JPH11262162A - Terminal connecting apparatus of cryogenic cable - Google Patents

Terminal connecting apparatus of cryogenic cable

Info

Publication number
JPH11262162A
JPH11262162A JP6083998A JP6083998A JPH11262162A JP H11262162 A JPH11262162 A JP H11262162A JP 6083998 A JP6083998 A JP 6083998A JP 6083998 A JP6083998 A JP 6083998A JP H11262162 A JPH11262162 A JP H11262162A
Authority
JP
Japan
Prior art keywords
container
temperature gradient
cryopanel
gas
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6083998A
Other languages
Japanese (ja)
Inventor
Hirokazu Tsubouchi
宏和 坪内
Kazutomi Miyoshi
一富 三好
Shinichi Mukoyama
晋一 向山
Toshiaki Yoshida
俊朗 吉田
Yoshihiro Iwata
良浩 岩田
Hideo Ishii
英雄 石井
Shoichi Honjo
昇一 本庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Furukawa Electric Co Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Tokyo Electric Power Co Inc filed Critical Furukawa Electric Co Ltd
Priority to JP6083998A priority Critical patent/JPH11262162A/en
Publication of JPH11262162A publication Critical patent/JPH11262162A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Gas Or Oil Filled Cable Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain a high degree of vacuum in a temperature gradient container over a long term in the case of a vacuum insulation, and improve the dielectric strength of an insulation gas in the container in the case of a gas insulation, by providing a cooling means in the container. SOLUTION: Inside a temperature gradient container 11, a cryopanel 35 with a liquid nitrogen piping 35b attached to a cylindrical metallic panel 35a is provided. A liquid nitrogen is fed to the cryopanel 35 via a flow-rate regulating valve 37. Absorbing heat by the liquid nitrogen in the course of it flowing through the piping 35b of the cryopanel 35, it is gasified to be exhausted from an exhausting panel 39. Bringing the cryopanel 35 into a cryogenic state by the liquid nitrogen flowing in the piping 35b, gases desorbed from materials are adsorbed by the cryopanel 35 to maintain the degree of vacuum in the temperature gradient container 11. As a result in the case of a vacuum insulation, a high degree of vacuum can be maintained in the container 11 over a long term without any continuous evacuation, and in the case of a gas insulation, the dielectric strength of an insulation gas in the container 11 can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体窒素などの極
低温液体で冷却された極低温ケーブル(超電導ケーブ
ル、極低温抵抗ケーブル等)の終端接続装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a terminal connection device for a cryogenic cable (such as a superconducting cable or a cryogenic resistance cable) cooled with a cryogenic liquid such as liquid nitrogen.

【0002】[0002]

【従来の技術】超電導ケーブルの終端接続装置は、一端
が超電導ケーブルの導体に接続され、他端が大気中に引
き出された引出し導体を備えている。引出し導体は通
常、電気及び熱の良導体である銅で構成される。この引
出し導体は液体窒素温度から常温までの大きな温度勾配
をもつ。超電導ケーブルの終端接続装置は、このような
大きな温度勾配をもつ引出し導体を電気的に絶縁すると
共に、外部からの熱の浸入をできるだけ少なくするよう
に配慮しなければならない。
2. Description of the Related Art A terminal device for connecting a superconducting cable has a lead conductor having one end connected to the conductor of the superconducting cable and the other end drawn to the atmosphere. The lead conductor is usually made of copper, which is a good conductor of electricity and heat. This lead conductor has a large temperature gradient from liquid nitrogen temperature to normal temperature. The terminal connection device of the superconducting cable must be electrically insulated from the lead conductor having such a large temperature gradient, and care must be taken to minimize the intrusion of heat from the outside.

【0003】このような考え方から従来、超電導ケーブ
ルの導体と引出し導体との接続部を収納した極低温容器
と、引出し導体の温度勾配部を収納した温度勾配部容器
とを固体絶縁体で区分し、温度勾配部容器内を真空にす
るか又は温度勾配部容器内に絶縁ガス(窒素ガス又はS
6 ガス等)を充填して、温度勾配部への熱の浸入を抑
制しつつ、引出し導体の電気絶縁を行うようにした終端
接続装置が提案されている(特開平8−196029号
公報、同8−196030号公報)。
[0003] From such a concept, conventionally, a cryogenic container accommodating a connection portion between a conductor of a superconducting cable and a lead conductor and a temperature gradient container accommodating a temperature gradient portion of the lead conductor are separated by a solid insulator. The inside of the temperature gradient section container is evacuated or the insulating gas (nitrogen gas or S
A terminal connection device has been proposed in which a lead-out conductor is electrically insulated while suppressing infiltration of heat into a temperature gradient portion by filling with F 6 gas or the like (Japanese Patent Application Laid-Open No. 8-19629). No. 8-196030).

【0004】[0004]

【発明が解決しようとする課題】しかし従来の終端接続
装置では次のような問題がある。すなわち、温度勾配部
容器内を真空で絶縁した装置では、電気絶縁性能を安定
させるために10-4Torr〜10-5Torrの高真空度が必要
であり、真空引き空間が大きい場合には、真空度維持の
ために真空ポンプを用いて常時真空引きを行う必要があ
る。また温度勾配部容器を封じきりにする場合には、材
料からの放出ガスが常にあるため、一定期間ごとに再真
空引きを行わなければならない。このため温度勾配部を
真空絶縁にした終端接続装置は、超電導ケーブルのよう
に長期間、絶縁性能の維持を必要とするものには不適と
考えられていた。
However, the conventional terminal connection device has the following problems. In other words, in a device in which the inside of the temperature gradient part container is insulated by vacuum, a high degree of vacuum of 10 −4 Torr to 10 −5 Torr is required to stabilize the electrical insulation performance. In order to maintain the degree of vacuum, it is necessary to constantly evacuate using a vacuum pump. Further, in the case where the temperature gradient section container is completely sealed, there is always gas released from the material, so that re-evacuation must be performed at regular intervals. For this reason, the terminal connection device in which the temperature gradient portion is vacuum-insulated is considered to be unsuitable for a device that needs to maintain insulation performance for a long time, such as a superconducting cable.

【0005】一方、温度勾配部容器内をガスで絶縁した
装置では、ガスの絶縁耐力が液体窒素や高真空に比較し
て小さいため、安定した絶縁性能を確保するためには絶
縁距離を大きくとるか、ガスの封入圧力を高くする必要
があり、装置全体が大型化するという問題がある。
On the other hand, in a device in which the inside of the temperature gradient section container is insulated with gas, the dielectric strength of the gas is smaller than that of liquid nitrogen or high vacuum, so that a long insulation distance is required to ensure stable insulation performance. Alternatively, it is necessary to increase the gas filling pressure, and there is a problem that the entire apparatus becomes large.

【0006】本発明の目的は、以上のような問題点に鑑
み、温度勾配部に真空絶縁を採用する場合は高真空度を
長期間維持することができ、また温度勾配部にガス絶縁
を採用する場合はガスの絶縁耐力を大きくすることがで
きる極低温ケーブルの終端接続装置を提供することにあ
る。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to maintain a high degree of vacuum for a long time by employing vacuum insulation in a temperature gradient section, and to employ gas insulation in a temperature gradient section. In this case, it is an object of the present invention to provide a terminal connection device for a cryogenic cable that can increase the dielectric strength of gas.

【0007】[0007]

【課題の解決手段】この目的を達成するため本発明は、
極低温容器内で極低温ケーブルの導体と引出し導体とを
接続し、その引出し導体を温度勾配部容器及びブッシン
グを通してブッシングの先端に引き出し、前記極低温容
器と温度勾配部容器との間を第一の固体絶縁体で仕切
り、前記温度勾配部容器とブッシングの間を第二の固体
絶縁体で仕切り、前記温度勾配部容器内の引出し導体を
真空絶縁又はガス絶縁により電気的、熱的に絶縁してな
る極低温ケーブルの終端接続装置において、前記温度勾
配部容器内に冷却手段を設けたことを特徴とするもので
ある。
In order to achieve this object, the present invention provides:
In the cryogenic vessel, the conductor of the cryogenic cable and the lead-out conductor are connected, and the lead-out conductor is pulled out to the tip of the bushing through the temperature gradient part container and the bushing, and the first between the cryogenic vessel and the temperature gradient part container. The temperature gradient section container and the bushing are partitioned by a second solid insulator, and the lead conductor in the temperature gradient section container is electrically and thermally insulated by vacuum insulation or gas insulation. A terminal device for connecting a cryogenic cable, wherein a cooling means is provided in the temperature gradient section container.

【0008】冷却手段としてはクライオパネルを使用す
るとよく、クライオパネルの冷却媒体としては、温度勾
配部容器内が真空絶縁の場合は液体窒素、ガス絶縁の場
合は液体窒素をガス化した窒素ガスを用いることが好ま
しい。
As the cooling means, a cryopanel is preferably used. As a cooling medium for the cryopanel, liquid nitrogen is used when the temperature gradient part container is vacuum-insulated, and nitrogen gas obtained by gasifying liquid nitrogen is used when the inside of the temperature gradient part is gas-insulated. Preferably, it is used.

【0009】上記のように温度勾配部容器内にクライオ
パネル等の冷却手段を設置すると、真空絶縁の場合は、
クライオパネル等の冷却手段が低温に冷却されること
で、温度勾配部容器内で発生する材料の放出ガスのほと
んどがクライオパネル等の冷却手段に吸着されるので、
初期真空引きの後、再真空引きを行うことなく、真空度
を維持することが可能となる。これにより電気絶縁性能
の長期間維持を達成できる。またガス絶縁の場合は、ク
ライオパネル等の冷却手段によって温度勾配部容器内の
絶縁ガスの温度が低下する。絶縁ガスは温度が低下する
と相対密度が高くなって電気絶縁耐力が向上するため、
装置を大型化することなく電気絶縁性能を向上させるこ
とが可能である。
When a cooling means such as a cryopanel is installed in the temperature gradient section container as described above, in the case of vacuum insulation,
Since the cooling means such as the cryopanel is cooled to a low temperature, most of the released gas of the material generated in the temperature gradient part container is adsorbed by the cooling means such as the cryopanel.
After the initial evacuation, the degree of vacuum can be maintained without performing evacuation again. Thereby, long-term maintenance of the electrical insulation performance can be achieved. In the case of gas insulation, the temperature of the insulating gas in the temperature gradient section container is reduced by cooling means such as a cryopanel. When the temperature of the insulating gas decreases, the relative density increases and the electrical insulation strength improves,
It is possible to improve the electrical insulation performance without increasing the size of the device.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照して詳細に説明する。 〔実施形態1〕図1は本発明の一実施形態を示す。図に
おいて、1は超電導ケーブル、3は超電導ケーブル1の
端部に設けられたストレスコーン、5は一端が超電導ケ
ーブル1の導体1aに接続された引出し導体、5aは引
出し導体5の中間接続部である。
Embodiments of the present invention will be described below in detail with reference to the drawings. [Embodiment 1] FIG. 1 shows an embodiment of the present invention. In the figure, 1 is a superconducting cable, 3 is a stress cone provided at an end of the superconducting cable 1, 5 is a lead conductor having one end connected to the conductor 1a of the superconducting cable 1, and 5a is an intermediate connecting portion of the lead conductor 5. is there.

【0011】超電導ケーブルの導体1aと引出し導体5
の接続部は極低温容器7に収納されており、極低温容器
7内には超電導ケーブル1内と同じく液体窒素が充填さ
れている。9は極低温容器7へ供給する液体窒素の量を
調整するバルブである。引出し導体5は極低温容器7内
から温度勾配部容器11内を通り、ブッシング13内を
通って、他端がブッシング13の先端で大気中に引き出
されている。極低温容器7と温度勾配部容器11の間は
第一の固体絶縁体15で仕切られ、温度勾配部容器11
とブッシング13の間は第二の固体絶縁体17で仕切ら
れている。
The conductor 1a and the lead conductor 5 of the superconducting cable
Is connected to the cryogenic container 7 and the cryogenic container 7 is filled with liquid nitrogen as in the superconducting cable 1. Reference numeral 9 denotes a valve for adjusting the amount of liquid nitrogen supplied to the cryogenic container 7. The lead conductor 5 passes from inside the cryogenic vessel 7 to inside the temperature gradient section vessel 11, passes through the bushing 13, and has the other end drawn out to the atmosphere at the tip of the bushing 13. The cryogenic vessel 7 and the temperature gradient section vessel 11 are partitioned by a first solid insulator 15 and the temperature gradient section vessel 11
The bushing 13 is partitioned by a second solid insulator 17.

【0012】極低温容器7と第一の固体絶縁体15は、
熱の浸入を少なくするため、スーパーインシュレーショ
ン等を含む真空断熱容器19で覆われている。21は真
空引き口である。また温度勾配部容器11内は真空にし
てあり、これによって引出し導体5と容器11間を電気
的、熱的に絶縁している。23は温度勾配部容器11の
真空引き口、25は安全弁である。ブッシング13は、
碍管27、ストレスコーン29、シールド31、碍管2
7内に充填された絶縁油(又はSF6 ガス)33等で構
成されている。
The cryogenic container 7 and the first solid insulator 15 are
In order to reduce heat intrusion, it is covered with a vacuum insulation container 19 containing super insulation or the like. 21 is a vacuum port. Further, the inside of the temperature gradient section container 11 is evacuated, thereby electrically and thermally insulating the lead conductor 5 and the container 11 from each other. Reference numeral 23 denotes a vacuum port of the temperature gradient section container 11, and reference numeral 25 denotes a safety valve. The bushing 13
Insulator 27, stress cone 29, shield 31, insulator 2
7 is filled with insulating oil (or SF6 gas) 33 or the like.

【0013】この終端接続装置の特徴は、温度勾配部容
器11の内側にクライオパネル35が設置されているこ
とである。このクライオパネル35は円筒状の金属パネ
ル35aに液体窒素配管35bを取り付けたものであ
る。クライオパネル35には流量調整バルブ37を経て
液体窒素が供給され、この液体窒素はクライオパネル3
5の配管35aを流通するうちに熱を吸収し、ガス化し
て、排出バルブ39から排出される。クライオパネル3
5は配管35b内を液体窒素が流れることで極低温にな
り、材料から放出されるガスを吸着して、温度勾配部容
器11内の真空度を維持する働きをする。
A feature of this terminal connection device is that a cryopanel 35 is installed inside the temperature gradient section container 11. The cryopanel 35 is obtained by attaching a liquid nitrogen pipe 35b to a cylindrical metal panel 35a. Liquid nitrogen is supplied to the cryopanel 35 via a flow control valve 37, and this liquid nitrogen is supplied to the cryopanel 3.
While flowing through the pipe 35a of No. 5, heat is absorbed, gasified, and discharged from the discharge valve 39. Cryopanel 3
Reference numeral 5 serves to maintain the degree of vacuum in the temperature gradient part container 11 by adsorbing gas released from the material and becoming extremely low temperature by flowing liquid nitrogen through the pipe 35b.

【0014】クライオパネル35は、フィンをつけたり
波板状にしたりして吸着面積を大きくすれば、真空度の
維持がより確実になる。またクライオパネル35の設置
位置は特に限定されないが、図示のように温度勾配部容
器11内の常温側に設置するのが効果的である。なぜな
らば温度が高い領域ほど材料からの放出ガスが多いから
である。なおクライオパネル35の冷媒には上記のよう
に液体窒素を使用することが好ましい。液体窒素は極低
温ケーブルの冷却に使用されており、システムへの導入
が容易である。
If the cryopanel 35 is provided with a fin or a corrugated plate to increase the suction area, the degree of vacuum can be more reliably maintained. The installation position of the cryopanel 35 is not particularly limited, but it is effective to install the cryopanel 35 on the room temperature side in the temperature gradient section container 11 as shown in the figure. This is because the higher the temperature, the more gas is released from the material. Note that it is preferable to use liquid nitrogen as the refrigerant for the cryopanel 35 as described above. Liquid nitrogen is used to cool cryogenic cables and is easy to introduce into the system.

【0015】〔実施形態2〕図2は本発明の他の実施形
態を示す。この終端接続装置が実施形態1の装置と異な
る点は、温度勾配部容器11内に絶縁ガスを充填するこ
とにより引出し導体5と容器11間を電気的、熱的に絶
縁している点である。41は絶縁ガスの供給口、43は
排出口である。絶縁ガスとしては加圧された窒素ガス又
はSF6 ガスを使用することが好ましい。これ以外の構
成は実施形態1と同じであるので同一部分には同一符号
を付してある。
[Embodiment 2] FIG. 2 shows another embodiment of the present invention. This terminal connection device is different from the device of the first embodiment in that the extraction conductor 5 and the container 11 are electrically and thermally insulated from each other by filling the temperature gradient part container 11 with an insulating gas. . 41 is a supply port of the insulating gas, and 43 is a discharge port. It is preferable to use a pressurized nitrogen gas or SF 6 gas as the insulating gas. The other configuration is the same as that of the first embodiment, so that the same portions are denoted by the same reference numerals.

【0016】この装置では、クライオパネル35が温度
勾配部容器11内のガスの冷却と吸着の両方で作用する
ので、クライオパネル35の温度が絶縁ガスの設定圧力
における凝固点まで低下すると、圧力の維持が困難にな
るだけでなく、絶縁ガスが液化するおそれがある。この
ためクライオパネル35の冷却は、液体窒素をエバポレ
ーター45でガス化して温度調整した窒素ガスで行って
いる。クライオパネル35の温度調整は、窒素ガスの流
量を調整することにより行えるが、必要に応じヒーター
等の温度調整手段を付加してもよい。
In this apparatus, since the cryopanel 35 acts both for cooling and adsorbing the gas in the temperature gradient section container 11, when the temperature of the cryopanel 35 drops to the freezing point at the set pressure of the insulating gas, the pressure is maintained. Not only becomes difficult, but also the insulating gas may be liquefied. For this reason, cooling of the cryopanel 35 is performed using nitrogen gas whose temperature has been adjusted by gasifying liquid nitrogen with the evaporator 45. Although the temperature of the cryopanel 35 can be adjusted by adjusting the flow rate of the nitrogen gas, a temperature adjusting means such as a heater may be added as necessary.

【0017】クライオパネル35により絶縁ガスの温度
が低下すると、同じ設定圧力では絶縁ガスの相対密度が
高くなるため、絶縁耐力が大きくなる。実験によれば、
封入圧力3 kg/mm2 の窒素ガスは、その温度を約100
Kに下げた場合、絶縁耐力が約40%向上することが確
認された。絶縁ガスの絶縁耐力が大きくなれば、その分
終端接続装置を小型化することができる。
When the temperature of the insulating gas is lowered by the cryopanel 35, the relative density of the insulating gas is increased at the same set pressure, so that the dielectric strength is increased. According to experiments,
Nitrogen gas with a filling pressure of 3 kg / mm 2 has a temperature of about 100
It was confirmed that the dielectric strength was improved by about 40% when reduced to K. The higher the dielectric strength of the insulating gas, the smaller the terminal connection device can be.

【0018】[0018]

【発明の効果】以上説明したように本発明によれば、極
低温領域と常温領域の間の温度勾配部に真空絶縁又はガ
ス絶縁を採用した終端接続装置において、真空絶縁の場
合は常時真空引きを行うことなく長期にわたって高真空
度を維持することが可能となり、またガス絶縁の場合は
絶縁ガスの絶縁耐力を向上させることが可能である。し
たがって真空絶縁の場合は終端接続装置の絶縁性能を安
定させることができ、ガス絶縁の場合は終端接続装置を
小型化することができる。
As described above, according to the present invention, in a terminal connection device employing vacuum insulation or gas insulation in a temperature gradient portion between a very low temperature region and a normal temperature region, in the case of vacuum insulation, the vacuum is always evacuated. It is possible to maintain a high degree of vacuum for a long period of time without performing the above, and in the case of gas insulation, it is possible to improve the dielectric strength of the insulating gas. Therefore, in the case of vacuum insulation, the insulation performance of the terminal connection device can be stabilized, and in the case of gas insulation, the terminal connection device can be downsized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態を示す断面図。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】 本発明の他の実施形態を示す断面図。FIG. 2 is a cross-sectional view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:超電導ケーブル 5:引出し導体 7:極低温容器 11:温度勾配部容器 13:ブッシング 15:第一の固体絶縁体 17:第二の固体絶縁体 35:クライオパネル 1: superconducting cable 5: lead conductor 7: cryogenic vessel 11: temperature gradient section vessel 13: bushing 15: first solid insulator 17: second solid insulator 35: cryopanel

───────────────────────────────────────────────────── フロントページの続き (72)発明者 向山 晋一 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 吉田 俊朗 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 岩田 良浩 神奈川県横浜市鶴見区江ケ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 石井 英雄 神奈川県横浜市鶴見区江ケ崎町4番1号 東京電力株式会社電力技術研究所内 (72)発明者 本庄 昇一 神奈川県横浜市鶴見区江ケ崎町4番1号 東京電力株式会社電力技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinichi Mukaiyama 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Inside Furukawa Electric Co., Ltd. (72) Inventor Toshiro Yoshida 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Inventor Yoshihiro Iwata 4-1 Egasakicho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Tokyo Electric Power Company Research Institute (72) Inventor Hideo Ishii 4 Egasakicho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture No. 1 Tokyo Electric Power Co., Inc. Electric Power Research Laboratory (72) Inventor Shoichi Honjo 4-1, Egasaki-cho, Tsurumi-ku, Yokohama, Kanagawa

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】極低温容器内で極低温ケーブルの導体と引
出し導体とを接続し、その引出し導体を温度勾配部容器
及びブッシングを通してブッシングの先端に引き出し、
前記極低温容器と温度勾配部容器との間を第一の固体絶
縁体で仕切り、前記温度勾配部容器とブッシングの間を
第二の固体絶縁体で仕切り、前記温度勾配部容器内の引
出し導体を真空絶縁又はガス絶縁により電気的、熱的に
絶縁してなる極低温ケーブルの終端接続装置において、
前記温度勾配部容器内に冷却手段を設けたことを特徴と
する極低温ケーブルの終端接続装置。
1. A cryogenic cable conductor and a lead conductor are connected in a cryogenic container, and the lead conductor is drawn out to the tip of the bushing through the temperature gradient part container and the bushing.
A first solid insulator partitions the cryogenic container and the temperature gradient unit container, a second solid insulator partitions the temperature gradient unit container and the bushing, and a lead-out conductor in the temperature gradient unit container. In a terminal connection device of a cryogenic cable, which is electrically and thermally insulated by vacuum insulation or gas insulation,
A terminal connection device for a cryogenic cable, wherein cooling means is provided in the temperature gradient section container.
【請求項2】冷却手段がクライオパネルであり、クライ
オパネルの冷却媒体が、温度勾配部容器内が真空絶縁の
場合は液体窒素、ガス絶縁の場合は液体窒素をガス化し
た窒素ガスであることを特徴とする請求項1記載の極低
温ケーブルの終端接続装置。
2. The cooling means is a cryopanel, and the cooling medium of the cryopanel is liquid nitrogen when the temperature gradient part container is vacuum-insulated, and nitrogen gas obtained by gasifying liquid nitrogen when the inside of the temperature gradient part is gas-insulated. The terminal connection device for a cryogenic cable according to claim 1, wherein:
JP6083998A 1998-03-12 1998-03-12 Terminal connecting apparatus of cryogenic cable Pending JPH11262162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6083998A JPH11262162A (en) 1998-03-12 1998-03-12 Terminal connecting apparatus of cryogenic cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6083998A JPH11262162A (en) 1998-03-12 1998-03-12 Terminal connecting apparatus of cryogenic cable

Publications (1)

Publication Number Publication Date
JPH11262162A true JPH11262162A (en) 1999-09-24

Family

ID=13153943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6083998A Pending JPH11262162A (en) 1998-03-12 1998-03-12 Terminal connecting apparatus of cryogenic cable

Country Status (1)

Country Link
JP (1) JPH11262162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005086306A1 (en) * 2004-03-04 2005-09-15 Sumitomo Electric Industries, Ltd. Terminal structure of polyphase superconducting cable
KR20180055479A (en) * 2016-11-17 2018-05-25 한국전기연구원 Terminal device for superconducting cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005086306A1 (en) * 2004-03-04 2005-09-15 Sumitomo Electric Industries, Ltd. Terminal structure of polyphase superconducting cable
JP2005253204A (en) * 2004-03-04 2005-09-15 Sumitomo Electric Ind Ltd Terminal structure of polyphase superconducting cable
KR20180055479A (en) * 2016-11-17 2018-05-25 한국전기연구원 Terminal device for superconducting cable

Similar Documents

Publication Publication Date Title
US7709738B2 (en) Electrical bushing for a superconductor element
EP1283576B1 (en) Terminal structure of extreme-low temperature equipment
US6262375B1 (en) Room temperature dielectric HTSC cable
US8134072B2 (en) System having a superconductive cable
US3835239A (en) Current feeding arrangement for electrical apparatus having low temperature cooled conductors
US3386256A (en) Flexible heat-conducting mount
US3463869A (en) Refrigerated underground transmission line and process
US7708577B2 (en) Electrical connection structure for a superconductor element
JPH11262162A (en) Terminal connecting apparatus of cryogenic cable
EP0297061B1 (en) Vacuum insulated superconducting electrical conductor employing a getter device
JP2002280628A (en) Terminal structure for cryogenic equipment
US4716742A (en) Cryogenic system for radiation detectors
JP3181513B2 (en) Terminal structure of cryogenic cable
JP2760858B2 (en) Cryostat for superconducting device
JPH0317936A (en) Ion beam generating device
JPH11204324A (en) Superconducting apparatus
JPS6161715B2 (en)
JP3103232B2 (en) Power receiving equipment
Graneau et al. Three functions of vacuum in cryocables
JPS6349917B2 (en)
JPH10283854A (en) Termination connecting part for superconductive cable
KR102318014B1 (en) End closure of a superconductive electric cable
JP2000133100A (en) Gas-blast circuit-breaker
Graneau Vacuum insulation for cryocables
JP2000069626A (en) Gas-insulated switchgear