JPH1126273A - Manufacture of metallic material provided with surface controlled at atomic level - Google Patents

Manufacture of metallic material provided with surface controlled at atomic level

Info

Publication number
JPH1126273A
JPH1126273A JP18329697A JP18329697A JPH1126273A JP H1126273 A JPH1126273 A JP H1126273A JP 18329697 A JP18329697 A JP 18329697A JP 18329697 A JP18329697 A JP 18329697A JP H1126273 A JPH1126273 A JP H1126273A
Authority
JP
Japan
Prior art keywords
metal
metal surface
potential
adsorbed species
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18329697A
Other languages
Japanese (ja)
Other versions
JP3129994B2 (en
Inventor
Satoshi Ando
聡 安藤
Takeshi Suzuki
威 鈴木
Katsuhiko Ogaki
克彦 大柿
Takuya Tejima
卓也 手島
Atsushi Mizusawa
厚志 水沢
Kingo Itaya
謹悟 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP09183296A priority Critical patent/JP3129994B2/en
Publication of JPH1126273A publication Critical patent/JPH1126273A/en
Application granted granted Critical
Publication of JP3129994B2 publication Critical patent/JP3129994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/07Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process being removed electrolytically

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metallic material provided with a surface controlled at an atomic level. SOLUTION: Adsorption species are strongly adsorbed by a metal surface, and the metal surface is soaked in an electrolytic solution as an acting pole, and the potential at which the metal surface is electrolytically etched and the adsorption species is held on the metal surface is applied to the metal surface, and the metal surface is electrolytic-etched in the electrolytic solution, while an adsorption layer is held. Or, by applying the potential, at which a solute metal is electrolytically deposited and the adsorption species is held on the metal surface, to the metal surface with the metal surface on which the adsorption species is held as an acting pole, a solute metal is electrolytically deposited on the metal surface. Thereby electrolytic etching or electrolytic deposition is performed on the metal surface while the adsorption species is held, so that a specific index number surface is inactivated with the adsorption species, and a surface planarized at an atomic level and a surface in which only a specific step direction appears are provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、原子レベルで平坦化さ
れた表面をもち、磁気記録材料,センサー,触媒材料,
電池材料,プリント基板上の配線等として好適な金属材
料を製造する方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a magnetic recording material, a sensor, a catalyst material,
The present invention relates to a method for manufacturing a metal material suitable for a battery material, wiring on a printed circuit board, and the like.

【0002】[0002]

【従来の技術】コンピュータ等の記録媒体として使用さ
れている磁気ディスク装置の記録媒体は薄膜化が進めら
れており、近年ではドライプロセスによるスパッタディ
スク,湿式めっきによるめっきディスク等が使用されて
いる。また、高記録容量のニーズに対応して、記録媒体
の高密度化が図られており、ヘッド/ディスク間の狭小
化,記録媒体の更なる薄膜化,ヘッドの薄膜化等、装置
の小型化が進められている。たとえば、薄膜ディスクの
厚みは0.06μm,ヘッド/ディスク間のスペーシン
グが0.2μm程度のレベルまで達し、その制御技術の
オーダーはサブミクロン以下のレベルにまで及んでい
る。このような微小化の結果、ディスクそのものの表面
に関しても、表面欠陥の存在や必要以上の粗さが微小領
域における磁化に悪影響を及ぼすことから、同一レベル
以下のオーダで平坦面となっていることが要求される。
また、今後の更なる記録媒体の高密度化のニーズに応え
るためには更なる微小化が必要であり、記録媒体の表面
についてもサブナノオーダの表面平坦度が望まれる。
2. Description of the Related Art A recording medium of a magnetic disk device used as a recording medium of a computer or the like has been reduced in thickness. In recent years, a sputter disk by a dry process, a plating disk by wet plating, and the like have been used. In addition, the density of the recording medium has been increased in response to the need for a high recording capacity, and the size of the apparatus has been reduced, such as narrowing the head / disk, further reducing the thickness of the recording medium, and reducing the thickness of the head. Is being promoted. For example, the thickness of a thin-film disk is 0.06 μm, the spacing between the head and the disk reaches a level of about 0.2 μm, and the order of the control technology extends to the sub-micron level. As a result of such miniaturization, the surface of the disk itself must be a flat surface on the order of the same level or less, because the presence of surface defects and excessive roughness will adversely affect the magnetization in the minute area. Is required.
Further, further miniaturization is required in order to meet the needs for higher density of the recording medium in the future, and the surface flatness of the sub-nano order is also desired for the surface of the recording medium.

【0003】電子機器分野で各種素子を実装し、相互に
配線するプリント基板においても、機器本体の小型化,
高性能化,高機能化等のニーズに対応して微細配線,高
多層配線等の技術が重要である。たとえば、LSI等の
各種部品を実装する場合、近年では基板表面に直接部品
を搭載する表面実装が主流であるが、今後のLSIの小
型化,高機能化や部品の高密度実装化において多ピン
化,ピンの狭ピッチ化等が図られている。今後の更なる
小型化,高性能化等のニーズに応じるためには、Cu等
の配線材料の微細加工技術の開発が必要とされる。ま
た、実装箇所における配線と部品のピンとの接触性向上
や、配線部における配線微細化による配線の高密度化等
に対しては、原子レベルでの表面微細加工が一層重要に
なる。
[0003] In printed circuit boards on which various elements are mounted and interconnected in the field of electronic equipment, miniaturization of the equipment itself,
Techniques such as fine wiring and high multilayer wiring are important in response to needs for higher performance and higher functionality. For example, when mounting various components such as LSIs, in recent years, surface mounting in which components are directly mounted on the surface of a substrate is mainstream. , Pin pitch reduction, and the like. In order to meet the needs for further downsizing and higher performance in the future, it is necessary to develop fine processing technology for wiring materials such as Cu. Further, surface microfabrication at the atomic level becomes even more important for improving the contact between the wiring at the mounting location and the pin of the component, and increasing the wiring density by miniaturizing the wiring at the wiring portion.

【0004】ところで、近年、触媒反応等の分野におけ
る原子レベルでの表面反応に関する研究によって、表面
状態に応じて反応が大きく変化することが明らかになっ
てきている。たとえば、単結晶金属を用いた研究におい
ては、指数面が異なる表面で触媒活性が全く異なること
や、表面吸着種の導入により触媒反応が制御できること
が明らかになっている。この点、特定の指数面を原子レ
ベルの平坦性で露出させる手法が確立されると、その表
面をベースとして活性サイトの制御や吸着種の導入によ
り触媒反応が制御可能となり、高機能な触媒が得られる
ことが予想される。センサーや電極材料においても、反
応場は何れもそれぞれの材料の表面であることから、触
媒材料と同様に材料表面の原子レベルでの加工技術が重
要なものとなる。たとえば、二次電池では、電池寿命向
上の一つの課題としてデンドライト生成の抑制が挙げら
れる。そこで、電極表面を原子レベルで平坦化すると
き、電解析出反応サイトが均質化され、デンドライト抑
制に有効な電極形状とすることが可能となる。
In recent years, studies on surface reactions at the atomic level in the field of catalytic reactions and the like have revealed that the reactions greatly change depending on the surface conditions. For example, studies using single crystal metals have shown that catalytic activity is completely different on surfaces with different exponential planes, and that catalytic reactions can be controlled by introducing surface adsorbed species. In this regard, if a method of exposing a specific index plane with atomic level flatness is established, the catalytic reaction can be controlled by controlling active sites and introducing adsorbed species based on the surface, and a highly functional catalyst can be obtained. It is expected to be obtained. In the case of sensors and electrode materials, since the reaction field is the surface of each material, the processing technology at the atomic level on the material surface becomes important as in the case of the catalyst material. For example, in the case of a secondary battery, one of the issues for improving the battery life is suppression of dendrite generation. Therefore, when the electrode surface is flattened at the atomic level, the electrolytic deposition reaction site is homogenized, and an electrode shape effective for suppressing dendrite can be obtained.

【0005】[0005]

【発明が解決しようとする課題】原子レベルでの平坦性
をもつ表面を露出させるためには、通常、機械研磨によ
る仕上げの後、超高真空中や還元ガス雰囲気中でのアニ
ーリングが実施される。しかし、コバルト,鉄等を基材
とする場合、相変態点以下の温度でアニーリングするこ
とが必要となり、表面平坦化に有効な温度域での処理が
できない。更に、高温処理では、材料中に含まれている
イオウ等の不純物元素が表面に拡散し、冷却過程で表面
に残留するため、材料表面に不純物が濃化した表面層が
生成し易い。不純物濃縮層は、アニーリング後の冷却過
程で化合物を形成することもある。このようなことか
ら、アニーリング法によって清浄で且つ原子レベルで平
坦化された表面を作ることは非常に困難である。そこ
で、超高真空中における処理では、表面に蓄積した不純
物をArイオン等を用いたイオンスパッタリングによっ
て真空中に放出させ、スパッタリングの結果として原子
レベルで粗くなった表面をアニーリングすることにより
平坦化する方法が採用されている。しかし、再度のアニ
ーリングの際にもイオウ等の不純物の拡散や蓄積が依然
として生じるため、相当なサイクルでスパッタリング及
びアニーリングを繰り返すことが要求される。
In order to expose a surface having atomic level flatness, annealing is usually performed in an ultra-high vacuum or a reducing gas atmosphere after finishing by mechanical polishing. . However, when using cobalt, iron, or the like as a base material, it is necessary to anneal at a temperature lower than the phase transformation point, and it is not possible to perform treatment in a temperature range effective for surface flattening. Furthermore, in the high-temperature treatment, impurity elements such as sulfur contained in the material diffuse to the surface and remain on the surface during the cooling process, so that a surface layer in which impurities are concentrated is easily generated on the material surface. The impurity-enriched layer may form a compound during the cooling process after annealing. For this reason, it is very difficult to produce a clean and atomically planarized surface by the annealing method. Therefore, in the treatment in an ultra-high vacuum, impurities accumulated on the surface are released into a vacuum by ion sputtering using Ar ions or the like, and the surface roughened at the atomic level as a result of sputtering is planarized by annealing. The method has been adopted. However, even when annealing is performed again, diffusion and accumulation of impurities such as sulfur still occur, so that it is necessary to repeat sputtering and annealing in a considerable cycle.

【0006】材料表面を原子レベルで平坦化するとき、
材料の表面酸化による影響が大きく現れる。通常、鉄,
ニッケル,コバルト等の金属材料では、空気中ではその
表面が常に数十オングストローム程度の厚みの酸化膜で
覆われている。清浄な表面を得るためには、先ず酸化物
を材料表面から完全に除去することが必要である。しか
し、この種の材料表面は酸素に対する反応活性が非常に
高いので、表面を原子レベルで平坦化するプロセスで
は、酸素との接触を避けるため超高真空を使用する方
法,表面の酸素種を除去するため還元ガス雰囲気中で処
理する方法が必要になる。その結果、原子レベルの平坦
化を工業的に実施するためには、雰囲気制御可能な装置
を必要とし、設備の複雑化,大規模化,高コスト化が避
けられない。
When the material surface is planarized at the atomic level,
The effect of the surface oxidation of the material is significant. Usually iron,
The surface of a metal material such as nickel and cobalt is always covered with an oxide film having a thickness of about several tens angstroms in the air. To obtain a clean surface, it is first necessary to completely remove the oxide from the material surface. However, since the surface of this kind of material has a very high reaction activity to oxygen, the process of flattening the surface at the atomic level uses an ultra-high vacuum to avoid contact with oxygen, and removes oxygen species on the surface. Therefore, a method of treating in a reducing gas atmosphere is required. As a result, in order to industrially perform the flattening at the atomic level, a device capable of controlling the atmosphere is required, and it is inevitable that the equipment becomes complicated, large in scale, and high in cost.

【0007】比較的簡便に平坦な金属面が得られる方法
として、電解エッチングが採用されている。通常の条件
下で実施される従来の電解エッチングは、マクロなレベ
ルで金属光沢面を得ることには有効である。しかし、エ
ッチングされた表面をナノスケールのオーダでみると非
常に粗く、原子レベルで制御された表面を電解エッチン
グで得ることは困難である。本発明は、このような問題
を解消すべく案出されたものであり、電位制御された条
件下で吸着層を保持した金属面に電解エッチング又は電
解析出を施すことにより、複雑で大規模な設備を必要と
することなく、原子レベルで平坦化され、磁気記憶材
料,センサー,触媒材料,電池材料等として好適な金属
面を提供することを目的とする。
As a method for obtaining a flat metal surface relatively easily, electrolytic etching is employed. Conventional electrolytic etching performed under normal conditions is effective for obtaining a metallic glossy surface at a macro level. However, when the etched surface is viewed on the order of nanoscale, it is very rough, and it is difficult to obtain a surface controlled at the atomic level by electrolytic etching. The present invention has been devised to solve such a problem, and performs a complicated and large-scale process by performing electrolytic etching or electrolytic deposition on a metal surface holding an adsorption layer under a potential-controlled condition. It is an object of the present invention to provide a metal surface which is flattened at an atomic level without requiring special equipment and is suitable as a magnetic memory material, a sensor, a catalyst material, a battery material and the like.

【0008】[0008]

【課題を解決するための手段】本発明は、その目的を達
成するため、原子レベルで制御された面をもつ金属材料
を電解エッチングで製造する場合、金属面に吸着種を強
吸着させ、金属面を作用極として電解質溶液に浸漬し、
吸着種が保持されたまま金属面がエッチングされる電位
を金属面に印加し、吸着層を保持したまま電解質溶液中
で金属面を電解エッチングすることを特徴とする。原子
レベルで制御された面をもつ金属材料を電解析出で製造
する場合には、金属面に吸着種を強吸着させ、金属面を
作用極として電解質溶液に浸漬し、吸着種が保持された
まま金属面がエッチングされる電位を金属面に印加し、
吸着層を保持したまま電解質溶液中で金属面に溶質金属
を電解析出させる。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a method for producing a metal material having a surface controlled at an atomic level by electrolytic etching. Immerse in the electrolyte solution with the surface as the working electrode,
It is characterized in that a potential at which the metal surface is etched while the adsorbed species is held is applied to the metal surface, and the metal surface is electrolytically etched in an electrolyte solution while the adsorbed layer is held. When producing a metal material with a surface controlled at the atomic level by electrolytic deposition, the adsorbed species was strongly adsorbed on the metal surface, the metal surface was immersed in the electrolyte solution as the working electrode, and the adsorbed species was retained. Apply a potential to the metal surface to the metal surface as it is,
The solute metal is electrolytically deposited on the metal surface in the electrolyte solution while holding the adsorption layer.

【0009】[0009]

【実施の形態】本発明においては、金属面上に吸着種を
強吸着させ、吸着層を保持させたまま電解質溶液中で電
解エッチング又は電解析出を施す。基体金属は、金属の
種類が特に制約されるものではなく、純金属,金属の1
種又は2種以上の合金,半金属との合金等が使用され
る。金属面を原子レベルで平坦化する上では、目標とす
る特定の指数面を露出するように、電解エッチング又は
電解析出に先立って基体金属を予め機械的に研磨するこ
とが効果的である。吸着種としては、ハロゲン,ハロゲ
ン化物イオン,イオウ,硫酸イオン,硝酸イオン,リン
酸イオン,シアン,シアンイオン,チオシアン,チオシ
アンイオン,一酸化炭素等があり、複数の吸着種を金属
面に共吸着させてもよい。吸着種の吸着量は、特に本発
明に制約を加えるものではなく、単原子層又は数原子層
の範囲で吸着種が金属面に保持されるように設定され
る。被覆率も、金属面の溶解又は電解析出に対する活性
を抑制できる限り、特に制約されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, an adsorbed species is strongly adsorbed on a metal surface, and electrolytic etching or electrolytic deposition is performed in an electrolyte solution while holding the adsorbed layer. The type of the base metal is not particularly limited.
Seeds, alloys of two or more kinds, alloys with semimetals, and the like are used. In order to flatten the metal surface at the atomic level, it is effective to mechanically polish the base metal prior to electrolytic etching or electrolytic deposition so as to expose a specific target index surface. Examples of adsorbed species include halogen, halide ions, sulfur, sulfate ions, nitrate ions, phosphate ions, cyanide, cyanide ions, thiocyanate, thiocyanate ions, and carbon monoxide. May be. The adsorption amount of the adsorbed species does not particularly limit the present invention, and is set so that the adsorbed species is held on the metal surface in a range of a monoatomic layer or several atomic layers. The coverage is not particularly limited as long as the activity for dissolution or electrolytic deposition of the metal surface can be suppressed.

【0010】吸着種を金属面に保持する方法は、特に制
約を受けるものではないが、たとえば吸着種をイオンと
して溶解させた溶液中に基体金属を浸漬する方法,吸着
種を含むガスをチャンバ内に導入して基体金属と接触さ
せる方法等、液相又は気相何れの方法も採用可能であ
る。また、金属面の加熱,吸着ガスの圧力調整等によっ
て吸着種の被覆量を制御してもよい。なお、本発明にお
いては、基体がアノード溶解する過程又はカソード析出
する過程においても基体表面に保持される強い結合エネ
ルギで吸着種が表面に吸着されることを強吸着という。
金属面を溶解し又は電解析出させる電解質溶液として
は、水や有機物を溶媒とする溶液や電解質そのものの溶
融塩等、種々の溶液が使用され、その種類に制約を受け
るものではない。電解質溶液は、溶液中に必ずしも吸着
種の成分を含んでいなくても良い。また、電解質溶液中
の対象金属のイオン濃度も特に制限されるものではな
い。たとえば、金属イオン濃度がゼロであっても、電解
エッチングで溶出した金属イオンが電解析出に使用され
るため、電解エッチング及び電解析出の繰返しで基体金
属の表面が原子レベルで平滑化される。溶質濃度,p
H,浴温,電極面積,通電量等の電解条件は、特に制約
されるものではなく、電解エッチング反応,電解析出反
応等に応じて適宜設定される。
The method of holding the adsorbed species on the metal surface is not particularly limited. For example, a method of immersing the base metal in a solution in which the adsorbed species is dissolved as an ion, Any of a liquid phase method and a gas phase method, such as a method of bringing into contact with a base metal by introducing into a substrate, can be adopted. The amount of the adsorbed species may be controlled by heating the metal surface, adjusting the pressure of the adsorbed gas, or the like. In the present invention, the fact that the adsorbed species is adsorbed on the surface by the strong binding energy held on the surface of the substrate even in the process of dissolving the substrate in the anode or in the process of cathode deposition is referred to as strong adsorption.
As the electrolyte solution for dissolving or electrolytically depositing the metal surface, various solutions such as a solution using water or an organic substance as a solvent, a molten salt of the electrolyte itself, and the like are not limited. The electrolyte solution does not necessarily need to contain the component of the adsorbed species in the solution. Further, the ion concentration of the target metal in the electrolyte solution is not particularly limited. For example, even if the metal ion concentration is zero, the metal ions eluted by electrolytic etching are used for electrolytic deposition, so that the surface of the base metal is smoothed at the atomic level by repeating electrolytic etching and electrolytic deposition. . Solute concentration, p
Electrolysis conditions such as H, bath temperature, electrode area, and amount of electricity are not particularly limited, and are appropriately set according to an electrolytic etching reaction, an electrolytic deposition reaction, and the like.

【0011】液相で吸着種を金属面に吸着させる場合、
吸着種の成分を含む溶液に基体金属を電極として浸漬
し、金属表面の電位を制御することも可能である。この
方法は、より正確且つ簡便に吸着制御できることから有
効な方法である。この場合、電解処理に先立って吸着種
で基体金属が被覆される。液相吸着では、電解処理の際
に電解質中に吸着種を導入することにより、電解処理を
行う同じ溶液系で吸着種を金属面に被覆させることもで
きる。このように設備を簡略化できる点、液相吸着がよ
り好ましい。吸着層を保持させたまま基体金属を電解エ
ッチングし又は電解析出させるとき、電解質溶液中で基
体金属を作用極とし、作用極の電極電位を精密に制御す
ることが重要である。すなわち、金属面における吸着種
の保持・脱離は基体金属の電位によって制御され、電解
エッチングや電解析出も同様に基体金属の電位で制御さ
れる。したがって、基体金属と吸着種との組合せは、基
体金属の電解処理に適当な電位範囲と吸着種が保持され
る電位範囲が重なるように選択される。
When the adsorbed species is adsorbed on the metal surface in the liquid phase,
It is also possible to control the potential of the metal surface by immersing the base metal as an electrode in a solution containing the components of the adsorbed species. This method is an effective method because adsorption can be controlled more accurately and easily. In this case, the base metal is coated with the adsorbed species prior to the electrolytic treatment. In the liquid phase adsorption, by introducing the adsorbed species into the electrolyte during the electrolytic treatment, the adsorbed species can be coated on the metal surface in the same solution system in which the electrolytic treatment is performed. Liquid phase adsorption is more preferable in that the equipment can be simplified. When electrolytic etching or electrolytic deposition of the base metal while holding the adsorption layer, it is important to use the base metal as the working electrode in the electrolyte solution and to precisely control the electrode potential of the working electrode. That is, retention and desorption of the adsorbed species on the metal surface are controlled by the potential of the base metal, and electrolytic etching and electrolytic deposition are similarly controlled by the potential of the base metal. Therefore, the combination of the base metal and the adsorbed species is selected so that the potential range suitable for electrolytic treatment of the base metal and the potential range in which the adsorbed species is held overlap.

【0012】電極電位は、基体金属と吸着種との組合せ
により異なるが、予めサイクリックボルタモグラム等の
電気化学的手法によって吸着種が保持される電位及び基
体金属の溶解又は電解析出が行われる電位を確認し、こ
の結果によって電極電位を定めることができる。吸着種
が基体金属表面に吸着する際、吸着に伴って生じる電子
の移動がサイクリックボルタモグラム上で電流のピーク
として観察される。このピークにより、吸着種の保持さ
れる電位が確認できる。また、電気化学走査型トンネル
顕微鏡(STM)を用いて、直接電位を変化させたとき
の表面を原子スケールで観察することにより、吸着種の
存在を確認することもできる。基体のアノード溶解が開
始する電位は、サイクリックボルタモグラム上でアノー
ド電流が立上がる位置から確認できる。金属の種類によ
っては、不動態化し或いは表面がすぐに酸化物で覆わ
れ、ほとんどアノード溶解しないものもある。そこで、
表面状態をより詳細に把握するためには、STMを用い
て観察することが好ましい。
Although the electrode potential varies depending on the combination of the base metal and the adsorbed species, the potential at which the adsorbed species is held in advance by an electrochemical method such as a cyclic voltammogram and the potential at which the base metal is dissolved or electrolytically deposited. Is confirmed, and the electrode potential can be determined based on the result. When the adsorbed species is adsorbed on the surface of the base metal, the movement of the electrons caused by the adsorption is observed as a current peak on a cyclic voltammogram. From this peak, the potential at which the adsorbed species is held can be confirmed. Further, the presence of the adsorbed species can be confirmed by observing the surface when the potential is directly changed on an atomic scale using an electrochemical scanning tunneling microscope (STM). The potential at which the anode dissolution of the substrate starts can be confirmed from the position where the anode current rises on the cyclic voltammogram. Some metals may be passivated or have their surface immediately covered with oxide, with little anodic dissolution. Therefore,
In order to grasp the surface state in more detail, it is preferable to observe using a STM.

【0013】電解析出が生じる電位は、通常アノード溶
解する電位よりも卑であれば良く、アノード溶解電位に
応じて自動的に決定される。また、基体の平坦化におい
て制御される電位は、金属の種類によって異なるが、一
般的にオープンサーキットポテンシャルよりも0.2V
以下の貴な電位を上限に設定される。オープンサーキッ
トポテンシャルは、回路を接続しない状態で測定される
電極浸漬ままの電位であり、浸漬電位に対応する。オー
プンサーキットポテンシャルより0.2Vを超える貴な
電位になると、基体が激しく溶解して表面の凹凸が大き
くなり、原子レベルで平坦化された表面を得ることが困
難になる。他方、電解析出させる際の下限電位は特に規
制されるものではないが、少なくとも酸化物が還元除去
される電位よりも卑な領域に設定される。この電位は、
金属の種類によっても異なるが、サイクリックボルタモ
グラム等の手法で決定される。サイクリックボルタモグ
ラムでは、酸化物の還元に伴ってカソードピークが観察
されるので、このピーク位置から酸化物の還元電位が判
断される。
The potential at which electrolytic deposition occurs is usually lower than the potential at which the anode is dissolved, and is automatically determined according to the anode dissolution potential. The potential controlled in the planarization of the base varies depending on the type of metal, but is generally 0.2 V higher than the open circuit potential.
The following noble potential is set as the upper limit. The open circuit potential is a potential as measured without a circuit connected, while the electrode is immersed, and corresponds to the immersion potential. If the potential becomes a noble potential exceeding 0.2 V from the open circuit potential, the substrate is severely dissolved, the surface irregularities become large, and it becomes difficult to obtain a flat surface at the atomic level. On the other hand, the lower limit electric potential at the time of electrolytic deposition is not particularly limited, but is set at least in a region lower than the electric potential at which the oxide is reduced and removed. This potential is
Although it depends on the type of metal, it is determined by a technique such as cyclic voltammogram. In the cyclic voltammogram, a cathode peak is observed as the oxide is reduced, and the reduction potential of the oxide is determined from the peak position.

【0014】電解エッチング又は電解析出中に、加工さ
れている基体金属の表面状態や吸着種の状態等をSTM
で観察すると、原子レベルの表面状態が把握される。そ
のため、STM観察により有効な条件設定が可能とな
る。電解処理によって原子レベルで平坦化された表面を
もつ基体金属は、吸着種を保持したままの状態で、或い
は吸着種を脱離させた後、電解質溶液から取り出され、
各種用途に向けた材料として使用される。電解質溶液中
で吸着種を脱離させる場合、電解質溶液中で基体金属を
十分卑な領域に保持することにより吸着種が脱離する。
During the electrolytic etching or electrolytic deposition, the surface state of the substrate metal being processed and the state of the adsorbed species are determined by STM.
Observes the surface state at the atomic level. Therefore, effective condition setting can be performed by STM observation. The base metal having a surface flattened at the atomic level by the electrolytic treatment is taken out of the electrolyte solution while holding the adsorbed species or after desorbing the adsorbed species,
Used as a material for various applications. When the adsorbed species is desorbed in the electrolyte solution, the adsorbed species is desorbed by holding the base metal in a sufficiently low region in the electrolyte solution.

【0015】[0015]

【作用】基体金属の表面に強吸着した吸着種は、金属に
吸着しうる条件下では、たとえ下地の金属が溶解して
も、新たに露出した金属表面に再び吸着する。また、金
属面と吸着種の間の吸着エネルギは、指数面に応じて若
干異なるため、電位制御によって金属表面のエネルギ状
態を微妙に制御できると、特定の指数面に吸着種が優先
的に保持される状況を作ることができる。この条件下で
金属を電解エッチングすると、特定の指数面が露出した
ときに吸着種でその表面が覆われる。そのため、金属面
の活性が吸着種により失われ、キンク,ステップ等の活
性サイトからのみエッチングされる。そして、露出する
金属面は、電解エッチングの進行によって次第に吸着種
を保持した特定の指数面のみになり、ステップ等の溶解
活性サイトも減少する。その結果、原子レベルで平坦な
表面を広い範囲で露出させることができる。また、吸着
種を保持したままで電解析出すると、電解エッチングと
全く逆の現象、すなわち吸着種を保持したテラス上より
もステップエッジが析出サイトとして作用するため、原
子レベルでの平坦な表面が形成される。
The adsorbed species strongly adsorbed on the surface of the base metal is adsorbed again on the newly exposed metal surface under conditions where the metal can be adsorbed, even if the underlying metal is dissolved. In addition, since the adsorption energy between the metal surface and the adsorbed species is slightly different depending on the exponential plane, if the energy state of the metal surface can be finely controlled by controlling the potential, the adsorbed species is preferentially retained on a specific exponential plane. Can be made a situation. When a metal is electrolytically etched under these conditions, when a specific index surface is exposed, the surface is covered with the adsorbed species. Therefore, the activity of the metal surface is lost by the adsorbed species, and the metal surface is etched only from active sites such as kinks and steps. Then, the exposed metal surface gradually becomes only a specific index surface holding the adsorbed species as the electrolytic etching progresses, and the number of dissolution active sites such as steps decreases. As a result, a flat surface at the atomic level can be exposed over a wide range. In addition, when electrolytic deposition is performed while retaining the adsorbed species, the phenomenon completely opposite to that of electrolytic etching, that is, the step edge acts as a deposition site rather than on the terrace that retains the adsorbed species, so that a flat surface at the atomic level is generated. It is formed.

【0016】これに対し、吸着種を保持させない金属面
に電解エッチング又は電解析出を施す場合、たとえ電位
制御によりエッチング量又は析出量を制御しても、露出
したテラス面内の活性が吸着種を保持している金属面に
比較して高い。そのため、テラス上で溶解,析出が生
じ、原子レベルで平坦なテラスを露出させることが非常
に困難となる。また、電解エッチングや析出過程で現れ
るステップ方向も直線的でなく、その方向を揃えること
は不可能である。金属面のエッチング量や電解析出量
は、電位を調節することにより制御される。そのため、
単に原子レベルで平坦な面だけではなく、特定のステッ
プ密度をもつ表面状態を作ることも可能である。この場
合、STMで表面状態を観察しながら電解エッチング又
は電解析出を行うことが好ましい。
On the other hand, when electrolytic etching or electrolytic deposition is performed on a metal surface on which the adsorbed species is not retained, even if the amount of etching or the amount of deposition is controlled by controlling the potential, the activity in the exposed terrace surface is reduced. Is higher than the metal surface holding. Therefore, melting and precipitation occur on the terrace, and it becomes very difficult to expose a flat terrace at the atomic level. Further, the step directions appearing in the electrolytic etching and the deposition process are not linear, and it is impossible to make the directions uniform. The amount of metal surface etching and the amount of electrolytic deposition are controlled by adjusting the potential. for that reason,
It is possible to create a surface state with a specific step density, not just an atomically flat surface. In this case, it is preferable to perform electrolytic etching or electrolytic deposition while observing the surface state by STM.

【0017】また、吸着種を保持した金属面を電解エッ
チングすると、吸着種の原子配列方向がより安定になる
ため、電解エッチング過程で現れるステップ方向が吸着
種の原子配列と平行になる。この現象を利用すると、特
定の方向のステップのみをもつ金属面を形成できる。す
なわち、ステップラインの形状を揃えること等、原子レ
ベルで制御された電解エッチング及び電解析出が可能に
なる。特定の指数面においては、吸着種に応じて金属面
に形成された異なる方向のステップラインに異方性が生
じる。たとえば、fcc金属(100)面上、c(2×
2)の位置に沃素等を吸着させた場合、(100)面上
に形成される単原子高さのステップは、吸着種の原子列
に平行な[010]及び[001]の二方向になる。こ
の直交する二方向のステップで、図1に示すようにステ
ップを介した上側のテラスと下側のテラスそれぞれの吸
着種と下地金属の構造が異なる。このような表面に電解
エッチング又は電解析出を施すと、異なる二方向でステ
ップでの反応活性が等方的でないため、特定のステップ
方向のみが現れる金属面を形成することもできる。この
ように吸着種が保持された金属面に制御電位を印加して
電解エッチング又は電解析出を施す方法では、室温の処
理が可能である。そのため、金属表面の平坦化に通常採
用されているアニーリング等の手法と異なり、基体金属
に熱履歴を与えることなく、また不純物の拡散等を生じ
ることなく金属面が効果的に平坦化される。しかも、設
備的にも雰囲気制御用のチャンバ等が必要とされず、比
較的簡便な処理が可能になる。
When the metal surface holding the adsorbed species is electrolytically etched, the direction of the atomic arrangement of the adsorbed species becomes more stable, so that the step direction appearing in the electrolytic etching process becomes parallel to the atomic arrangement of the adsorbed species. By utilizing this phenomenon, a metal surface having only steps in a specific direction can be formed. That is, it is possible to perform electrolytic etching and electrolytic deposition controlled at the atomic level, for example, by making the shapes of the step lines uniform. In a specific index plane, anisotropy occurs in step lines in different directions formed on the metal surface depending on the adsorbed species. For example, on the fcc metal (100) surface, c (2 ×
When iodine or the like is adsorbed at the position 2), the step of the height of a single atom formed on the (100) plane is in two directions [010] and [001] parallel to the atomic row of the adsorbed species. . In the two orthogonal steps, as shown in FIG. 1, the structures of the adsorbed species and the underlying metal of the upper terrace and the lower terrace through the step are different. When such a surface is subjected to electrolytic etching or electrolytic deposition, the reaction activity in steps in two different directions is not isotropic, so that a metal surface in which only a specific step direction appears can be formed. The method of applying a control potential to the metal surface holding the adsorbed species to perform electrolytic etching or electrolytic deposition enables processing at room temperature. Therefore, unlike the method such as annealing which is usually adopted for flattening the metal surface, the metal surface is effectively flattened without giving a heat history to the base metal and without causing diffusion of impurities. In addition, the equipment does not require an atmosphere control chamber or the like, and relatively simple processing can be performed.

【0018】[0018]

【実施例】【Example】

実施例1:機械研磨で鏡面仕上げしたニッケル単結晶
(100)面に、水素−硫化水素混合ガスを接触させる
ことによりイオウを強吸着させた。このニッケル単結晶
(100)面をpH3.0の0.05M硫酸ナトリウム
水溶液に浸漬しサイクリックボルタモグラムを測定した
ところ、図2に示す曲線が得られた。そこで、飽和カロ
メル電極基準で−0.6〜−0.3Vの範囲に電位を調
整し、金属面をSTMで観察しながらニッケル単結晶
(100)面を電解エッチングした。電解エッチングさ
れたニッケル単結晶(100)面を示す図3のSTM像
にみられるように、幅が100nm以上の広いテラスを
もつ原子レベルで平坦なニッケル表面を露出させること
ができた。テラス部分を更に拡大してSTM観察する
と、図4のSTM像に示すように、電解エッチング中も
ニッケル表面にイオウが吸着していた。また、電解エッ
チング過程でのステップ方向が何れもイオウの原子列に
平行であることが判った。水素−硫化水素混合ガスとの
接触に替え、硫化水素水溶液中にニッケル単結晶(10
0)面を浸漬することにより、イオウをニッケル単結晶
(100)面に強吸着させた。この場合にも、図3,図
4と同様な原子レベルで平坦な表面が電解エッチングに
よりえられた。
Example 1 Sulfur was strongly adsorbed by bringing a mixed gas of hydrogen and hydrogen sulfide into contact with a nickel single crystal (100) surface mirror-finished by mechanical polishing. The nickel single crystal (100) plane was immersed in a 0.05 M aqueous solution of sodium sulfate having a pH of 3.0, and the cyclic voltammogram was measured. The curve shown in FIG. 2 was obtained. Therefore, the potential was adjusted to a range of -0.6 to -0.3 V on the basis of the saturated calomel electrode, and the nickel single crystal (100) surface was electrolytically etched while observing the metal surface by STM. As can be seen from the STM image of FIG. 3 showing the electrolytically etched nickel single crystal (100) plane, an atomic level flat nickel surface having a wide terrace with a width of 100 nm or more could be exposed. When the terrace portion was further enlarged and observed by STM, as shown in the STM image in FIG. 4, sulfur was adsorbed on the nickel surface even during electrolytic etching. Further, it was found that the step directions in the electrolytic etching process were all parallel to the atomic row of sulfur. Instead of contact with hydrogen-hydrogen sulfide mixed gas, nickel single crystal (10
By dipping the 0) plane, sulfur was strongly adsorbed on the nickel single crystal (100) plane. Also in this case, a flat surface at the atomic level similar to that shown in FIGS. 3 and 4 was obtained by electrolytic etching.

【0019】比較例1:吸着種を保持させないこと以外
は、実施例1と同じ条件下でニッケル単結晶(100)
面を電解エッチングした。この場合に得られた表面は、
図5のSTM像に示すように原子レベルで平坦化されて
おらず、粗い表面であった。
Comparative Example 1: Nickel single crystal (100) under the same conditions as in Example 1 except that no adsorbed species was retained
The surface was electrolytically etched. The surface obtained in this case is
As shown in the STM image of FIG. 5, the surface was not flattened at the atomic level and had a rough surface.

【0020】実施例2:機械研磨で鏡面仕上げした銀単
結晶(100)面にKI溶液を接触させ、沃素を強吸着
させた。この銀単結晶(100)面を0.1M過塩素酸
水溶液に浸漬しサイクリックボルタモグラムを測定した
ところ、図6に示す曲線が得られた。そこで、RHE
(同一溶液における可逆水素電極)基準で0.35〜
0.6Vの範囲に電位を調整し、金属面をSTMで観察
しながら銀単結晶(100)面を電解エッチングした。
電解エッチングされた銀単結晶(100)面を示す図7
のSTM像にみられるように、幅が50nm以上の広い
テラスをもつ原子レベルで平坦な銀表面を露出させるこ
とができた。また、テラス部分を更に拡大してSTM観
察した結果、電解エッチング中もニッケル表面に沃素が
吸着していることが確認された。
Example 2 A KI solution was brought into contact with a silver single crystal (100) surface mirror-finished by mechanical polishing to strongly adsorb iodine. The silver single crystal (100) plane was immersed in a 0.1 M aqueous solution of perchloric acid, and the cyclic voltammogram was measured. The curve shown in FIG. 6 was obtained. So, RHE
(Reversible hydrogen electrode in the same solution)
The potential was adjusted to a range of 0.6 V, and the silver single crystal (100) face was subjected to electrolytic etching while observing the metal face by STM.
FIG. 7 showing an electrolytically etched silver single crystal (100) plane
As can be seen from the STM image, a flat silver surface at the atomic level having a wide terrace with a width of 50 nm or more could be exposed. Further, as a result of STM observation with the terrace portion further enlarged, it was confirmed that iodine was adsorbed on the nickel surface even during electrolytic etching.

【0021】実施例3:実施例2の電解エッチングに続
いて、電位を0.4Vに保持して銀イオンを電解析出し
た。このときのSTM観察によると、電解析出過程にお
いても沃素が銀単結晶(100)面に吸着したままであ
った。電解析出の前後で銀単結晶(100)面をSTM
観察した図8の結果から、電解析出により原子レベルで
平坦なテラスが成長していることが判る。更に、析出し
ているテラスのステップ方向は、何れも沃素の原子列と
平行であった。 比較例2:沃素を吸着させない以外は、実施例2と同じ
条件下で銀単結晶(100)面を電解エッチングした。
溶解過程で観察されたステップは、図9のSTM像にみ
られるように、直線的なステップではなく、ステップの
方向も必ずしも一定ではなかった。
Example 3 Subsequent to the electrolytic etching of Example 2, silver ions were electrolytically deposited while maintaining the potential at 0.4 V. According to the STM observation at this time, iodine was still adsorbed on the silver single crystal (100) surface during the electrolytic deposition process. STM silver single crystal (100) plane before and after electrolytic deposition
From the results of FIG. 8 observed, it can be seen that flat terraces at the atomic level have grown due to electrolytic deposition. Further, the step directions of the deposited terraces were all parallel to the iodine atomic rows. Comparative Example 2: The silver single crystal (100) plane was subjected to electrolytic etching under the same conditions as in Example 2 except that iodine was not adsorbed.
The steps observed during the dissolution process were not linear steps as shown in the STM image of FIG. 9, and the directions of the steps were not always constant.

【0022】[0022]

【発明の効果】以上に説明したように、本発明において
は、吸着種を強吸着させた金属面を電解質溶液中で電解
エッチングし或いは電解析出している。金属面に強吸着
している吸着種は、金属面の特定の指数面を覆い、電解
エッチングや電解析出が進行しても常に露出した金属面
に留まるため、その表面を溶解・析出に対して不活性に
する。そのため、テラス上での溶解・析出が生じず、ス
テップ等のサイトでのみ反応が進行する。その結果、金
属面は、原子レベルで制御された平坦な表面となる。更
に、吸着種の原子配列方向が安定であるため、ステップ
ラインが直線的に延び、原子レベルで制御された表面を
露出させることが可能となる。また、吸着種と金属面の
構造との関係からステップ方向間に異方性を持たせるこ
とができる場合、一部のステップ方向の存在密度が高い
表面を形成することもできる。このようにして、本発明
によるとき、高性能化,高密度化が要求されている磁気
記録材料,センサー,触媒材料,電池材料,プリント基
板上の配線等の電子機器材料等に好適な原子レベルで制
御された金属面が提供される。
As described above, in the present invention, the metal surface on which the adsorbed species is strongly adsorbed is electrolytically etched or electrolytically deposited in an electrolyte solution. The adsorbed species strongly adsorbed on the metal surface covers a specific index surface of the metal surface and remains on the exposed metal surface even if electrolytic etching or electrolytic deposition progresses, so that the surface is not dissolved or deposited. To make it inactive. Therefore, no dissolution or precipitation occurs on the terrace, and the reaction proceeds only at sites such as steps. As a result, the metal surface becomes an atomically controlled flat surface. Further, since the atomic arrangement direction of the adsorbed species is stable, the step line extends linearly, and it becomes possible to expose the surface controlled at the atomic level. Further, when anisotropy can be provided in the step direction due to the relationship between the adsorbed species and the structure of the metal surface, a surface having a high density of existence in some step directions can be formed. As described above, according to the present invention, an atomic level suitable for magnetic recording materials, sensors, catalyst materials, battery materials, electronic device materials such as wiring on printed circuit boards, etc., which are required to have higher performance and higher density. A controlled metal surface is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 直交する二方向のステップ部分においてそれ
ぞれの方向で吸着種と下地金属の構造が異なるモデル
FIG. 1 shows a model in which the structure of the adsorbed species and the structure of the underlying metal are different in each direction in two orthogonal step portions

【図2】 イオウを強吸着させたニッケル単結晶(10
0)面のサイクリックボルタモグラム
FIG. 2 shows a nickel single crystal (10
0) Surface cyclic voltammogram

【図3】 原子レベルで平坦化されたニッケル単結晶
(100)面の構造を示す走査型トンネル顕微鏡(ST
M)写真
FIG. 3 shows a scanning tunneling microscope (ST) showing a structure of a nickel single crystal (100) plane which is flattened at an atomic level.
M) Photo

【図4】 電解エッチング処理中のニッケル単結晶(1
00)面の構造を示すSTM写真
FIG. 4 shows a nickel single crystal (1) during an electrolytic etching process.
STM photograph showing the structure of the (00) plane

【図5】 イオウを吸着させることなく電解エッチング
したニッケル単結晶(100)面の構造を示す走査型ト
ンネル顕微鏡(STM)写真
FIG. 5 is a scanning tunneling microscope (STM) photograph showing the structure of a nickel single crystal (100) plane electrolytically etched without adsorbing sulfur.

【図6】 沃素を強吸着させた銀単結晶(100)面の
サイクリックボルタモグラム
FIG. 6 is a cyclic voltammogram of a silver single crystal (100) surface on which iodine is strongly adsorbed.

【図7】 原子レベルで平坦化された銀単結晶(10
0)面の構造を示す走査型トンネル顕微鏡(STM)写
FIG. 7 shows a silver single crystal (10
Scanning tunneling microscope (STM) photograph showing the structure of the 0) plane

【図8】 電解析出前(a)及び電解析出後(b)の銀
単結晶(100)面の構造を示す走査型トンネル顕微鏡
(STM)写真
FIG. 8 is a scanning tunneling microscope (STM) photograph showing the structure of a silver single crystal (100) plane before (a) and after (b) electrolytic deposition.

【図9】 沃素を吸着させることなく電解エッチングし
た銀単結晶(100)面の構造を示す走査型トンネル顕
微鏡(STM)写真
FIG. 9 is a scanning tunneling microscope (STM) photograph showing the structure of a silver single crystal (100) plane electrolytically etched without adsorbing iodine.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年7月10日[Submission date] July 10, 1997

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図4[Correction target item name] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図4】 FIG. 4

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図5[Correction target item name] Fig. 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図5】 FIG. 5

【手続補正5】[Procedure amendment 5]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図7[Correction target item name] Fig. 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図7】 FIG. 7

【手続補正6】[Procedure amendment 6]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図8[Correction target item name] Fig. 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図8】 FIG. 8

【手続補正7】[Procedure amendment 7]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図9[Correction target item name] Fig. 9

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図9】 FIG. 9

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C25F 3/02 C25F 3/02 A G11B 5/84 G11B 5/84 A (72)発明者 手島 卓也 宮城県仙台市太白区弥生町22−5−202 (72)発明者 水沢 厚志 宮城県仙台市太白区金剛沢1−4−8− 305 (72)発明者 板谷 謹悟 宮城県仙台市青葉区荒巻字青葉106────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI C25F 3/02 C25F 3/02 A G11B 5/84 G11B 5/84 A (72) Inventor Takuya Tejima Yayoi Taishiro-ku, Sendai City, Miyagi Prefecture 22-202, Machi (72) Inventor Atsushi Mizusawa 1-4-8-305, Kongozawa, Taishiro-ku, Sendai, Miyagi Prefecture (72) Inventor Kengo Aoba 106, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属面に吸着種を強吸着させ、金属面を
作用極として電解質溶液に浸漬し、吸着種が保持された
まま金属面がエッチングされる電位を金属面に印加し、
吸着層を保持したまま電解質溶液中で金属面を電解エッ
チングすることを特徴とする原子レベルで制御された面
をもつ金属材料の製造方法。
1. A method for strongly adsorbing an adsorbed species on a metal surface, immersing the adsorbed species in an electrolyte solution using the metal surface as a working electrode, and applying a potential to the metal surface to etch the metal surface while the adsorbed species is held,
A method for producing a metal material having a surface controlled at an atomic level, wherein a metal surface is electrolytically etched in an electrolyte solution while holding an adsorption layer.
【請求項2】 金属面に吸着種を強吸着させ、金属面を
作用極として電解質溶液に浸漬し、吸着種が保持された
ままの金属面に溶質金属が析出する電位を金属面に印加
し、吸着層を保持したまま電解質溶液中で金属面に溶質
金属を電解析出させることを特徴とする原子レベルで制
御された面をもつ金属材料の製造方法。
2. A method in which an adsorbed species is strongly adsorbed on a metal surface, immersed in an electrolyte solution using the metal surface as a working electrode, and a potential at which a solute metal is deposited on the metal surface while the adsorbed species is retained is applied to the metal surface. A method for producing a metal material having a surface controlled at an atomic level, wherein a solute metal is electrolytically deposited on a metal surface in an electrolyte solution while holding an adsorption layer.
JP09183296A 1997-07-09 1997-07-09 Method of producing metallic material with atomically controlled surface Expired - Fee Related JP3129994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09183296A JP3129994B2 (en) 1997-07-09 1997-07-09 Method of producing metallic material with atomically controlled surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09183296A JP3129994B2 (en) 1997-07-09 1997-07-09 Method of producing metallic material with atomically controlled surface

Publications (2)

Publication Number Publication Date
JPH1126273A true JPH1126273A (en) 1999-01-29
JP3129994B2 JP3129994B2 (en) 2001-01-31

Family

ID=16133195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09183296A Expired - Fee Related JP3129994B2 (en) 1997-07-09 1997-07-09 Method of producing metallic material with atomically controlled surface

Country Status (1)

Country Link
JP (1) JP3129994B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106705A1 (en) * 2019-11-25 2021-06-03 Jfeスチール株式会社 Method for extracting precipitate and/or inclusion, method for quantitative analysis of precipitate and/or inclusion, electrolyte, and method for producing replica sample

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106705A1 (en) * 2019-11-25 2021-06-03 Jfeスチール株式会社 Method for extracting precipitate and/or inclusion, method for quantitative analysis of precipitate and/or inclusion, electrolyte, and method for producing replica sample
JP6919775B1 (en) * 2019-11-25 2021-08-18 Jfeスチール株式会社 Method for extracting precipitates and / or inclusions, method for quantitative analysis of precipitates and / or inclusions, method for preparing electrolytic solution, and replica sample.

Also Published As

Publication number Publication date
JP3129994B2 (en) 2001-01-31

Similar Documents

Publication Publication Date Title
US8142984B2 (en) Lithographically patterned nanowire electrodeposition
US20060207889A1 (en) Electrochemical etching
KR101175232B1 (en) Current collector-electrode one body type device and manufacturing method thereof
Miller et al. Patterned electrical conductance and electrode formation in ion‐implanted diamond films
CN114309649A (en) Novel method for improving corrosion resistance of NiTi alloy melted in laser selection area through heat treatment process
JP5200334B2 (en) Metal member having noble metal plating and method for manufacturing the same
CN104357886A (en) Method for chemically depositing diffused tin-zinc crystal nucleus on surface of high-purity aluminum foil for medium/high-voltage positive electrode
JP3129994B2 (en) Method of producing metallic material with atomically controlled surface
CN101759143A (en) Method for controlling growth of micro-nano pore structure on silicon surface
US5595637A (en) Photoelectrochemical fabrication of electronic circuits
Duan et al. Electrochemical Studies of the Mechanism of the Formation of Metal‐TCNQ Charge‐Transfer Complex Film
JP2958287B2 (en) Metallic cobalt or cobalt-based alloy having atomically controlled surface and method for producing the same
Dinan et al. Arsenic deposition onto a gold substrate
Ionascu et al. Technologies for thin layers on ceramics substrate
JP2958288B2 (en) Metallic nickel or nickel-based alloy having surface controlled at atomic level and method for producing the same
CN109137009B (en) Method for preparing porous magnesium hydroxide by pulse electrodeposition
JP2001207288A (en) Method for electrodeposition into pore and structure
KR102139494B1 (en) Method for manufacturing 3d porous thin film catalyst electrode for fuel cell
JP4763363B2 (en) Aluminum material for electrolytic capacitor electrode having excellent etching characteristics and method for producing the same, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP2006038641A (en) Contact probe
JP2961491B2 (en) Preparation method of metal electrode material
CN115445615B (en) Preparation method of nano metal core-shell structure
JP2003318069A (en) Method of etching anode foil of aluminum electrolytic capacitor
Ye et al. Formation of Nanocrystalline Surface of Cu–Sn Alloy Foam Electrochemically Produced for Li-Ion Battery Electrode
CN114657624B (en) Electrochemical preparation method of metal nanowire array

Legal Events

Date Code Title Description
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071117

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081117

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees