JP3787452B2 - Method for producing silicon single crystal - Google Patents

Method for producing silicon single crystal Download PDF

Info

Publication number
JP3787452B2
JP3787452B2 JP03219199A JP3219199A JP3787452B2 JP 3787452 B2 JP3787452 B2 JP 3787452B2 JP 03219199 A JP03219199 A JP 03219199A JP 3219199 A JP3219199 A JP 3219199A JP 3787452 B2 JP3787452 B2 JP 3787452B2
Authority
JP
Japan
Prior art keywords
single crystal
silicon
chamber
crystal rod
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03219199A
Other languages
Japanese (ja)
Other versions
JP2000233994A (en
Inventor
宣正 内藤
斉 佐々木
ワイルド ピーター
ツオー ジェームス
俊信 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Oregon Corp
Original Assignee
Mitsubishi Silicon America Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Silicon America Corp filed Critical Mitsubishi Silicon America Corp
Priority to JP03219199A priority Critical patent/JP3787452B2/en
Publication of JP2000233994A publication Critical patent/JP2000233994A/en
Application granted granted Critical
Publication of JP3787452B2 publication Critical patent/JP3787452B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリコン単結晶棒を引上げて製造する方法に関するものである。
【0002】
【従来の技術】
従来、シリコン単結晶の製造装置として、図6に示すように、チャンバ3内にシリコン融液2が貯留された石英るつぼ4が収容され、シリコン単結晶棒1の外周面と石英るつぼ4の内周面との間にシリコン単結晶棒1を包囲するように熱遮蔽部材7が挿入された引上げ装置(特公昭57−40119号)が開示されている。この装置では、熱遮蔽部材7が下方に向うに従って直径が小さくなるコーン部7aと、外周縁がコーン部7aの下端に接続され水平に延びて内周縁がシリコン単結晶棒1の外周面近傍に達するリング部7bと、内周縁がコーン部7aの上端に接続され水平に延びて外周縁が保温筒8の上面に達するフランジ部7cとを有する。熱遮蔽部材7はフランジ部7cを保温筒8の上面に載置することにより固定される。図6の符号6は石英るつぼ4の外面を被覆するサセプタであり、符号9は石英るつぼ4の外周面を石英るつぼから所定の間隔をあけて包囲するヒータである。
【0003】
このように構成された引上げ装置では、シリコン単結晶棒1をシリコン融液2から引上げると、シリコン融液2の液面が次第に低下して石英るつぼ4の内周壁が露出し、この露出した石英るつぼ4の内周壁からの輻射熱がシリコン単結晶棒1の外周面に向うが、この輻射熱は熱遮蔽部材7により遮られてシリコン単結晶棒1の外周面に達しない。この結果、引上げ中のシリコン単結晶棒1の凝固が遅延することはなく、シリコン単結晶棒1は速やかに冷却されるようになっている。
【0004】
【発明が解決しようとする課題】
上記従来の特公昭57−40119号公報に示された引上げ装置では、サセプタ及びヒータがカーボンにより形成され、熱遮蔽部材がタングステン、ニオブ、タンタル、カーボン等により形成される。熱遮蔽部材をカーボンにより形成した場合、サセプタ、ヒータ及び熱遮蔽部材はこれらの製造過程においてFeを初めとして他の金属不純物を含むことがあり、この場合にはシリコン単結晶棒の引上げ時に上記金属不純物や炭素が熱遮蔽部材等の表面から飛び出してシリコン単結晶棒の外周面に付着して汚染するため、シリコン単結晶棒の高純度化を図ることが難しい問題点があった。
また上記従来の特公昭57−40119号公報に示された引上げ装置では、シリコン単結晶棒の引上げ時に石英るつぼが極めて高温になって溶出するため、石英るつぼ中の気泡が破裂してシリコン融液に石英るつぼの微小な破片が混入する。この結果、シリコン単結晶棒の結晶有転位化が増大し、単結晶化率、即ちフリー化率が低下する問題点もあった。
【0005】
本発明の目的は、引上げ中に金属不純物や炭素が熱遮蔽部材等から飛び出すのを防止することにより、シリコン単結晶棒の高純度化を図ることができるシリコン単結晶の製造方法を提供することにある。
本発明の別の目的は、引上げ中に石英るつぼの気泡の破裂を抑制することにより、シリコン単結晶棒の単結晶化率を向上できるシリコン単結晶の製造方法を提供することにある。
本発明の更に別の目的は、チャンバ内の圧力が高いときに熱遮蔽部材の下端及びシリコン融液表面の間を通過する不活性ガスの流速を大きくすることにより、シリコン単結晶棒中の酸素濃度を低い最適な値に容易に調整できるシリコン単結晶の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
請求項1に係る発明は、図1に示すように、チャンバ13内の石英るつぼ14にヒータ19により融解されたシリコン融液12を貯留し、シリコン融液12から引上げられるシリコン単結晶棒11の外周面を熱遮蔽部材27により包囲してヒータ19からの輻射熱を遮り、引上げられるシリコン単結晶棒11の外周面に不活性ガスを流下させて熱遮蔽部材27の下端及びシリコン融液12表面の間を通過するように構成されたシリコン単結晶の製造方法の改良である。
その特徴ある構成は、単結晶棒11を引上げている間のチャンバ13内の圧力を25〜60Torrに設定し、かつ熱遮蔽部材27の下端及びシリコン融液12表面の間を通過する不活性ガスの流速を0.5〜3.5m/秒に設定し、上記引上げられている単結晶棒11中の酸素濃度が引上げに伴って低下する場合、チャンバ13内の圧力を上記範囲内で徐々に上げるとともに不活性ガスの流速を上記範囲内で下げ、上記引上げられている単結晶棒11中の酸素濃度が引上げに伴って上昇する場合、チャンバ13内の圧力を上記範囲内で徐々に下げるとともに不活性ガスの流速を上記範囲内で上げるところにある。
【0007】
この請求項1に記載されたシリコン単結晶の製造方法では、シリコン単結晶棒11の引上げ中にチャンバ13内の圧力を25〜60Torrと比較的高く設定しているので、ヒータ19や熱遮蔽部材27等の表面から金属不純物又は炭素は殆ど飛び出さない。この他、不活性ガスの流路、流速によっても結晶内の金属不純物又は炭素の濃度が変化することが分かっている。
また石英るつぼ14はヒータ19により加熱され、極めて高温のシリコン融液12が貯留されるため、軟化するけれども、チャンバ13内の圧力が上記のように高く設定されているため、石英るつぼ14の表面に発生する気泡を低減できる。一方、チャンバ13内の圧力を上記のように高く設定すると、シリコン融液12中の酸素が飽和して石英るつぼ14がシリコン融液12に溶出し難くなる。
更にチャンバ13内の圧力を25〜60 Torr と比較的高く設定したときに、上記のように不活性ガスの流速を0.5〜3.5m/秒に設定することにより、シリコン単結晶棒11中の酸素濃度を最適な値に容易に調整できる。
【0009】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
図1に示すように、シリコン単結晶棒11は引上げ装置10によりシリコン融液12から引上げられる。この引上げ装置12のチャンバ13内には、シリコン融液12を貯留する石英るつぼ14が設けられ、この石英るつぼ14の外面はカーボン製のサセプタ16により被覆される。石英るつぼ14の下面は上記サセプタ16を介して支軸17の上端に固定され、この支軸17の下部はるつぼ駆動手段18に接続される。るつぼ駆動手段18は図示しないが石英るつぼ14を回転させるるつぼ回転用モータと、石英るつぼ14を昇降させるるつぼ昇降用モータとを有し、これらのモータにより石英るつぼ14が所定の方向に回転し得るとともに、上下方向に移動可能となっている。石英るつぼ14の外周面は石英るつぼ14から所定の間隔をあけてカーボン製のヒータ19により包囲され、このヒータ19は保温筒21により包囲される。ヒータ19は石英るつぼ14に投入された高純度のシリコン多結晶体を加熱・融解してシリコン融液12にする。
【0010】
またチャンバ13の上端には円筒状のケーシング22が接続される。このケーシング22には単結晶棒引上げ手段23が設けられる。この引上げ手段23はケーシング22の上端部に水平状態で旋回可能に設けられた引上げヘッド(図示せず)と、このヘッドを回転させるヘッド回転用モータ(図示せず)と、ヘッドから石英るつぼ14の回転中心に向って垂下されたワイヤケーブル24と、上記ヘッド内に設けられワイヤケーブル24を巻取り又は繰出す単結晶棒引上げ用モータ(図示せず)と、ワイヤケーブル24の下端に吊下げられた種結晶26とを有する。種結晶26はシリコン融液12に浸されてワイヤケーブル24にて引上げることにより、シリコン単結晶棒11が引上げられるように構成される。
【0011】
シリコン単結晶棒11の外周面と石英るつぼ14の内周面との間にはシリコン単結晶棒11を包囲してヒータ19からの輻射熱を遮る熱遮蔽部材27が設けられる。この熱遮蔽部材27はカーボンにより形成され、引上げられるシリコン単結晶棒11の外周面を包囲する直筒部27aと、この直筒部27aの下端に連設され下方に向うに従って直径が小さくなるコーン状に形成されたコーン部27bと、直筒部27aの上端に連設され外方に略水平方向に張り出すフランジ部27cとを有する。コーン部27bの下端はシリコン融液12表面から間隔をあけて上方に位置する。コーン部27bの傾斜角度は水平面に対して30〜60度の範囲、好ましくは45度に設定される。
【0012】
一方、チャンバ13にはこのチャンバ13のシリコン単結晶棒11側に不活性ガスを供給しかつ上記不活性ガスをチャンバ13のるつぼ内周面側から排出するガス給排手段34が接続される。ガス給排手段34は一端がケーシング22の周壁に接続され他端が上記不活性ガスを貯留するタンク(図示せず)に接続された供給パイプ34aと、一端がチャンバ13の下壁に接続され他端が真空ポンプ(図示せず)に接続された排出パイプ34bとを有する。供給パイプ34a及び排出パイプ34bにはこれらのパイプ34a,34bを流れる不活性ガスの流量を調整する第1及び第2流量調整弁34c,34dがそれぞれ設けられる。上記不活性ガスとしてはアルゴンガス、ヘリウムガス、クリプトンガス等を用いられ、このガスは引上げられるシリコン単結晶棒11の外周面に流下させて熱遮蔽部材27の下端及びシリコン融液12表面の間を通過するように構成される。
【0013】
本発明の特徴ある構成は、シリコン単結晶棒11を引上げている間のチャンバ13内の圧力を25〜60Torr、好ましくは40〜60Torrに設定し、熱遮蔽部材27の下端及びシリコン融液12表面の間を通過する不活性ガスの流速を0.5〜3.5m/秒に設定したところにある。チャンバ13内の圧力を25〜60Torrに限定したのは、25Torr未満ではサセプタ16、ヒータ19、熱遮蔽部材27等に含まれるFe等の金属不純物や炭素が飛び出してシリコン単結晶棒11の外周面に付着して汚染し、シリコン単結晶棒11中の不純物濃度が高くなる不具合があり、60Torrを越えるとチャンバ13内雰囲気の温度が上昇し、チャンバ分割部(フランジ部)に介装されたOリングが熱損傷を受ける等の不具合があるからである。また熱遮蔽部材27の下端及びシリコン融液12表面の間を通過する不活性ガスの流速を0.5〜3.5m/秒に限定したのは、0.5m/秒未満ではシリコン単結晶棒11中の酸素濃度が高くなる不具合があり、3.5m/秒を越えると単結晶化率が低下するという不具合があるからである。
【0014】
なお、チャンバ13内の圧力及び不活性ガスの流速はシリコン単結晶棒11を引上げている間は、通常一定値に保たれるが、25〜60Torrの範囲内又は0.5〜3.5m/秒の範囲内において、酸素濃度を変えるために単結晶棒11の引上げ中に変更する場合もある。また単結晶棒11の引上げ条件にもよるが、引上げに伴って酸素濃度が低下する場合には、徐々に圧力を上げるとともに不活性ガスの流速を下げて酸素濃度を一定にする場合もある。引上げに伴って酸素濃度が上昇する場合には、その逆を行う。
【0015】
また単結晶棒引上げ用モータの出力軸(図示せず)には第1ロータリエンコーダ(図示せず)が設けられ、ドラム回転用モータの出力軸(図示せず)には第2ロータリエンコーダ(図示せず)が設けられる。るつぼ駆動手段18には石英るつぼ14内のシリコン融液12の重量を検出する重量センサ(図示せず)と、支軸17の昇降位置を検出するリニヤエンコーダ(図示せず)とが設けられる。第1及び第2ロータリエンコーダと重量センサとリニヤエンコーダの各検出出力はコントローラ(図示せず)の制御入力に接続され、コントローラの制御出力はるつぼ引上げ用モータ、ドラム回転用モータ及びるつぼ昇降用モータにそれぞれ接続される。またコントローラにはメモリ(図示せず)が設けられ、このメモリには第1及び第2ロータリエンコーダの各検出出力に対する種結晶用ワイヤケーブル24の巻取り長さ、即ちシリコン単結晶棒11の引上げ長が第1マップとしてそれぞれ記憶され、重量センサの検出出力に対する石英るつぼ14内のシリコン融液12の液面レベルが第2マップとして記憶される。コントローラは重量センサの検出出力に基づいて石英るつぼ14内のシリコン融液12の液面を常に一定のレベルに保つように、るつぼ昇降用モータを制御するように構成される。
【0016】
このように構成されたシリコン単結晶の製造方法では、サセプタ16、ヒータ19及び熱遮蔽部材27等がカーボンにより形成されているが、チャンバ13内の圧力が25〜60Torrと比較的高く設定されているので、上記サセプタ16等の表面からFe等の金属不純物や炭素は殆ど飛び出さない。これはサセプタ16等の内部の不純物がガス分子として脱離する際に圧力が高いほど脱離し難くなるためであると考えられる。この結果、チャンバ13内の不活性ガスには上記金属不純物や炭素が殆ど混入しないので、シリコン単結晶棒11の高純度化を図ることができる。
【0017】
また石英るつぼ14はヒータ19により加熱され、極めて高温のシリコン融液12が貯留されるため軟化するけれども、チャンバ13内の圧力を25〜60Torrと比較的高く設定しているため、石英るつぼ14の表面に発生する気泡を低減できる。一方、チャンバ13内の圧力を25〜60Torrと比較的高く設定すると、シリコン融液12中の酸素が飽和して(酸素の分圧が飽和状態になる。)石英るつぼ14がシリコン融液12に溶出し難くなる。この結果、気泡が破裂してシリコン融液12に石英るつぼの微小な破片が殆ど混入せず、シリコン融液12から引上げられるシリコン単結晶棒11に上記微小な破片が殆ど混入しないので、シリコン単結晶棒11の結晶の有転位化の原因となる物質が減少し、シリコン単結晶棒11の単結晶化率、即ちフリー化率を向上できる。
【0018】
更にチャンバ13内の圧力を25〜60Torrと比較的高く設定したときに、熱遮蔽部材27の下端及びシリコン融液12表面の間を通過する不活性ガスの流速を0.5〜3.5m/秒の範囲に設定することにより、シリコン単結晶棒11中の酸素濃度を最適な値に容易に調整できる。
【0019】
【実施例】
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
図1に示すようなシリコン単結晶の引上げ装置10を用いて外径205mmのシリコン単結晶棒11を引上げた。この装置10の熱遮蔽部材27の各寸法は以下の通りである。直筒部27aの直径及び長さはそれぞれ460mm及び380mmであった。またコーン部27bの上端及び下端の直径は460mm及び270mmであり、高さは50mmであった。即ちコーン部27bの傾斜角度は水平面に対して45度であった。更にコーン部27bの下端とシリコン融液12との間隔は30mmとした。なお、上記熱遮蔽部材27と、石英るつぼ14の外面を被覆するサセプタ16と、石英るつぼ14の外周面を石英るつぼ14から所定の間隔をあけて包囲するヒータ19とをカーボンにより形成した。またチャンバ13内のアルゴンガスの圧力を30Torrに設定し、熱遮蔽部材27の下端及びシリコン融液12表面の間を通過する不活性ガスの流速を1.3m/秒に設定した。
【0020】
<実施例2>
チャンバ内のアルゴンガスの圧力を50Torrに設定したことを除いて、実施例1と同一に構成した。
<実施例3>
チャンバ内のアルゴンガスの圧力を40Torrに設定したことを除いて、実施例1と同一に構成した。
<実施例4>
チャンバ内のアルゴンガスの圧力を25Torrに設定し、熱遮蔽部材の下端及びシリコン融液表面の間を通過する不活性ガスの流速を1.1m/秒に設定したことを除いて、実施例1と同一に構成した。
【0021】
<実施例5及び6>
チャンバ内のアルゴンガスの圧力を20Torrに設定し、熱遮蔽部材の下端及びシリコン融液表面の間を通過する不活性ガスの流速を1.25m/秒に設定したことを除いて、実施例1と同一に構成した。
<実施例7>
チャンバ内のアルゴンガスの圧力を20Torrに設定し、熱遮蔽部材の下端及びシリコン融液表面の間を通過する不活性ガスの流速を1.4m/秒に設定したことを除いて、実施例1と同一に構成した。
<実施例8>
チャンバ内のアルゴンガスの圧力を25Torrに設定し、熱遮蔽部材の下端及びシリコン融液表面の間を通過する不活性ガスの流速を1.7m/秒に設定したことを除いて、実施例1と同一に構成した。
【0022】
<実施例9>
チャンバ内のアルゴンガスの圧力を30Torrに設定し、熱遮蔽部材の下端及びシリコン融液表面の間を通過する不活性ガスの流速を2.0m/秒に設定したことを除いて、実施例1と同一に構成した。
<実施例10>
チャンバ内のアルゴンガスの圧力を30Torrに設定し、熱遮蔽部材の下端及びシリコン融液表面の間を通過する不活性ガスの流速を3.0m/秒に設定したことを除いて、実施例1と同一に構成した。
【0023】
<比較例1>
チャンバ内のアルゴンガスの圧力を10Torrに設定し、熱遮蔽部材の下端及びシリコン融液表面の間を通過する不活性ガスの流速を1.3m/秒に設定したことを除いて、実施例1と同一に構成した。
<比較例2>
チャンバ内のアルゴンガスの圧力を15Torrに設定し、熱遮蔽部材の下端及びシリコン融液表面の間を通過する不活性ガスの流速を1.3m/秒に設定したことを除いて、実施例1と同一に構成した。
<比較例3及び4>
チャンバ内のアルゴンガスの圧力を15Torrに設定し、熱遮蔽部材の下端及びシリコン融液表面の間を通過する不活性ガスの流速を0.8m/秒に設定したことを除いて、実施例1と同一に構成した。
【0024】
<比較試験1及び評価>
実施例1、実施例2及び比較例1の引上げ装置によりシリコン単結晶棒をそれぞれ製造し、これらのシリコン単結晶棒をスライスしてシリコンウェーハをそれぞれ10枚ずつ作製し、更にこれらのシリコンウェーハに含まれるFe濃度をそれぞれ測定した。このFe濃度はSPV(Surface Photo Voltage)法により測定した。即ち、シリコンウェーハの結晶に光を照射し、照射前後で拡散長を測定し、この照射前後の拡散長の差分から上記結晶中に不純物として混入しているFeの濃度を求めた。その結果を図2に示す。
図2にから明らかなように、比較例1ではFe濃度が平均値で6×1011atoms/cm3であったのに対し、実施例1及び2では平均値で1.00×1010atoms/cm3及び0.7×1010atoms/cm3と低減した。
【0025】
<比較試験2及び評価>
実施例3及び比較例2の引上げ装置に用いられた石英るつぼの不透明層(石英るつぼの外側の部分)の気泡含有率をそれぞれ測定した。この透明層の気泡はアルキメデス法によりシリコン単結晶棒の比重を測定した後、この測定値と石英の比重(2.21g/cm3)との差から算出することにより求めた。その結果を図3に示す。
図3から明らかなように、比較例2で不透明層の気泡含有率が平均値で17%であったのに対し、実施例3では平均値で11.5%と低減した。
【0026】
<比較試験3及び評価>
実施例1及び比較例1の引上げ装置により製造されたシリコン単結晶棒の単結晶化率を測定した。この単結晶化率は先ずシリコン単結晶棒をスライスして得られたシリコンウェーハ(原料)の重量を測定し、次にこのウェーハの無転位部の重量を測定し、これらの測定値を次式▲1▼に代入することにより求めた。
(単結晶化率)={(無転位部の重量)/(原料の重量)}×100(%) …▲1▼
その結果を図4に示す。なお、単結晶化率は比較例1を基準にして表した。
図4から明らかなように、比較例1を1とした場合に、実施例1では1.25と比較例1より25%向上した。
【0027】
<比較試験4及び評価>
実施例4〜10、比較例3及び4の引上げ装置により製造されたシリコン単結晶棒中に含まれる酸素濃度を測定した。具体的にはシリコン単結晶棒をスライスして得られたシリコンウェーハの中心部の酸素濃度をFTIR法により測定した。このFTIR法はウェーハに照射した赤外光と参照赤外光をそれぞれフーリエ変換し、両者の差から赤外光吸収スペクトルを求める方法であり、ウェーハ中の酸素濃度を定量的に求めることができる。その結果を図5に示す。
図5から明らかなように、比較例3及び4では酸素濃度が1.30×1018atoms/cm3及び1.28×1018atoms/cm3であったのに対し、実施例4〜10では1.12×1018atoms/cm3〜1.26×1018atoms/cm3と低減した。
【0028】
【発明の効果】
以上述べたように、本発明によれば、シリコン単結晶棒を引上げている間のチャンバ内の圧力を25〜60Torrとしたので、ヒータや熱遮蔽部材等の表面からFe等の金属不純物や炭素は殆ど飛び出さない。この結果、チャンバ内の不活性ガスには上記金属不純物や炭素が殆ど混入しないので、シリコン単結晶棒の高純度化を図ることができる。
また石英るつぼはヒータにより加熱され、極めて高温のシリコン融液が貯留されるため軟化するけれども、チャンバ内の圧力が上記のように高く設定されているため、石英るつぼの表面に発生する気泡を低減できる。一方、チャンバ内の圧力を上記のように高く設定すると、シリコン融液中の酸素が飽和して石英るつぼがシリコン融液に溶出し難くなる。この結果、気泡が破裂してシリコン融液に石英るつぼの微小な破片が殆ど混入せず、シリコン融液から引上げられるシリコン単結晶棒に上記微小な破片が殆ど混入しないので、シリコン単結晶棒の結晶の有転位化の原因となる物質が減少し、シリコン単結晶棒の単結晶化率、即ちフリー化率を向上できる。
【図面の簡単な説明】
【図1】本発明実施形態のシリコン単結晶の引上げ装置を示す断面構成図。
【図2】チャンバ内の圧力が10Torr、30Torr及び50Torrの場合のFe濃度を示す図。
【図3】チャンバ内の圧力が15Torr及び40Torrの場合の石英るつぼの不透明層の気泡含有率を示す図。
【図4】チャンバ内の圧力が10Torr及び30Torrの場合の単結晶化率を示す図。
【図5】チャンバ内のアルゴンガスの流速を変化させたときのシリコン単結晶棒中の酸素濃度の変化を示す図。
【図6】従来のシリコン単結晶の引上げ装置を示す図1に対応する断面構成図。
【符号の説明】
11 シリコン単結晶棒
12 シリコン融液
13 チャンバ
14 石英るつぼ
19 ヒータ
27 熱遮蔽部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of pulling and manufacturing a silicon single crystal rod.
[0002]
[Prior art]
Conventionally, as a silicon single crystal manufacturing apparatus, as shown in FIG. 6, a quartz crucible 4 in which a silicon melt 2 is stored is housed in a chamber 3, and the outer peripheral surface of the silicon single crystal rod 1 and the quartz crucible 4 A pulling device (Japanese Patent Publication No. 57-40119) in which a heat shielding member 7 is inserted so as to surround the silicon single crystal rod 1 between the peripheral surface and the peripheral surface is disclosed. In this apparatus, the cone portion 7a whose diameter decreases as the heat shielding member 7 faces downward, and the outer peripheral edge is connected to the lower end of the cone portion 7a and extends horizontally, and the inner peripheral edge is near the outer peripheral surface of the silicon single crystal rod 1. The ring portion 7b reaches, and the inner peripheral edge is connected to the upper end of the cone portion 7a and extends horizontally, and the outer peripheral edge reaches the upper surface of the heat insulating cylinder 8 and has a flange portion 7c. The heat shielding member 7 is fixed by placing the flange portion 7 c on the upper surface of the heat insulating cylinder 8. Reference numeral 6 in FIG. 6 is a susceptor that covers the outer surface of the quartz crucible 4, and reference numeral 9 is a heater that surrounds the outer peripheral surface of the quartz crucible 4 at a predetermined interval from the quartz crucible.
[0003]
In the pulling device configured as described above, when the silicon single crystal rod 1 is pulled up from the silicon melt 2, the liquid surface of the silicon melt 2 gradually decreases to expose the inner peripheral wall of the quartz crucible 4. Radiant heat from the inner peripheral wall of the quartz crucible 4 is directed to the outer peripheral surface of the silicon single crystal rod 1, but this radiant heat is blocked by the heat shielding member 7 and does not reach the outer peripheral surface of the silicon single crystal rod 1. As a result, solidification of the silicon single crystal rod 1 being pulled is not delayed, and the silicon single crystal rod 1 is cooled quickly.
[0004]
[Problems to be solved by the invention]
In the conventional pulling apparatus disclosed in Japanese Patent Publication No. 57-40119, the susceptor and the heater are made of carbon, and the heat shielding member is made of tungsten, niobium, tantalum, carbon or the like. When the heat shielding member is made of carbon, the susceptor, the heater, and the heat shielding member may contain other metal impurities such as Fe in the manufacturing process. In this case, when the silicon single crystal rod is pulled, the metal Since impurities and carbon jump out from the surface of the heat shielding member and the like and adhere to the outer peripheral surface of the silicon single crystal rod, there is a problem that it is difficult to achieve high purity of the silicon single crystal rod.
Further, in the pulling apparatus disclosed in the above-mentioned Japanese Patent Publication No. 57-40119, since the quartz crucible is eluted at a very high temperature when pulling up the silicon single crystal rod, the bubbles in the quartz crucible burst and the silicon melt is melted. A minute piece of quartz crucible is mixed in. As a result, there is a problem that the crystal dislocation of the silicon single crystal rod is increased and the single crystallization rate, that is, the free rate is lowered.
[0005]
An object of the present invention is to provide a method for producing a silicon single crystal capable of increasing the purity of a silicon single crystal rod by preventing metal impurities and carbon from jumping out of a heat shielding member during pulling. It is in.
Another object of the present invention is to provide a method for producing a silicon single crystal capable of improving the single crystallization rate of a silicon single crystal rod by suppressing bursting of bubbles in a quartz crucible during pulling.
Yet another object of the present invention is to increase the flow rate of inert gas passing between the lower end of the heat shielding member and the silicon melt surface when the pressure in the chamber is high, thereby increasing the oxygen in the silicon single crystal rod. An object of the present invention is to provide a method for producing a silicon single crystal in which the concentration can be easily adjusted to a low optimum value.
[0006]
[Means for Solving the Problems]
In the invention according to claim 1, as shown in FIG. 1, the silicon melt 12 melted by the heater 19 is stored in the quartz crucible 14 in the chamber 13, and the silicon single crystal rod 11 pulled up from the silicon melt 12 is obtained. The outer peripheral surface is surrounded by the heat shielding member 27 to shield the radiant heat from the heater 19, and an inert gas is caused to flow down to the outer peripheral surface of the silicon single crystal rod 11 to be pulled up, so that the lower end of the heat shielding member 27 and the surface of the silicon melt 12 are covered. This is an improvement of a method for producing a silicon single crystal configured to pass through.
The characteristic configuration is that the pressure in the chamber 13 is set to 25 to 60 Torr while the single crystal rod 11 is pulled up, and the inert gas passes between the lower end of the heat shielding member 27 and the surface of the silicon melt 12. Is set to 0.5 to 3.5 m / sec, and when the oxygen concentration in the pulled single crystal rod 11 decreases with the pulling, the pressure in the chamber 13 is gradually reduced within the above range. the flow rate of Ru when both inert gas raised lowered within the above range, when oxygen concentration in the single crystal rod 11 are the pulling rises along with the pulling, gradually the pressure in the chamber 13 in the above range the flow rate of Ru when both inert gas is lowered there is to raise within the above range.
[0007]
In the method for producing a silicon single crystal described in claim 1, the pressure in the chamber 13 is set to a relatively high value of 25 to 60 Torr during the pulling of the silicon single crystal rod 11, so that the heater 19 and the heat shielding member Almost no metal impurities or carbon jumps out of the surface such as 27. In addition, it has been found that the concentration of metal impurities or carbon in the crystal varies depending on the flow path and flow rate of the inert gas.
Further, the quartz crucible 14 is heated by the heater 19 and the extremely high temperature silicon melt 12 is stored, so that the quartz crucible 14 is softened. However, since the pressure in the chamber 13 is set high as described above, the surface of the quartz crucible 14 is set. Can be reduced. On the other hand, if the pressure in the chamber 13 is set high as described above, oxygen in the silicon melt 12 is saturated and the quartz crucible 14 is difficult to elute into the silicon melt 12.
Further, when the pressure in the chamber 13 is set to a relatively high value of 25 to 60 Torr , the flow rate of the inert gas is set to 0.5 to 3.5 m / sec as described above, thereby the silicon single crystal rod 11 The oxygen concentration inside can be easily adjusted to an optimum value.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the silicon single crystal rod 11 is pulled up from the silicon melt 12 by a pulling device 10. A quartz crucible 14 for storing the silicon melt 12 is provided in the chamber 13 of the pulling device 12, and the outer surface of the quartz crucible 14 is covered with a susceptor 16 made of carbon. The lower surface of the quartz crucible 14 is fixed to the upper end of the support shaft 17 via the susceptor 16, and the lower portion of the support shaft 17 is connected to the crucible driving means 18. Although not shown, the crucible driving means 18 has a crucible rotating motor for rotating the quartz crucible 14 and a crucible lifting motor for moving the quartz crucible 14 up and down, and the quartz crucible 14 can be rotated in a predetermined direction by these motors. At the same time, it is movable in the vertical direction. The outer peripheral surface of the quartz crucible 14 is surrounded by a carbon heater 19 at a predetermined interval from the quartz crucible 14, and the heater 19 is surrounded by a heat retaining cylinder 21. The heater 19 heats and melts the high-purity silicon polycrystal charged in the quartz crucible 14 to form the silicon melt 12.
[0010]
A cylindrical casing 22 is connected to the upper end of the chamber 13. The casing 22 is provided with a single crystal rod pulling means 23. The pulling means 23 is a pulling head (not shown) provided at the upper end of the casing 22 so as to be rotatable in a horizontal state, a head rotating motor (not shown) for rotating the head, and a quartz crucible 14 from the head. A wire cable 24 that hangs down toward the center of rotation, a single crystal rod pulling motor (not shown) that winds or feeds the wire cable 24 provided in the head, and is suspended from the lower end of the wire cable 24 Seed crystal 26. The seed crystal 26 is immersed in the silicon melt 12 and pulled up by the wire cable 24 so that the silicon single crystal rod 11 is pulled up.
[0011]
Between the outer peripheral surface of the silicon single crystal rod 11 and the inner peripheral surface of the quartz crucible 14, a heat shielding member 27 is provided that surrounds the silicon single crystal rod 11 and shields radiant heat from the heater 19. The heat shielding member 27 is made of carbon and has a straight cylindrical portion 27a surrounding the outer peripheral surface of the silicon single crystal rod 11 to be pulled up, and a conical shape continuously connected to the lower end of the straight cylindrical portion 27a and having a diameter that decreases downward. The cone portion 27b is formed, and a flange portion 27c that is connected to the upper end of the straight tube portion 27a and projects outward in a substantially horizontal direction. The lower end of the cone portion 27b is positioned above the surface of the silicon melt 12 with a gap. The inclination angle of the cone part 27b is set in the range of 30 to 60 degrees, preferably 45 degrees with respect to the horizontal plane.
[0012]
On the other hand, a gas supply / exhaust means 34 is connected to the chamber 13 for supplying an inert gas to the silicon single crystal rod 11 side of the chamber 13 and discharging the inert gas from the crucible inner peripheral surface side of the chamber 13. The gas supply / discharge means 34 has one end connected to the peripheral wall of the casing 22 and the other end connected to a tank (not shown) for storing the inert gas, and one end connected to the lower wall of the chamber 13. The other end has a discharge pipe 34b connected to a vacuum pump (not shown). The supply pipe 34a and the discharge pipe 34b are respectively provided with first and second flow rate adjusting valves 34c and 34d for adjusting the flow rate of the inert gas flowing through these pipes 34a and 34b. As the inert gas, argon gas, helium gas, krypton gas, or the like is used, and this gas flows down to the outer peripheral surface of the silicon single crystal rod 11 to be pulled up, and between the lower end of the heat shielding member 27 and the surface of the silicon melt 12. Configured to pass through.
[0013]
The characteristic configuration of the present invention is that the pressure in the chamber 13 is set to 25 to 60 Torr, preferably 40 to 60 Torr while the silicon single crystal rod 11 is pulled up, and the lower end of the heat shielding member 27 and the surface of the silicon melt 12 The flow rate of the inert gas passing between the two is set to 0.5 to 3.5 m / sec. The reason why the pressure in the chamber 13 is limited to 25 to 60 Torr is that when it is less than 25 Torr, metal impurities such as Fe and carbon contained in the susceptor 16, the heater 19, the heat shielding member 27, etc. jump out and the outer peripheral surface of the silicon single crystal rod 11. There is a problem that the impurity concentration in the silicon single crystal rod 11 is increased due to adhering to the surface, and when the temperature exceeds 60 Torr, the temperature of the atmosphere in the chamber 13 rises, and O intervened in the chamber dividing portion (flange portion). This is because the ring has problems such as thermal damage. Further, the flow rate of the inert gas passing between the lower end of the heat shielding member 27 and the surface of the silicon melt 12 is limited to 0.5 to 3.5 m / sec. This is because there is a problem that the oxygen concentration in No. 11 becomes high, and when it exceeds 3.5 m / sec, there is a problem that the single crystallization rate decreases.
[0014]
The pressure in the chamber 13 and the flow rate of the inert gas are normally kept constant while the silicon single crystal rod 11 is pulled up, but within a range of 25-60 Torr or 0.5-3.5 m / Within the range of seconds, there may be a change during pulling of the single crystal rod 11 in order to change the oxygen concentration. Also depending on the pulling conditions of the single crystal ingot 11, when the oxygen concentration decreases with pulling, even if the oxygen concentration constant gradually decreasing the flow rate of both the inert gas when when set to a higher pressure is there. If the oxygen concentration increases with the pulling, the reverse is performed.
[0015]
A first rotary encoder (not shown) is provided on the output shaft (not shown) of the single crystal rod pulling motor, and a second rotary encoder (not shown) is provided on the output shaft (not shown) of the drum rotation motor. Not shown). The crucible driving means 18 is provided with a weight sensor (not shown) for detecting the weight of the silicon melt 12 in the quartz crucible 14 and a linear encoder (not shown) for detecting the raising / lowering position of the support shaft 17. The detection outputs of the first and second rotary encoders, the weight sensor, and the linear encoder are connected to the control input of a controller (not shown), and the control output of the controller is a crucible pulling motor, a drum rotating motor, and a crucible lifting / lowering motor. Connected to each. The controller is also provided with a memory (not shown). In this memory, the winding length of the seed crystal wire cable 24 for each detection output of the first and second rotary encoders, that is, the pulling of the silicon single crystal rod 11 is raised. Each length is stored as a first map, and the level of the silicon melt 12 in the quartz crucible 14 with respect to the detection output of the weight sensor is stored as a second map. The controller is configured to control the crucible lifting / lowering motor so as to always keep the liquid level of the silicon melt 12 in the quartz crucible 14 at a constant level based on the detection output of the weight sensor.
[0016]
In the silicon single crystal manufacturing method configured as described above, the susceptor 16, the heater 19, the heat shielding member 27, and the like are formed of carbon, but the pressure in the chamber 13 is set to a relatively high value of 25 to 60 Torr. Therefore, the metal impurities such as Fe and carbon hardly jump out from the surface of the susceptor 16 and the like. This is considered to be because when the impurities inside the susceptor 16 and the like are desorbed as gas molecules, the desorption is more difficult as the pressure is higher. As a result, since the metal impurities and carbon are hardly mixed in the inert gas in the chamber 13, the silicon single crystal rod 11 can be highly purified.
[0017]
The quartz crucible 14 is heated by the heater 19 and softens because the extremely high temperature silicon melt 12 is stored. However, since the pressure in the chamber 13 is set to a relatively high value of 25 to 60 Torr, the quartz crucible 14 Bubbles generated on the surface can be reduced. On the other hand, when the pressure in the chamber 13 is set to a relatively high value of 25 to 60 Torr, the oxygen in the silicon melt 12 is saturated (the partial pressure of oxygen is saturated), and the quartz crucible 14 becomes the silicon melt 12. Elution is difficult. As a result, the bubbles burst and the silicon melt 12 hardly contains fine fragments of the quartz crucible, and the silicon single crystal rod 11 pulled up from the silicon melt 12 hardly contains the fine fragments. The substance causing the dislocation of the crystal of the crystal rod 11 is reduced, and the single crystallization rate of the silicon single crystal rod 11, that is, the free rate can be improved.
[0018]
Furthermore, when the pressure in the chamber 13 is set to a relatively high value of 25 to 60 Torr, the flow rate of the inert gas passing between the lower end of the heat shielding member 27 and the surface of the silicon melt 12 is set to 0.5 to 3.5 m / By setting the second range, the oxygen concentration in the silicon single crystal rod 11 can be easily adjusted to an optimum value.
[0019]
【Example】
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
A silicon single crystal rod 11 having an outer diameter of 205 mm was pulled using a silicon single crystal pulling apparatus 10 as shown in FIG. The dimensions of the heat shielding member 27 of the apparatus 10 are as follows. The diameter and length of the straight tube portion 27a were 460 mm and 380 mm, respectively. Moreover, the diameter of the upper end and lower end of the cone part 27b was 460 mm and 270 mm, and the height was 50 mm. That is, the inclination angle of the cone part 27b was 45 degrees with respect to the horizontal plane . Furthermore, the space | interval of the lower end of the cone part 27b and the silicon melt 12 was 30 mm. The heat shielding member 27, the susceptor 16 that covers the outer surface of the quartz crucible 14, and the heater 19 that surrounds the outer peripheral surface of the quartz crucible 14 with a predetermined distance from the quartz crucible 14 are formed of carbon. The pressure of the argon gas in the chamber 13 was set to 30 Torr, and the flow rate of the inert gas passing between the lower end of the heat shielding member 27 and the surface of the silicon melt 12 was set to 1.3 m / sec.
[0020]
<Example 2>
The configuration was the same as that of Example 1 except that the pressure of the argon gas in the chamber was set to 50 Torr.
<Example 3>
The configuration was the same as that of Example 1 except that the pressure of the argon gas in the chamber was set to 40 Torr.
<Example 4>
Example 1 except that the pressure of the argon gas in the chamber was set to 25 Torr, and the flow rate of the inert gas passing between the lower end of the heat shielding member and the silicon melt surface was set to 1.1 m / sec. The same configuration.
[0021]
<Examples 5 and 6>
Example 1 except that the pressure of argon gas in the chamber was set to 20 Torr, and the flow rate of the inert gas passing between the lower end of the heat shielding member and the silicon melt surface was set to 1.25 m / sec. The same configuration.
<Example 7>
Example 1 except that the pressure of the argon gas in the chamber was set to 20 Torr, and the flow rate of the inert gas passing between the lower end of the heat shielding member and the silicon melt surface was set to 1.4 m / sec. The same configuration.
<Example 8>
Example 1 except that the pressure of the argon gas in the chamber was set to 25 Torr, and the flow rate of the inert gas passing between the lower end of the heat shielding member and the silicon melt surface was set to 1.7 m / sec. The same configuration.
[0022]
<Example 9>
Example 1 except that the pressure of the argon gas in the chamber was set to 30 Torr, and the flow rate of the inert gas passing between the lower end of the heat shielding member and the silicon melt surface was set to 2.0 m / sec. The same configuration.
<Example 10>
Example 1 except that the pressure of the argon gas in the chamber was set to 30 Torr and the flow rate of the inert gas passing between the lower end of the heat shielding member and the silicon melt surface was set to 3.0 m / sec. The same configuration.
[0023]
<Comparative Example 1>
Example 1 except that the pressure of the argon gas in the chamber was set to 10 Torr and the flow rate of the inert gas passing between the lower end of the heat shielding member and the surface of the silicon melt was set to 1.3 m / sec. The same configuration.
<Comparative example 2>
Example 1 except that the pressure of argon gas in the chamber was set to 15 Torr, and the flow rate of the inert gas passing between the lower end of the heat shielding member and the silicon melt surface was set to 1.3 m / sec. The same configuration.
<Comparative Examples 3 and 4>
Example 1 except that the pressure of argon gas in the chamber was set to 15 Torr, and the flow rate of the inert gas passing between the lower end of the heat shielding member and the silicon melt surface was set to 0.8 m / sec. The same configuration.
[0024]
<Comparative test 1 and evaluation>
The silicon single crystal rods were manufactured by the pulling apparatuses of Example 1, Example 2 and Comparative Example 1, respectively, and these silicon single crystal rods were sliced to produce 10 silicon wafers. The concentration of Fe contained was measured. The Fe concentration was measured by SPV (Surface Photo Voltage) method. That is, the crystal of the silicon wafer was irradiated with light, the diffusion length was measured before and after the irradiation, and the concentration of Fe mixed as an impurity in the crystal was determined from the difference in the diffusion length before and after the irradiation. The result is shown in FIG.
As is clear from FIG. 2, the average Fe concentration in Comparative Example 1 was 6 × 10 11 atoms / cm 3 , whereas in Examples 1 and 2, the average value was 1.00 × 10 10 atoms. / Cm 3 and 0.7 × 10 10 atoms / cm 3 .
[0025]
<Comparative test 2 and evaluation>
The bubble contents of the opaque layer (the outer portion of the quartz crucible) of the quartz crucible used in the pulling apparatus of Example 3 and Comparative Example 2 were measured. The bubbles in the transparent layer were obtained by measuring the specific gravity of the silicon single crystal rod by the Archimedes method and then calculating from the difference between this measured value and the specific gravity of quartz (2.21 g / cm 3 ). The result is shown in FIG.
As is clear from FIG. 3, the bubble content of the opaque layer in Comparative Example 2 was 17% on average, whereas in Example 3, it was reduced to 11.5% on average.
[0026]
<Comparative test 3 and evaluation>
The single crystallization rate of the silicon single crystal rod manufactured by the pulling apparatus of Example 1 and Comparative Example 1 was measured. This single crystallization rate is determined by first measuring the weight of a silicon wafer (raw material) obtained by slicing a silicon single crystal rod, and then measuring the weight of the dislocation-free portion of this wafer. It was determined by substituting for (1).
(Single crystallization rate) = {(Weight of dislocation-free part) / (Weight of raw material)} × 100 (%)… ▲ 1 ▼
The result is shown in FIG. The single crystallization rate was expressed based on Comparative Example 1.
As is clear from FIG. 4, when Comparative Example 1 is set to 1, Example 1 is 1.25, which is 25% higher than Comparative Example 1.
[0027]
<Comparative test 4 and evaluation>
The oxygen concentration contained in the silicon single crystal rods produced by the pulling apparatuses of Examples 4 to 10 and Comparative Examples 3 and 4 was measured. Specifically, the oxygen concentration at the center of a silicon wafer obtained by slicing a silicon single crystal rod was measured by the FTIR method. This FTIR method is a method in which infrared light and reference infrared light irradiated on a wafer are respectively Fourier transformed to obtain an infrared light absorption spectrum from the difference between the two, and the oxygen concentration in the wafer can be quantitatively obtained. . The result is shown in FIG.
As is clear from FIG. 5, in Comparative Examples 3 and 4, the oxygen concentrations were 1.30 × 10 18 atoms / cm 3 and 1.28 × 10 18 atoms / cm 3 , whereas Examples 4 to 10 Then, it was reduced to 1.12 × 10 18 atoms / cm 3 to 1.26 × 10 18 atoms / cm 3 .
[0028]
【The invention's effect】
As described above, according to the present invention, the pressure in the chamber during the pulling of the silicon single crystal rod is set to 25 to 60 Torr, so that metal impurities such as Fe and carbon from the surface of the heater, the heat shielding member, etc. Hardly jumps out. As a result, since the metal impurities and carbon are hardly mixed in the inert gas in the chamber, the silicon single crystal rod can be highly purified.
The quartz crucible is heated by a heater and softens because extremely high temperature silicon melt is stored, but the pressure in the chamber is set high as described above, so that bubbles generated on the surface of the quartz crucible are reduced. it can. On the other hand, when the pressure in the chamber is set high as described above, oxygen in the silicon melt is saturated and the quartz crucible is difficult to elute into the silicon melt. As a result, the bubbles burst, so that the silicon crucible is hardly mixed with the fine pieces of the quartz crucible, and the silicon single crystal rod pulled up from the silicon melt is hardly mixed with the fine pieces. cause of the dislocation of the crystalline material is reduced, single crystallization rate of the silicon single crystal rod, that is Ru can improve the free rate.
[Brief description of the drawings]
FIG. 1 is a cross-sectional configuration diagram showing a silicon single crystal pulling apparatus according to an embodiment of the present invention.
FIG. 2 is a view showing Fe concentration when the pressure in the chamber is 10 Torr, 30 Torr, and 50 Torr.
FIG. 3 is a diagram showing the bubble content of an opaque layer of a quartz crucible when the pressure in the chamber is 15 Torr and 40 Torr.
FIG. 4 is a diagram showing a single crystallization rate when the pressure in the chamber is 10 Torr and 30 Torr.
FIG. 5 is a diagram showing a change in oxygen concentration in a silicon single crystal rod when the flow rate of argon gas in the chamber is changed.
FIG. 6 is a cross-sectional configuration diagram corresponding to FIG. 1 showing a conventional silicon single crystal pulling apparatus.
[Explanation of symbols]
11 Silicon single crystal rod 12 Silicon melt 13 Chamber 14 Quartz crucible 19 Heater 27 Heat shielding member

Claims (1)

チャンバ(13)内の石英るつぼ(14)にヒータ(19)により融解されたシリコン融液(12)を貯留し、前記シリコン融液(12)から引上げられるシリコン単結晶棒(11)の外周面を熱遮蔽部材(27)により包囲して前記ヒータ(19)からの輻射熱を遮り、前記引上げられるシリコン単結晶棒(11)の外周面に不活性ガスを流下させて前記熱遮蔽部材(27)の下端及び前記シリコン融液(12)表面の間を通過するように構成されたシリコン単結晶の製造方法において、
前記単結晶棒(11)を引上げている間の前記チャンバ(13)内の圧力を25〜60Torrに設定し、かつ前記熱遮蔽部材(27)の下端及びシリコン融液(12)表面の間を通過する不活性ガスの流速を0.5〜3.5m/秒に設定し、
前記引上げられている単結晶棒(11)中の酸素濃度が引上げに伴って低下する場合、前記チャンバ(13)内の圧力を前記範囲内で徐々に上げるとともに前記不活性ガスの流速を前記範囲内で下げ、
前記引上げられている単結晶棒(11)中の酸素濃度が引上げに伴って上昇する場合、前記チャンバ(13)内の圧力を前記範囲内で徐々に下げるとともに前記不活性ガスの流速を前記範囲内で上げる
ことを特徴とするシリコン単結晶の製造方法。
The silicon crucible (14) in the chamber (13) stores the silicon melt (12) melted by the heater (19), and the outer peripheral surface of the silicon single crystal rod (11) pulled up from the silicon melt (12). Is surrounded by a heat shielding member (27) to shield radiant heat from the heater (19), and an inert gas is allowed to flow down on the outer peripheral surface of the pulled silicon single crystal rod (11) to thereby heat the shielding member (27). In the method for producing a silicon single crystal configured to pass between the lower end of the silicon melt and the surface of the silicon melt (12),
The pressure in the chamber (13) while pulling up the single crystal rod (11) is set to 25 to 60 Torr, and between the lower end of the heat shielding member (27) and the surface of the silicon melt (12). Set the flow rate of the inert gas passing through to 0.5 to 3.5 m / second,
If the oxygen concentration in the pulled by which single crystal rod (11) decreases with pulling together the flow rate of the inert gas when Raise gradually within the range of pressure in the chamber (13) Within the range,
If the oxygen concentration in the single crystal rod (11) in which is the pulling rises along with the pulling together the flow rate of the inert gas is gradually Ru reducing the pressure within the above range in the chamber (13) A method for producing a silicon single crystal, characterized by being raised within the above range.
JP03219199A 1999-02-10 1999-02-10 Method for producing silicon single crystal Expired - Lifetime JP3787452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03219199A JP3787452B2 (en) 1999-02-10 1999-02-10 Method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03219199A JP3787452B2 (en) 1999-02-10 1999-02-10 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2000233994A JP2000233994A (en) 2000-08-29
JP3787452B2 true JP3787452B2 (en) 2006-06-21

Family

ID=12352022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03219199A Expired - Lifetime JP3787452B2 (en) 1999-02-10 1999-02-10 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP3787452B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3838013B2 (en) * 2000-09-26 2006-10-25 信越半導体株式会社 Method for producing silicon single crystal
JP4785764B2 (en) * 2007-02-06 2011-10-05 コバレントマテリアル株式会社 Single crystal manufacturing method
JP5118386B2 (en) * 2007-05-10 2013-01-16 Sumco Techxiv株式会社 Single crystal manufacturing method
JP5172202B2 (en) * 2007-05-10 2013-03-27 Sumco Techxiv株式会社 Single crystal manufacturing method
JP5428608B2 (en) * 2009-07-15 2014-02-26 株式会社Sumco Method for growing silicon single crystal

Also Published As

Publication number Publication date
JP2000233994A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
JP5104437B2 (en) Carbon doped single crystal manufacturing method
US6579362B2 (en) Heat shield assembly for crystal puller
US5178719A (en) Continuous refill crystal growth method
JP5309170B2 (en) A method for pulling a single crystal made of silicon from a melt contained in a crucible, and a single crystal produced by this method
JP3787452B2 (en) Method for producing silicon single crystal
JPH10152389A (en) Apparatus for producing semiconductor single crystal and production of same single crystal
JP5145721B2 (en) Method and apparatus for producing silicon single crystal
JP2006315869A (en) Method for manufacturing nitrogen-doped silicon single crystal
EP0425837B1 (en) Method of adjusting concentration of oxygen in silicon single crystal and apparatus for use in the method
JPH04154687A (en) Apparatus for producing semiconductor single crystal
JP3428626B2 (en) Apparatus and method for pulling silicon single crystal
JP4310980B2 (en) Pulling method of silicon single crystal
JP4396505B2 (en) Method for producing silicon single crystal
JPH0524969A (en) Crystal growing device
JP2013519617A (en) Single crystal cooling apparatus and single crystal growth apparatus including the same
JP2783049B2 (en) Method and apparatus for manufacturing single crystal silicon rod
JPH06271384A (en) Method for pulling up single crystal
CN112080791B (en) Method for preparing silicon wafer
JPH054358B2 (en)
JP4304608B2 (en) Heat shielding member of silicon single crystal pulling device
US20240150927A1 (en) Apparatus and method for producing a doped monocrystalline rod made of silicon
JP4360069B2 (en) Method for growing silicon single crystal
JPH09202685A (en) Apparatus for pulling up single crystal
JP2000211994A (en) Melting of polycrystalline silicon before silicon single crystal growth and apparatus for growing silicon single crystal
JP2747626B2 (en) Single crystal manufacturing equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051219

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term