が
貯留された石英るつぼ3が収容され、シリコン単結晶棒
5の外周面と石英るつぼ3の内周面との間にシリコン単
結晶棒5を包囲するように熱遮蔽部材6が挿入された引
上げ装置(特公昭57−40119)が開示されてい
る。この装置では、熱遮蔽部材6が下方に向うに従って
直径が小さくなるコーン部7と、外周縁がコーン部7の
下端に接続され水平に延びて内周縁がシリコン単結晶棒
5の外周面近傍に達するリング部8と、内周縁がコーン
部7の上端に接続され水平に延びて外周縁が保温筒(図
示せず)の上面に達するフランジ部(図示せず)とを有
する。熱遮蔽部材6はフランジ部を保温筒の上面に載置
することにより固定される。
2. Description of the Related Art Conventionally, as a silicon single crystal pulling apparatus, as shown in FIG. 7, a quartz crucible 3 in which a silicon melt 2 is stored is housed in a chamber, and the outer peripheral surface of a silicon single crystal rod 5 is There is disclosed a pulling device (Japanese Patent Publication No. 57-40119) in which a heat shielding member 6 is inserted between the inner peripheral surface of the crucible 3 and the silicon single crystal rod 5 so as to surround the same. In this device, the cone portion 7 whose diameter decreases as the heat shielding member 6 faces downward, the outer peripheral edge is connected to the lower end of the cone portion 7 and extends horizontally, and the inner peripheral edge is near the outer peripheral surface of the silicon single crystal rod 5 It has a ring portion 8 that reaches, and a flange portion (not shown) whose inner peripheral edge is connected to the upper end of the cone portion 7 and extends horizontally, and whose outer peripheral edge reaches the upper surface of a heat retaining cylinder (not shown). The heat shielding member 6 is fixed by placing the flange portion on the upper surface of the heat retaining cylinder.

【0003】このように構成された引上げ装置では、シ
リコン単結晶棒5をシリコン融液2から引上げると、シ
リコン融液2の液面が次第に低下して石英るつぼ3の内
周壁が露出し、この露出した石英るつぼ3の内周壁から
の輻射熱がシリコン単結晶棒5の外周面に向うが、この
輻射熱は熱遮蔽部材6により遮られてシリコン単結晶棒
5の外周面に達しない。この結果、引上げ中のシリコン
単結晶棒5の凝固が遅延することはなく、シリコン単結
晶棒5は速やかに冷却されるようになっている。
In the pulling apparatus constructed as described above, when the silicon single crystal rod 5 is pulled up from the silicon melt 2, the liquid level of the silicon melt 2 gradually decreases, and the inner peripheral wall of the quartz crucible 3 is exposed. Radiation heat from the exposed inner peripheral wall of the quartz crucible 3 is directed to the outer peripheral surface of the silicon single crystal rod 5, but the radiant heat is blocked by the heat shielding member 6 and does not reach the outer peripheral surface of the silicon single crystal rod 5. As a result, the solidification of the silicon single crystal rod 5 during pulling is not delayed, and the silicon single crystal rod 5 is quickly cooled.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の特
公昭57−40119号公報に記載された引上げ装置で
は、シリコン融液から引上げ中のシリコン単結晶棒の結
晶内の温度分布、即ち等温面が図7の一点鎖線で示すよ
うに全長にわたって上に凸の状態になる。このため結晶
内の点欠陥(格子間シリコン原子若しくは空孔)の坂道
拡散が常に図7の実線矢印の方向に向く、即ちシリコン
単結晶棒の結晶内に外周面側から斜め下方に向くので、
引上げ中のシリコン単結晶棒の結晶内にその外周面から
点欠陥が流入し続ける。この結果、このままシリコン単
結晶棒が引上げられて冷却されると、点欠陥濃度が高い
まま凝固されてしまうため、シリコン単結晶棒中のグロ
ーイン(Grown-in)欠陥の発生を抑制することが難しい
問題点があった。ここで、坂道拡散とは、熱ドリフト移
動と同義語であり、等温面に直交して低温側から高温側
に点欠陥が移動することをいう。本発明の目的は、引上
げ中のシリコン単結晶棒の結晶内の点欠陥の濃度を低減
することにより、シリコン単結晶棒のグローイン欠陥の
発生を抑制できる、シリコン単結晶の引上げ方法を提供
することにある。
However, in the pulling apparatus described in the above-mentioned conventional Japanese Patent Publication No. 57-40119, the temperature distribution in the crystal of the silicon single crystal rod being pulled from the silicon melt, that is, the isothermal surface Is in an upwardly convex state over the entire length as shown by the dashed line in FIG. For this reason, the slope diffusion of point defects (interstitial silicon atoms or vacancies) in the crystal always points in the direction of the solid arrow in FIG. 7, that is, diagonally downwards from the outer peripheral surface side in the crystal of the silicon single crystal rod.
Point defects continue to flow into the crystal of the silicon single crystal rod being pulled from the outer peripheral surface thereof. As a result, if the silicon single crystal rod is pulled up and cooled as it is, it is solidified while the point defect concentration is high, and it is difficult to suppress the generation of glow-in defects in the silicon single crystal rod. There was a problem. Here, the slope diffusion is synonymous with the thermal drift movement, and means that the point defect moves from the low temperature side to the high temperature side orthogonal to the isothermal surface. An object of the present invention is to provide a method for pulling a silicon single crystal, which can suppress the occurrence of glow-in defects in a silicon single crystal rod by reducing the concentration of point defects in the crystal of the silicon single crystal rod during pulling. It is in.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
図1及び図2に示すように、石英るつぼ13を包囲して
設けられたカーボンヒータ18により石英るつぼ13に
貯留されたシリコン融液12を加熱してシリコン融液1
2からシリコン単結晶棒15を引上げる方法の改良であ
る。その特徴ある構成は、シリコン単結晶棒15の結晶
内の温度分布が1300〜1100℃の温度領域で、シ
リコン単結晶棒15の周囲を包囲する温度分布反転手段
26により、シリコン単結晶棒15の結晶内の等温面を
上に凸の状態から下に凸の状態に反転するようにシリコ
ン単結晶棒15を引上げるところにある。
The invention according to claim 1 is
As shown in FIGS. 1 and 2, the silicon melt 12 stored in the quartz crucible 13 is heated by a carbon heater 18 provided so as to surround the quartz crucible 13, and the silicon melt 1 is heated.
This is an improvement in the method of pulling the silicon single crystal rod 15 from 2. The characteristic configuration is that the temperature distribution in the crystal of the silicon single crystal rod 15 is in a temperature range of 1300 to 1100 ° C., and the temperature distribution inversion means 26 surrounding the periphery of the silicon single crystal rod 15 causes The silicon single crystal rod 15 is being pulled up so that the isothermal surface in the crystal is inverted from the upwardly convex state to the downwardly convex state.

【0006】シリコン単結晶棒15の結晶内に発生する
グローイン欠陥は、シリコン融液12から引上げている
ときにシリコン単結晶棒15の外周面から結晶内に流入
する点欠陥が原因の1つと考えられている。請求項1に
記載されたシリコン単結晶の引上げ方法では、シリコン
融液12から引上げられるシリコン単結晶棒15の結晶
内の等温面は温度分布反転手段26により所定の高さに
達すると上に凸の状態から下に凸の状態に反転する。こ
のシリコン単結晶棒15がシリコン融液12から次第に
引上げられて上記所定の高さより上方に達し、結晶内の
等温面が上に凸の状態になると、結晶内の点欠陥の坂道
拡散が結晶内から外周面側へ斜め下方に向くので、点欠
陥が外周面から抜け、シリコン単結晶棒15の結晶内の
点欠陥の絶対量を低減できる。
The glow-in defect generated in the crystal of the silicon single crystal rod 15 is considered to be one of the causes of a point defect flowing into the crystal from the outer peripheral surface of the silicon single crystal rod 15 when pulled from the silicon melt 12. Have been. In the method for pulling a silicon single crystal according to the first aspect, the isothermal surface in the crystal of the silicon single crystal rod 15 pulled from the silicon melt 12 is raised upward when the temperature distribution inverting means 26 reaches a predetermined height. Is inverted from the state shown in FIG. When the silicon single crystal rod 15 is gradually pulled up from the silicon melt 12 and reaches a position above the predetermined height and the isothermal surface in the crystal becomes convex upward, the slope diffusion of point defects in the crystal increases in the crystal. From the outer peripheral surface side, point defects are removed from the outer peripheral surface, and the absolute amount of point defects in the crystal of the silicon single crystal rod 15 can be reduced.

【0007】請求項2に係る発明は、請求項1に係る発
明であって、更に図1及び図2に示すように、温度分布
反転手段26が引上げ中のシリコン単結晶棒15の上部
を包囲するアッパ部材27と、引上げ中のシリコン単結
晶棒15の下部を包囲するロア部材28と、ロア部材2
8をアッパ部材27に所定の間隔をあけて連結する複数
本の連結部材29とを備えたことを特徴とする。この請
求項2に記載されたシリコン単結晶の引上げ方法では、
シリコン単結晶棒15がシリコン融液12から引上げら
れてロア部材28及びアッパ部材27間の開放された部
分に達すると、カーボンヒータ18からの輻射熱がシリ
コン単結晶棒15に照射されてシリコン単結晶棒15が
保温され、シリコン単結晶棒15の結晶内の等温面が上
に凸の状態から下に凸の状態に反転する。この部分では
シリコン単結晶棒15の温度は約1300℃〜約120
0℃まで低下する。シリコン単結晶棒15が更に引上げ
られてアッパ部材27により包囲された部分に達する
と、カーボンヒータ18からの輻射熱がアッパ部材27
により遮られるが、シリコン融液12からの輻射熱がア
ッパ部材27に反射してシリコン単結晶棒15に照射さ
れるので、結晶内の点欠陥の坂道拡散が促進される。こ
の結果、結晶内の点欠陥の坂道拡散が結晶内から外周面
側へ斜め下方に向いているので、結晶内の点欠陥の大部
分がシリコン単結晶棒の外周面から抜け、シリコン単結
晶棒15の結晶内の点欠陥の絶対量を低減できる。
The invention according to claim 2 is the invention according to claim 1, and furthermore, as shown in FIGS. 1 and 2, the temperature distribution inversion means 26 surrounds the upper part of the silicon single crystal rod 15 being pulled. Upper member 27, a lower member 28 surrounding the lower portion of the silicon single crystal rod 15 being pulled, and a lower member 2
8 and a plurality of connecting members 29 for connecting the upper member 27 to the upper member 27 at a predetermined interval. In the method for pulling a silicon single crystal according to claim 2,
When the silicon single crystal rod 15 is pulled up from the silicon melt 12 and reaches an open portion between the lower member 28 and the upper member 27, the radiant heat from the carbon heater 18 is irradiated on the silicon single crystal rod 15, and the silicon single crystal rod 15 is irradiated. The rod 15 is kept warm, and the isothermal surface in the crystal of the silicon single crystal rod 15 is inverted from an upwardly convex state to a downwardly convex state. In this part, the temperature of the silicon single crystal rod 15 is about 1300 ° C. to about 120 ° C.
Lower to 0 ° C. When the silicon single crystal rod 15 is further pulled up and reaches the portion surrounded by the upper member 27, the radiant heat from the carbon heater 18 is applied to the upper member 27.
However, since the radiant heat from the silicon melt 12 is reflected on the upper member 27 and is irradiated on the silicon single crystal rod 15, the diffusion of point defects in the crystal on the slope is promoted. As a result, since the slope diffusion of point defects in the crystal is obliquely downward from the inside of the crystal toward the outer peripheral surface, most of the point defects in the crystal escape from the outer peripheral surface of the silicon single crystal rod, and the silicon single crystal rod The absolute amount of point defects in the 15 crystals can be reduced.

【0008】請求項3に係る発明は、請求項1に係る発
明であって、更に図6に示すように、温度分布反転手段
66が引上げ中のシリコン単結晶棒15の周囲を包囲す
る補助ヒータであることを特徴とする。この請求項3に
記載されたシリコン単結晶の引上げ方法では、シリコン
単結晶棒が引上げられて補助ヒータ66により包囲され
た部分に達すると、この部分で補助ヒータ66の輻射熱
により保温され、シリコン単結晶棒15の結晶内の等温
面が上に凸の状態から下に凸の状態に反転する。シリコ
ン単結晶棒15が更に引上げられて補助ヒータ66より
上方に達すると、上記結晶内の点欠陥の坂道拡散は結晶
内から外周面側へ斜め下方に向いているので、結晶内の
点欠陥の大部分がシリコン単結晶棒15の外周面から抜
け、結晶内の点欠陥の絶対量を低減できる。
A third aspect of the present invention is the invention according to the first aspect, further comprising an auxiliary heater surrounding the periphery of the silicon single crystal rod 15 being pulled by the temperature distribution inverting means 66 as shown in FIG. It is characterized by being. In the method for pulling a silicon single crystal according to the third aspect, when the silicon single crystal rod is pulled up and reaches a portion surrounded by the auxiliary heater 66, the temperature is kept by the radiant heat of the auxiliary heater 66 at this portion, and the silicon single crystal rod is held. The isothermal surface in the crystal of the crystal rod 15 is inverted from the upwardly convex state to the downwardly convex state. When the silicon single crystal rod 15 is further pulled up and reaches above the auxiliary heater 66, the slope diffusion of the point defect in the crystal is directed obliquely downward from the crystal to the outer peripheral surface side. Most of the material comes off the outer peripheral surface of the silicon single crystal rod 15, and the absolute amount of point defects in the crystal can be reduced.

【0009】[0009]

【発明の実施の形態】次に本発明の第1の実施の形態を
図面に基づいて説明する。図2に示すように、シリコン
単結晶棒15は引上げ装置10によりシリコン融液12
から引上げられる。この引上げ装置10のチャンバ11
内には、シリコン融液12を貯留する石英るつぼ13が
設けられ、この石英るつぼ13の外面は黒鉛サセプタ1
4により被覆される。石英るつぼ13の下面は上記黒鉛
サセプタ14を介して支軸16の上端に固定され、この
支軸16の下部はるつぼ駆動手段17に接続される(図
2)。るつぼ駆動手段17は図示しないが石英るつぼ1
3を回転させる第1回転用モータと、石英るつぼ13を
昇降させる昇降用モータとを有し、これらのモータによ
り石英るつぼ13が所定の方向に回転し得るとともに、
上下方向に移動可能となっている。石英るつぼ13の外
周面は石英るつぼ13から所定の間隔をあけてカーボン
ヒータ18により包囲され、このカーボンヒータ18は
保温筒19により包囲される。カーボンヒータ18は石
英るつぼ13に投入された高純度のシリコン多結晶体を
加熱・溶融してシリコン融液12にする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a first embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 2, the silicon single crystal rod 15 is pulled by the pulling device 10 into the silicon melt 12.
Pulled up from. The chamber 11 of the pulling device 10
Inside, a quartz crucible 13 for storing the silicon melt 12 is provided, and the outer surface of the quartz crucible 13 is
4 coated. The lower surface of the quartz crucible 13 is fixed to the upper end of the support shaft 16 via the graphite susceptor 14, and the lower portion of the support shaft 16 is connected to the crucible driving means 17 (FIG. 2). Although the crucible driving means 17 is not shown, the quartz crucible 1
3 has a first rotation motor for rotating 3 and a lifting / lowering motor for raising / lowering the quartz crucible 13, and these motors can rotate the quartz crucible 13 in a predetermined direction,
It can be moved up and down. The outer peripheral surface of the quartz crucible 13 is surrounded by a carbon heater 18 at a predetermined interval from the quartz crucible 13, and the carbon heater 18 is surrounded by a heat retaining tube 19. The carbon heater 18 heats and melts the high-purity polycrystalline silicon charged in the quartz crucible 13 to form the silicon melt 12.

【0010】またチャンバ11の上端には円筒状のケー
シング21が接続される。このケーシング21には引上
げ手段22が設けられる。引上げ手段22はケーシング
21の上端部に水平状態で旋回可能に設けられた引上げ
ヘッド(図示せず)と、このヘッドを回転させる第2回
転用モータ(図示せず)と、ヘッドから石英るつぼ13
の回転中心に向って垂下されたワイヤケーブル23と、
上記ヘッド内に設けられワイヤケーブル23を巻取り又
は繰出す引上げ用モータ(図示せず)とを有する。ワイ
ヤケーブル23の下端にはシリコン融液12に浸してシ
リコン単結晶棒15を引上げるための種結晶24が取付
けられる。
A cylindrical casing 21 is connected to the upper end of the chamber 11. The casing 21 is provided with a pulling means 22. The pulling means 22 includes a pulling head (not shown) rotatably provided at the upper end of the casing 21 in a horizontal state, a second rotation motor (not shown) for rotating the head, and a quartz crucible 13 from the head.
A wire cable 23 suspended toward the center of rotation of
And a pulling motor (not shown) provided in the head for winding or feeding the wire cable 23. At the lower end of the wire cable 23 is attached a seed crystal 24 for dipping in the silicon melt 12 and pulling up the silicon single crystal rod 15.

【0011】シリコン単結晶棒15の外周面と石英るつ
ぼ13の内周面との間にはシリコン単結晶棒15を包囲
する温度分布反転手段26が設けられる(図2〜図
5)。この温度分布反転手段26はシリコン融液12か
ら引上げられるシリコン単結晶棒15の上部を包囲する
アッパ部材27と、シリコン単結晶棒15の下部を包囲
するロア部材28と、ロア部材28をアッパ部材27に
所定の間隔をあけて連結する複数本の連結部材29とを
備える。アッパ部材27は直筒部27aと、下端が直筒
部27aの下端に連設され上方に向うに従って直径が小
さくなって直筒部27aに収容されるアッパコーン部2
7bとを有する。直筒部27aの上端には外方に略水平
方向に張り出すフランジ部27cが連設され、このフラ
ンジ部27cを保温筒19上に載置することにより温度
分布反転手段26が固定される。またロア部材28は下
方に向うに従って直径が小さくなるコーン状に形成さ
れ、ロア部材28の下端はシリコン融液12表面から間
隔をあけて上方に位置する。アッパコーン部27b及び
ロア部材28の傾斜角度は水平面に対して30〜60度
の範囲、好ましくは45度に設定される。
A temperature distribution inversion means 26 surrounding the silicon single crystal rod 15 is provided between the outer peripheral surface of the silicon single crystal rod 15 and the inner peripheral surface of the quartz crucible 13 (FIGS. 2 to 5). The temperature distribution reversing means 26 includes an upper member 27 surrounding the upper part of the silicon single crystal rod 15 pulled up from the silicon melt 12, a lower member 28 surrounding the lower part of the silicon single crystal rod 15, and an upper member 27 are provided with a plurality of connecting members 29 connected at predetermined intervals. The upper member 27 has a straight cylindrical portion 27a and an upper cone portion 2 whose lower end is connected to the lower end of the straight cylindrical portion 27a and whose diameter decreases as going upward and is accommodated in the straight cylindrical portion 27a.
7b. A flange portion 27c extending outward in a substantially horizontal direction is continuously provided at an upper end of the straight tube portion 27a, and the temperature distribution reversing means 26 is fixed by mounting the flange portion 27c on the heat retaining tube 19. The lower member 28 is formed in a cone shape whose diameter becomes smaller as it goes downward, and the lower end of the lower member 28 is located above the surface of the silicon melt 12 at an interval. The inclination angle of the upper cone portion 27b and the lower member 28 is set in a range of 30 to 60 degrees with respect to a horizontal plane, and preferably 45 degrees.

【0012】また連結部材29はこの実施の形態では3
本であり(図4)、各連結部材29は上端がアッパコー
ン部27bの上端にボルト33a及びナット33b(図
3)を介して接続されたアッパ連結具31と、下端がロ
ア部材28の下端にボルト34a及びナット34b(図
3)を介して接続されたロア連結具32とを有する(図
2〜図5)。アッパ連結具31の上端及びロア連結具3
2の下端は略V字状に折曲げられ、アッパ連結具31の
下端及びロア連結具32の上端にはこれらの連結具3
1,32の長手方向に所定の間隔をあけて複数の第1及
び第2通孔31a,32a(図3)がそれぞれ形成され
る。これらの通孔31a,32aに選択的にボルト35
aを挿通してナット35b(図3)を螺合することによ
り、アッパ連結具31の下端及びロア連結具32の上端
が接続される。このように連結部材33の全長を変更可
能に形成することにより、アッパ部材27及びロア部材
28間の間隔が調整可能に構成される。上記アッパ部材
27、ロア部材28及び連結部材29はMo,W,C等
により形成されることが好ましい。
In this embodiment, the connecting member 29 is 3
The upper end of each connecting member 29 is connected to an upper end of an upper cone portion 27b via a bolt 33a and a nut 33b (FIG. 3), and the lower end is connected to the lower end of a lower member 28. It has a lower connector 32 connected via bolts 34a and nuts 34b (FIG. 3) (FIGS. 2 to 5). Upper end of upper connector 31 and lower connector 3
2 are bent in a substantially V-shape, and the lower end of the upper connecting part 31 and the upper end of the lower connecting part 32 are connected with these connecting parts 3.
A plurality of first and second through holes 31a and 32a (FIG. 3) are formed at predetermined intervals in the longitudinal direction of the first and second holes 32, respectively. Bolts 35 are selectively inserted into these through holes 31a and 32a.
The lower end of the upper connecting tool 31 and the upper end of the lower connecting tool 32 are connected by inserting the nut a into the nut 35b (FIG. 3) and screwing it. In this way, by forming the entire length of the connecting member 33 so as to be changeable, the interval between the upper member 27 and the lower member 28 can be adjusted. The upper member 27, the lower member 28, and the connecting member 29 are preferably formed of Mo, W, C, or the like.

【0013】チャンバ11にはこのチャンバ11のシリ
コン単結晶棒側に不活性ガスを供給しかつ上記不活性ガ
スをチャンバ11のるつぼ内周面側から排出するガス給
排手段36が接続される(図2)。ガス給排手段36は
一端がケーシング21の周壁に接続され他端が上記不活
性ガスを貯留するタンク(図示せず)に接続された供給
パイプ37と、一端がチャンバ11の下壁に接続され他
端が真空ポンプ(図示せず)に接続された排出パイプ3
8とを有する。供給パイプ37及び排出パイプ38には
これらのパイプ37,38を流れる不活性ガスの流量を
調整する第1及び第2流量調整弁41,42がそれぞれ
設けられる。
A gas supply / discharge means 36 for supplying an inert gas to the silicon single crystal rod side of the chamber 11 and discharging the inert gas from the inner peripheral surface side of the crucible of the chamber 11 is connected to the chamber 11 (see FIG. 1). (Fig. 2). The gas supply / discharge means 36 has one end connected to the peripheral wall of the casing 21 and the other end connected to a supply pipe 37 connected to a tank (not shown) for storing the inert gas, and one end connected to the lower wall of the chamber 11. Discharge pipe 3 whose other end is connected to a vacuum pump (not shown)
8 is provided. The supply pipe 37 and the discharge pipe 38 are provided with first and second flow control valves 41 and 42 for adjusting the flow rate of the inert gas flowing through these pipes 37 and 38, respectively.

【0014】また引上げ用モータの出力軸(図示せず)
にはロータリエンコーダ(図示せず)が設けられ、るつ
ぼ駆動手段17には石英るつぼ13内のシリコン融液1
2の重量を検出する重量センサ(図示せず)と、支軸1
6の昇降位置を検出するリニヤエンコーダ(図示せず)
とが設けられる。ロータリエンコーダ、重量センサ及び
リニヤエンコーダの各検出出力はコントローラ(図示せ
ず)の制御入力に接続され、コントローラの制御出力は
引上げ手段22の引上げ用モータ及びるつぼ駆動手段の
昇降用モータにそれぞれ接続される。またコントローラ
にはメモリ(図示せず)が設けられ、このメモリにはロ
ータリエンコーダの検出出力に対するワイヤケーブル2
3の巻取り長さ、即ちシリコン単結晶棒15の引上げ長
さが第1マップとして記憶され、重量センサの検出出力
に対する石英るつぼ13内のシリコン融液12の液面レ
ベルが第2マップとして記憶される。コントローラは重
量センサの検出出力に基づいて石英るつぼ13内のシリ
コン融液12の液面を常に一定のレベルに保つように、
るつぼ駆動手段17の昇降用モータを制御するように構
成される。
Output shaft of pulling motor (not shown)
Is provided with a rotary encoder (not shown), and the crucible driving means 17 includes a silicon melt 1 in the quartz crucible 13.
A weight sensor (not shown) for detecting the weight of
6 linear encoder (not shown) for detecting the vertical position
Are provided. The respective detection outputs of the rotary encoder, the weight sensor and the linear encoder are connected to control inputs of a controller (not shown), and the control outputs of the controller are connected to a pulling motor of the pulling means 22 and a lifting motor of the crucible driving means, respectively. You. Further, the controller is provided with a memory (not shown). The memory has a wire cable 2 for detecting output of the rotary encoder.
3 is stored as the first map, and the liquid level of the silicon melt 12 in the quartz crucible 13 with respect to the detection output of the weight sensor is stored as the second map. Is done. The controller always keeps the liquid level of the silicon melt 12 in the quartz crucible 13 at a constant level based on the detection output of the weight sensor,
It is configured to control the motor for lifting and lowering of the crucible driving means 17.

【0015】このように構成された引上げ装置10を用
いてシリコン単結晶棒15が引上げられ、シリコン単結
晶棒15がロア部材28により包囲された部分に達する
と(図1のの部分)、ロア部材28の外周面によりカ
ーボンヒータ18及びシリコン融液12からの輻射熱が
遮られてシリコン単結晶棒15の外周面に照射されず、
約1410℃から約1300℃まで急冷されるので、シ
リコン単結晶棒15の結晶の成長速度は速くなる。この
ときシリコン単結晶棒15の結晶内の温度分布は同一水
平面上において中心部で高く周縁部で低いため、即ち結
晶内の等温面が上に凸の状態であるため、結晶内の点欠
陥の坂道拡散が図1の破線矢印で示すようにシリコン単
結晶棒15の外周面から結晶内側へ斜め下方に向くの
で、点欠陥がシリコン単結晶棒15の外周面から結晶内
に流入する。なお、シリコン単結晶棒15内の熱流束
(熱の流れのベクトル)は等温面に直交して温度の高い
方から低い方に向く、即ち結晶内の点欠陥の坂道拡散の
向きと逆向きになる。
When the silicon single crystal rod 15 is pulled up by using the pulling apparatus 10 configured as described above, and reaches the portion surrounded by the lower member 28 (portion of FIG. 1), the lower portion of the silicon single crystal rod 15 is pulled down. Radiation heat from the carbon heater 18 and the silicon melt 12 is blocked by the outer peripheral surface of the member 28, so that the outer peripheral surface of the silicon single crystal rod 15 is not irradiated,
Since the silicon single crystal rod 15 is rapidly cooled from about 1410 ° C. to about 1300 ° C., the growth rate of the crystal of the silicon single crystal rod 15 increases. At this time, the temperature distribution in the crystal of the silicon single crystal rod 15 is high at the center and low at the periphery on the same horizontal plane, that is, since the isothermal surface in the crystal is convex upward, the point defect in the crystal is Since the slope diffusion is directed obliquely downward from the outer peripheral surface of the silicon single crystal rod 15 to the inside of the crystal as shown by the broken arrow in FIG. 1, point defects flow into the crystal from the outer peripheral surface of the silicon single crystal rod 15. The heat flux (heat flow vector) in the silicon single crystal rod 15 is orthogonal to the isothermal surface and goes from the higher temperature to the lower temperature, that is, in the direction opposite to the direction of the slope diffusion of the point defect in the crystal. Become.

【0016】シリコン単結晶棒15が更に引上げられて
ロア部材28及びアッパ部材27間の開放された部分に
達すると(図1のの部分)、シリコン単結晶棒15の
外周面にカーボンヒータ18からの輻射熱が照射されて
シリコン単結晶棒15が保温されるため、シリコン単結
晶棒15の結晶内の温度分布は同一水平面上において中
心部で低く周縁部で高くなり、結晶内の等温面が上に凸
の状態から下に凸の状態に反転する。この部分ではシリ
コン単結晶棒15の温度は約1200℃まで低下する。
When the silicon single crystal rod 15 is further pulled up and reaches an open portion between the lower member 28 and the upper member 27 (portion in FIG. 1), the outer peripheral surface of the silicon single crystal rod 15 is applied from the carbon heater 18 to the outer peripheral surface. Irradiating the silicon single crystal rod 15 to keep the temperature constant, the temperature distribution in the crystal of the silicon single crystal rod 15 is lower at the center and higher at the periphery on the same horizontal plane, and the isothermal surface in the crystal is higher. The state is inverted from the convex state to the convex state. In this portion, the temperature of the silicon single crystal rod 15 drops to about 1200 ° C.

【0017】シリコン単結晶棒15が更に引上げられて
アッパ部材27により包囲された部分に達すると(図1
のの部分)、カーボンヒータ18からの輻射熱がアッ
パ部材27の外周面により遮られるが、シリコン融液1
2からの輻射熱が図1の二点鎖線矢印で示すようにアッ
パ部材27の内周面に反射してシリコン単結晶棒15の
外周面に照射される。この部分では、シリコン単結晶棒
15の温度は約1200℃〜約1100℃に低下し、結
晶内の点欠陥の坂道拡散が促進される最適な温度勾配と
なる。またこの部分では、シリコン単結晶棒15の結晶
内の等温面が下に凸の状態であるので、上記結晶内の点
欠陥の坂道拡散は図1の太い実線矢印で示すように結晶
内から外周面側へ斜め下方に向く。この結果、結晶内の
点欠陥の大部分がシリコン単結晶棒15の外周面から抜
け、結晶内の点欠陥の絶対量を低減できるので、これに
起因するシリコン単結晶棒15の結晶内のグローイン欠
陥の発生を抑制できる。
When the silicon single crystal rod 15 is further pulled up and reaches the portion surrounded by the upper member 27 (FIG. 1).
Portion), the radiant heat from the carbon heater 18 is blocked by the outer peripheral surface of the upper member 27.
The radiant heat from 2 is reflected on the inner peripheral surface of upper member 27 and irradiated on the outer peripheral surface of silicon single crystal rod 15 as shown by the two-dot chain line arrow in FIG. In this portion, the temperature of the silicon single crystal rod 15 drops to about 1200 ° C. to about 1100 ° C., which is an optimum temperature gradient that promotes the diffusion of point defects in the crystal on the slope. In this portion, since the isothermal surface in the crystal of the silicon single crystal rod 15 is convex downward, the slope diffusion of the point defect in the crystal is limited from the inside of the crystal to the outer periphery as shown by a thick solid arrow in FIG. Face diagonally downward toward the surface. As a result, most of the point defects in the crystal escape from the outer peripheral surface of the silicon single crystal rod 15, and the absolute amount of the point defects in the crystal can be reduced. The occurrence of defects can be suppressed.

【0018】図6は本発明の第2の実施の形態を示す。
図6において図2と同一符号は同一部品を示す。この実
施の形態では、温度分布反転手段66としてシリコン融
液12から引上げ中のシリコン単結晶棒15の周囲を包
囲する補助ヒータが用いられる。この補助ヒータ66は
シリコン融液12の液面が低下して石英るつぼ13の内
周壁が露出した場合、この露出した内周壁からの輻射熱
の影響を受けないように、シリコン融液12の液面から
比較的離れた高い位置に設けられる。またシリコン単結
晶棒15の外周面のうちシリコン融液12表面と補助ヒ
ータ66下端との間が熱遮蔽部材(図示せず)により包
囲される。この熱遮蔽部材は原料であるシリコン多結晶
体の溶融時間の短縮と、チャンバ内11の不活性ガスの
流れを一定にするために設けられる。上記以外は上記第
1の実施の形態と同一に構成される。
FIG. 6 shows a second embodiment of the present invention.
6, the same reference numerals as those in FIG. 2 indicate the same parts. In this embodiment, an auxiliary heater surrounding the periphery of the silicon single crystal rod 15 being pulled from the silicon melt 12 is used as the temperature distribution inversion means 66. When the liquid level of the silicon melt 12 is lowered and the inner peripheral wall of the quartz crucible 13 is exposed, the auxiliary heater 66 controls the liquid level of the silicon melt 12 so as not to be affected by the radiant heat from the exposed inner peripheral wall. It is provided at a high position relatively far away from the vehicle. A portion between the surface of the silicon melt 12 and the lower end of the auxiliary heater 66 in the outer peripheral surface of the silicon single crystal rod 15 is surrounded by a heat shielding member (not shown). This heat shielding member is provided to shorten the melting time of the silicon polycrystal as a raw material and to make the flow of the inert gas in the chamber 11 constant. Except for the above, the configuration is the same as that of the first embodiment.

【0019】このように構成された引上げ装置10を用
いてシリコン単結晶棒15が引上げられ、このシリコン
単結晶棒15はシリコン融液12の表面から補助ヒータ
66の下端に達するまでに約1300℃に冷却される。
シリコン単結晶棒15が更に引上げられて補助ヒータ6
6により包囲された部分に達すると、この部分で補助ヒ
ータ66の輻射熱により保温される。このときシリコン
単結晶棒15の結晶内の温度分布、即ち結晶内の等温面
が上に凸の状態から下に凸の状態に反転する。この部分
ではシリコン単結晶棒15の温度は約1200℃まで低
下する。
The silicon single crystal rod 15 is pulled up using the pulling apparatus 10 constructed as described above, and the silicon single crystal rod 15 is heated to about 1300 ° C. from the surface of the silicon melt 12 to the lower end of the auxiliary heater 66. Is cooled.
The silicon single crystal rod 15 is further pulled up and the auxiliary heater 6
When reaching the portion surrounded by 6, the portion is kept warm by the radiant heat of the auxiliary heater 66. At this time, the temperature distribution in the crystal of the silicon single crystal rod 15, that is, the isothermal surface in the crystal is inverted from an upwardly convex state to a downwardly convex state. In this portion, the temperature of the silicon single crystal rod 15 drops to about 1200 ° C.

【0020】シリコン単結晶棒15が更に引上げられて
補助ヒータ66より上方に達すると、シリコン単結晶棒
15の温度は更に低下し、シリコン単結晶棒15が約1
200℃〜約1100℃に低下する間に結晶内の点欠陥
の坂道拡散が促進される。このときシリコン単結晶棒1
5の結晶内の等温面が下に凸の状態であるので、上記結
晶内の点欠陥の坂道拡散は結晶内から外周面側へ斜め下
方に向く。この結果、結晶内の点欠陥の大部分がシリコ
ン単結晶棒15の外周面から抜け、結晶内の点欠陥の絶
対量を低減できるので、これに起因するシリコン単結晶
棒15の結晶内のグローイン欠陥の発生を抑制できる。
When the silicon single crystal rod 15 is further pulled up and reaches a position above the auxiliary heater 66, the temperature of the silicon single crystal rod 15 further decreases, and the silicon single crystal rod 15 becomes approximately 1
Slope diffusion of point defects in the crystal is promoted during the fall from 200 ° C. to about 1100 ° C. At this time, silicon single crystal rod 1
Since the isothermal surface in the crystal of No. 5 is convex downward, the slope defect of the point defect in the crystal is directed obliquely downward from inside the crystal toward the outer peripheral surface side. As a result, most of the point defects in the crystal escape from the outer peripheral surface of the silicon single crystal rod 15, and the absolute amount of the point defects in the crystal can be reduced. The occurrence of defects can be suppressed.

【0021】[0021]

【発明の効果】以上述べたように、本発明によれば、シ
リコン単結晶棒の結晶内の温度分布が1300〜110
0℃の温度領域で、シリコン単結晶棒の周囲を包囲する
温度分布反転手段により、シリコン単結晶棒の結晶内の
等温面を上に凸の状態から下に凸の状態に反転するよう
にシリコン単結晶棒を引上げるので、シリコン単結晶棒
の結晶内の等温面が温度分布反転手段により下に凸の状
態に反転した後は、結晶内の点欠陥の坂道拡散がシリコ
ン単結晶棒の結晶内から外周面側へ斜め下方に向くの
で、点欠陥がシリコン単結晶棒の外周面から抜け、結晶
内の点欠陥の絶対量を低減できるので、これに起因する
結晶内のグローイン欠陥の発生を抑制できる。
As described above, according to the present invention, the temperature distribution in the crystal of the silicon single crystal rod is 1300 to 110.
In a temperature range of 0 ° C., the silicon is so arranged that the isothermal surface in the crystal of the silicon single crystal rod is inverted from an upwardly convex state to a downwardly convex state by temperature distribution inversion means surrounding the periphery of the silicon single crystal rod. Since the single crystal rod is pulled up, after the isothermal surface in the crystal of the silicon single crystal rod is inverted to a downwardly convex state by the temperature distribution inverting means, the slope diffusion of point defects in the crystal causes the crystal of the silicon single crystal rod to change. Since the diagonal surface is directed obliquely downward from the inside to the outer peripheral side, point defects are removed from the outer peripheral surface of the silicon single crystal rod, and the absolute amount of point defects in the crystal can be reduced. Can be suppressed.

【0022】また温度分布反転手段のアッパ部材により
引上げ中のシリコン単結晶棒の上部を包囲し、ロア部材
により引上げ中のシリコン単結晶棒の下部を包囲し、更
に複数本の連結部材によりロア部材をアッパ部材に所定
の間隔をあけて連結すれば、シリコン単結晶棒がシリコ
ン融液から引上げられてロア部材及びアッパ部材間の開
放された部分に達すると、カーボンヒータからの輻射熱
の照射によりシリコン単結晶棒が保温され、シリコン単
結晶棒の結晶内の等温面が上に凸の状態から下に凸の状
態に反転する。シリコン単結晶棒が更に引上げられてア
ッパ部材により包囲された部分に達すると、カーボンヒ
ータからの輻射熱がアッパ部材により遮られるが、シリ
コン融液からの輻射熱がアッパ部材に反射してシリコン
単結晶棒に照射されるので、結晶内の点欠陥の坂道拡散
が促進される。この結果、結晶内の点欠陥の坂道拡散が
結晶内から外周面側へ斜め下方に向いているので、結晶
内の点欠陥の大部分がシリコン単結晶棒の外周面から抜
け、シリコン単結晶棒の結晶内の点欠陥の絶対量を低減
でき、これに起因する結晶内のグローイン欠陥の発生を
抑制できる。
Further, the upper member of the temperature distribution inverting means surrounds the upper part of the silicon single crystal rod being pulled up, the lower member surrounds the lower part of the silicon single crystal rod being pulled up, and the lower member is joined by a plurality of connecting members. Is connected to the upper member at a predetermined interval, and when the silicon single crystal rod is pulled up from the silicon melt and reaches an open portion between the lower member and the upper member, silicon is irradiated by radiant heat from the carbon heater. The single crystal rod is kept warm, and the isothermal surface in the crystal of the silicon single crystal rod is inverted from an upwardly convex state to a downwardly convex state. When the silicon single crystal rod is further pulled up and reaches the portion surrounded by the upper member, the radiant heat from the carbon heater is blocked by the upper member. , The diffusion of point defects in the crystal on the slope is promoted. As a result, since the slope diffusion of point defects in the crystal is obliquely downward from the inside of the crystal toward the outer peripheral surface, most of the point defects in the crystal escape from the outer peripheral surface of the silicon single crystal rod, and the silicon single crystal rod , The absolute amount of point defects in the crystal can be reduced, and the occurrence of glow-in defects in the crystal due to this can be suppressed.

【0023】更に温度分布反転手段として引上げ中のシ
リコン単結晶棒の周囲を包囲する補助ヒータを用いれ
ば、シリコン単結晶棒が引上げられて補助ヒータにより
包囲された部分に達したときに、補助ヒータの輻射熱に
より保温され、シリコン単結晶棒の結晶内の等温面が上
に凸の状態から下に凸の状態に反転する。シリコン単結
晶棒が更に引上げられて補助ヒータより上方に達する
と、上記結晶内の点欠陥の坂道拡散は結晶内から外周面
側へ斜め下方に向いているので、結晶内の点欠陥の大部
分がシリコン単結晶棒の外周面から抜け、結晶内の点欠
陥の絶対量を低減できる。この結果、上記と同様の効果
が得られる。
Further, if an auxiliary heater surrounding the pulling silicon single crystal rod is used as the temperature distribution inverting means, when the silicon single crystal rod is pulled up and reaches the portion surrounded by the auxiliary heater, the auxiliary heater is used. And the isothermal surface in the crystal of the silicon single crystal rod is inverted from an upwardly convex state to a downwardly convex state. When the silicon single crystal rod is further pulled up and reaches above the auxiliary heater, the slope diffusion of the point defects in the crystal is directed obliquely downward from the inside of the crystal toward the outer peripheral surface. Can escape from the outer peripheral surface of the silicon single crystal rod, and the absolute amount of point defects in the crystal can be reduced. As a result, the same effect as above can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明第1実施形態の引上げ中のシリコン単結
晶棒の等温面を示す断面構成図。
FIG. 1 is a sectional configuration diagram showing an isothermal surface of a silicon single crystal rod during pulling according to a first embodiment of the present invention.

【図2】そのシリコン単結晶の引上げ装置の断面構成
図。
FIG. 2 is a cross-sectional configuration diagram of the silicon single crystal pulling apparatus.

【図3】図2のA部拡大断面図。FIG. 3 is an enlarged sectional view of a portion A in FIG. 2;

【図4】図3のB−B線断面図。FIG. 4 is a sectional view taken along line BB of FIG. 3;

【図5】その引上げ装置の温度分布反転手段を含む要部
斜視図。
FIG. 5 is a perspective view of a main part including a temperature distribution reversing means of the pulling device.

【図6】本発明の第2実施形態を示す図2に対応する断
面構成図。
FIG. 6 is a cross-sectional configuration diagram corresponding to FIG. 2 showing a second embodiment of the present invention.

【図7】従来例を示す図1に対応する断面構成図。FIG. 7 is a sectional view showing a conventional example and corresponding to FIG.

【符号の説明】[Explanation of symbols]

12 シリコン融液 13 石英るつぼ 15 シリコン単結晶棒 18 カーボンヒータ 26 温度分布反転手段 27 アッパ部材 28 ロア部材 29 連結部材 66 補助ヒータ(温度分布反転手段) 12 Silicon Melt 13 Quartz Crucible 15 Silicon Single Crystal Rod 18 Carbon Heater 26 Temperature Distribution Reversing Means 27 Upper Member 28 Lower Member 29 Connecting Member 66 Auxiliary Heater (Temperature Distribution Reversing Means)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 石英るつぼ(13)を包囲して設けられたカ
ーボンヒータ(18)により前記石英るつぼ(13)に貯留され
たシリコン融液(12)を加熱して前記シリコン融液(12)か
らシリコン単結晶棒(15)を引上げる方法において、 前記シリコン単結晶棒(15)の結晶内の温度分布が130
0〜1100℃の温度領域で、前記シリコン単結晶棒(1
5)の周囲を包囲する温度分布反転手段(26,66)により、
前記シリコン単結晶棒(15)の結晶内の等温面を上に凸の
状態から下に凸の状態に反転するように前記シリコン単
結晶棒(15)を引上げることを特徴とするシリコン単結晶
の引上げ方法。
The silicon melt (12) stored in the quartz crucible (13) is heated by a carbon heater (18) provided so as to surround the quartz crucible (13). In the method of pulling a silicon single crystal rod (15) from the above, the temperature distribution in the crystal of the silicon single crystal rod (15) is 130
In a temperature range of 0 to 1100 ° C., the silicon single crystal rod (1
5) By the temperature distribution inversion means (26, 66) surrounding the periphery of
A silicon single crystal, wherein the silicon single crystal rod (15) is pulled up so that an isothermal surface in the crystal of the silicon single crystal rod (15) is inverted from an upwardly convex state to a downwardly convex state. How to raise.
【請求項2】 温度分布反転手段(26)が引上げ中のシリ
コン単結晶棒(15)の上部を包囲するアッパ部材(27)と、
前記引上げ中のシリコン単結晶棒(15)の下部を包囲する
ロア部材(28)と、前記ロア部材(28)を前記アッパ部材(2
7)に所定の間隔をあけて連結する複数本の連結部材(29)
とを備えた請求項1記載のシリコン単結晶の引上げ方
法。
2. An upper member (27) surrounding the upper part of the silicon single crystal rod (15) being pulled by the temperature distribution inverting means (26),
A lower member (28) surrounding the lower portion of the silicon single crystal rod (15) being pulled up, and the lower member (28) being connected to the upper member (2
A plurality of connecting members (29) to be connected at predetermined intervals to (7)
The method for pulling a silicon single crystal according to claim 1, comprising:
【請求項3】 温度分布反転手段(66)が引上げ中のシリ
コン単結晶棒(15)の周囲を包囲する補助ヒータである請
求項1記載のシリコン単結晶の引上げ方法。
3. The method for pulling a silicon single crystal according to claim 1, wherein the temperature distribution inverting means is an auxiliary heater surrounding the periphery of the silicon single crystal rod being pulled.
JP6598498A 1998-03-17 1998-03-17 Method of pulling silicon single crystal Expired - Lifetime JP3598800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6598498A JP3598800B2 (en) 1998-03-17 1998-03-17 Method of pulling silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6598498A JP3598800B2 (en) 1998-03-17 1998-03-17 Method of pulling silicon single crystal

Publications (2)

Publication Number Publication Date
JPH11263692A true JPH11263692A (en) 1999-09-28
JP3598800B2 JP3598800B2 (en) 2004-12-08

Family

ID=13302793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6598498A Expired - Lifetime JP3598800B2 (en) 1998-03-17 1998-03-17 Method of pulling silicon single crystal

Country Status (1)

Country Link
JP (1) JP3598800B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007496A (en) * 1998-06-25 2000-01-11 Mitsubishi Materials Silicon Corp Single crystal pulling-up equipment and single crystal pulling-up method using the same
JP2010285342A (en) * 2009-06-10 2010-12-24 Siltronic Ag Method for pulling silicon single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000007496A (en) * 1998-06-25 2000-01-11 Mitsubishi Materials Silicon Corp Single crystal pulling-up equipment and single crystal pulling-up method using the same
JP2010285342A (en) * 2009-06-10 2010-12-24 Siltronic Ag Method for pulling silicon single crystal

Also Published As

Publication number Publication date
JP3598800B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
JP3709494B2 (en) Heat shielding member of silicon single crystal pulling device
WO2006025238A1 (en) Magnetic field application method of pulling silicon single crystal
JP3368113B2 (en) Manufacturing method of polycrystalline semiconductor
JP3598800B2 (en) Method of pulling silicon single crystal
JP3428625B2 (en) Apparatus and method for pulling silicon single crystal
JP3428626B2 (en) Apparatus and method for pulling silicon single crystal
JP3428624B2 (en) Silicon single crystal pulling method
JP3642175B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
JP3642174B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
JP3642188B2 (en) Silicon single crystal pulling device
JP4310980B2 (en) Pulling method of silicon single crystal
JP3719329B2 (en) Silicon single crystal pulling device
JP3787452B2 (en) Method for producing silicon single crystal
JP2001010892A (en) Method for melting polycrystalline silicon for silicon single crystal pulling device
JP3587231B2 (en) Silicon single crystal pulling device
JP4221797B2 (en) Melting method of polycrystalline silicon before silicon single crystal growth
JP3719332B2 (en) Silicon single crystal pulling device
JP3719336B2 (en) Silicon single crystal pulling apparatus and pulling method thereof
JP3642176B2 (en) Silicon single crystal pulling device
JP4304608B2 (en) Heat shielding member of silicon single crystal pulling device
JP2009161395A (en) Method for manufacturing compound semiconductor single crystal
JPH08325090A (en) Device for pulling up single crystal
JP3709493B2 (en) Silicon single crystal pulling device
JP3890854B2 (en) Silicon single crystal pulling method and pulling apparatus
JP6425332B2 (en) Single crystal silicon pulling apparatus and single crystal silicon pulling method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term