JPH11260621A - Bismuth-substituted garnet thick film material and its manufacture - Google Patents

Bismuth-substituted garnet thick film material and its manufacture

Info

Publication number
JPH11260621A
JPH11260621A JP10082566A JP8256698A JPH11260621A JP H11260621 A JPH11260621 A JP H11260621A JP 10082566 A JP10082566 A JP 10082566A JP 8256698 A JP8256698 A JP 8256698A JP H11260621 A JPH11260621 A JP H11260621A
Authority
JP
Japan
Prior art keywords
thick film
garnet
bismuth
substituted
film material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10082566A
Other languages
Japanese (ja)
Inventor
Tadakuni Sato
忠邦 佐藤
Kazumitsu Endo
和光 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP10082566A priority Critical patent/JPH11260621A/en
Publication of JPH11260621A publication Critical patent/JPH11260621A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • H01F10/24Garnets
    • H01F10/245Modifications for enhancing interaction with electromagnetic wave energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-performance Bi-substituted garnet thick film material having various superior characteristics, such as the saturation magnetic field, etc., by mixing a specific wt.% platinum oxide in a single-crystal thick film. SOLUTION: A TbBi garnet thick film composed of Tb1.9 Bi1.1 Fe4.8 Al0.2 O3 containing 0-3.0 wt.% (excluding 0 wt.%) is grown on a neodymium-gallium- garnet(NGG) substrate to a thickness of about 600 μm by liquid phase growth by using high-purity Tb2 O3 , Fe2 O3 , Al2 O3 , Bi2 O3 , PbO, and Be2 O3 powder as raw materials and PbO-Bi2 O3 -B2 O3 as flux. Then the thick film is heat-treated in the temperature range of 950-1,130 deg.C by adjusting the oxygen concentration in the atmosphere to 10-100%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ファラデー効果を
有する光学用ガーネット材料の中でも、特にビスマス
(Bi)置換型ガーネット厚膜材料及びその製造方法に
関し、特に、液相成長法(LPE法)にて育成した(T
b,Bi)3(Fe,Al)512系ガーネット単結晶厚
膜材料及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical garnet material having a Faraday effect, and more particularly to a bismuth (Bi) -substituted garnet thick film material and a method for producing the same, and more particularly to a liquid phase growth method (LPE method). (T
b, Bi) 3 (Fe, Al) 5 O 12 -based garnet single crystal thick film material and a method for producing the same.

【0002】[0002]

【従来の技術】従来、光通信において、ファラデー回転
を応用したデバイスが開発、実用化されている。また、
光通信の中でも半導体レーザを使用した場合、光ファイ
バーケーブルやコネクタ等からの反射光が発振部に戻る
と発振が不安定となったり、停止する状態となる。それ
ゆえ、戻り光を遮断し、安定した発振状態を確保するた
めに、光アイソレータが使用されている。
2. Description of the Related Art Hitherto, devices using Faraday rotation in optical communication have been developed and put into practical use. Also,
When a semiconductor laser is used in optical communication, oscillation becomes unstable or stops when reflected light from an optical fiber cable, a connector, or the like returns to the oscillation unit. Therefore, an optical isolator is used to block return light and secure a stable oscillation state.

【0003】大きなファラデー回転を有するBi置換型
希土類鉄ガーネットは、LPE法、フラックス法等で育
成され、近赤外線領域でのアイソレータに使用されてい
る。特に、LPE法で育成されるガーネット厚膜は、生
産性に優れ、現在では、ほとんどこの方法で生産されて
いる。
A Bi-substituted rare earth iron garnet having a large Faraday rotation is grown by an LPE method, a flux method, or the like, and is used as an isolator in the near infrared region. In particular, a garnet thick film grown by the LPE method has excellent productivity, and is currently mostly produced by this method.

【0004】このLPE法で製造された市販のBi置換
型ガーネット厚膜は、GdBi系ガーネットとTbBi
系ガーネットに分けられる。前者は、結晶の格子定数が
大きいので、NGG基板(格子定数約12.509オン
グストローム)上に、後者は、結晶の格子定数が小さい
ので、SGGG基板(格子定数約12.496オングス
トローム)上に育成するが、これは、厚膜を安定して育
成することができるためで、製造上の常識となってい
る。
A commercially available Bi-substituted garnet thick film produced by the LPE method is composed of GdBi-based garnet and TbBi.
Divided into garnets. The former is grown on an NGG substrate (with a lattice constant of about 12.509 angstroms) because of the large lattice constant of the crystal, and the latter is grown on an SGGG substrate (with a lattice constant of about 12.496 angstroms) because of the small lattice constant of the crystal. However, this is because it is possible to stably grow a thick film, and is common sense in manufacturing.

【0005】市販されているGdBi系ガーネットは、
必要な印加磁界が小さくて済むものの、温度特性(使用
可能温度範囲が低温域で狭い、温度変化率が大きい)が
劣るという欠点がある。一方、TbBi系ガーネット
は、温度特性は良いが、高い印加磁界を要するという欠
点がある。また、TbBi系ガーネットは、GdBi系
ガーネットに比べ、構成元素の種類が多いことから格子
定数のばらつきが本質的に大きくなるSGGG基板を使
用するので、結晶欠陥や歪が発生しやすく、均質化も劣
るという傾向があった。しかしながら、市場の要求は、
温度特性の良好なTbBi系ガーネットの使用が多くな
っている。
[0005] Commercially available GdBi-based garnets are:
Although the required applied magnetic field can be small, there is a disadvantage that the temperature characteristics (the usable temperature range is narrow in a low temperature range and the temperature change rate is large) are inferior. On the other hand, TbBi-based garnets have good temperature characteristics, but have the drawback of requiring a high applied magnetic field. In addition, since the TbBi-based garnet uses an SGGG substrate in which the variation in lattice constant is essentially large due to the large number of types of constituent elements as compared with the GdBi-based garnet, crystal defects and distortion are likely to occur and homogenization is also achieved. There was a tendency to be inferior. However, market demands are
The use of TbBi-based garnets having good temperature characteristics is increasing.

【0006】TbBi系ガーネットの基本組成をその育
成に適合するとされるSGGG基板にて育成すると、ガ
ーネットの組成は、Tb2.2Bi0.8Fe512近傍とな
る。このTbBi系ガーネット厚膜の光学特性は、ファ
ラデー回転能(θF)が約750deg/cm、室温近
傍におけるファラデー回転の温度変化率(θF/T)が約
0.04deg/℃、挿入損失(I.L.)が0.1〜0.
3dB、飽和磁界(挿入損失の低下が飽和に達するため
に必要な最小の磁場である飽和印加磁界)Hsが約80
0Oeとなっている。また、この結晶においては、約5
00μm以上での厚膜化は、割れや結晶欠陥発生のた
め、製造が容易ではない。
When the basic composition of a TbBi-based garnet is grown on an SGGG substrate which is considered to be suitable for its growth, the composition of the garnet is in the vicinity of Tb 2.2 Bi 0.8 Fe 5 O 12 . The optical characteristics of the TbBi-based garnet thick film include a Faraday rotation capability (θ F ) of about 750 deg / cm, a temperature change rate (θ F / T ) of Faraday rotation near room temperature of about 0.04 deg / ° C., and an insertion loss ( IL) is 0.1 to 0.1.
3 dB, a saturation magnetic field (saturation applied magnetic field which is a minimum magnetic field required for insertion loss to reach saturation) Hs is about 80
0 Oe. In this crystal, about 5
If the thickness is greater than 00 μm, the production is not easy because cracks and crystal defects occur.

【0007】そのため、TbBi系ガーネットを製造す
る際、θFを向上させることにより、必要膜厚を低減さ
せている。それは、従来通りSGGG基板上に育成し、
TbBi系ガーネットの基本組成に対し、Tbの一部を
HoあるいはYbで置換することにより、Bi組成値を
増加するものである。即ち、イオン半径の大きなBiイ
オンを増加させるために、イオン半径の小さなHoやY
bを多量に置換させている。Ho系ガーネットやYb系
ガーネットは、Tb系ガーネットに比べ、室温近傍にお
ける飽和磁化(4πMs)が著しく高いために、TbH
oBi系ガーネットやTbYbBi系ガーネットのHs
は、1000〜1200Oe程度となってしまう。ま
た、TbBi系ガーネットの特徴であった良好な温度特
性も劣化する傾向となる。
Therefore, when manufacturing TbBi-based garnet, the required film thickness is reduced by improving θ F. It grows on a SGGG substrate as before,
The Bi composition value is increased by replacing a part of Tb with Ho or Yb with respect to the basic composition of the TbBi-based garnet. That is, in order to increase the number of Bi ions having a large ion radius, Ho or Y having a small ion radius is used.
b is replaced in large quantities. Ho-based garnets and Yb-based garnets have significantly higher saturation magnetization (4πMs) near room temperature than Tb-based garnets.
Hs of oBi garnet and TbYbBi garnet
Is about 1000 to 1200 Oe. In addition, good temperature characteristics, which were characteristics of the TbBi-based garnet, tend to deteriorate.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の問題
点を解決し、Hs等の諸特性に優れた高性能なBi置換
型ガーネット厚膜材料及びその製造方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a high-performance Bi-substituted garnet thick film material having excellent characteristics such as Hs and a method for producing the same. I do.

【0009】[0009]

【課題を解決するための手段】そこで、本発明者らは、
SGGG基板に比べ、格子定数の大きいNGG基板にて
TbBi系ガーネットを育成することにより、HoやY
b等のイオン半径の小さな希土類での置換をしないで、
Bi組成値の増大を図ることにより、4πMsと関係す
るHsを押さえて、TbBi系ガーネットの改善を試み
た。その結果、TbBi系ガーネットにて、Feの一部
を少量のAlで置換する手法も含めて、特定なメルト組
成にて、YbやHo置換量を必要とせずに、ファラデー
回転能が向上できる条件を見出した。
Means for Solving the Problems Accordingly, the present inventors have:
By growing a TbBi-based garnet on an NGG substrate having a larger lattice constant than an SGGG substrate, Ho and Y
Do not substitute with rare earths having a small ionic radius such as b.
By increasing the Bi composition value, Hs related to 4πMs was suppressed, and an attempt was made to improve the TbBi-based garnet. As a result, in a TbBi-based garnet, including a method of substituting a part of Fe with a small amount of Al, it is possible to improve the Faraday rotation performance without a need for Yb or Ho substitution amount with a specific melt composition. Was found.

【0010】更に、Tb,Bi,Fe,Alを主成分と
するガーネット厚膜において、このガーネット中にPt
2を0〜3.0wt%含有することにより、I.L.が明
らかに低減することを見出した。
Furthermore, in a garnet thick film mainly composed of Tb, Bi, Fe, and Al, Pt is contained in the garnet.
The O 2 by containing 0~3.0wt%, found that I.L. Is clearly reduced.

【0011】本発明によれば、TbBi系ガーネット材
料としての波長1.55μmにおける要求特性をθFを8
00deg/cm以上、Hsを1000Oe以下、θ
F/Tを0.07deg/℃以下、ファラデー回転角が約4
5degにおけるI.L.が0.2dB以下(好ましくは
0.1dB以下)のBi置換型ガーネット厚膜材料が得
られる。
According to the present invention, the required characteristic at a wavelength of 1.55 μm as a TbBi-based garnet material is θ F of 8
00 deg / cm or more, Hs is 1000 Oe or less, θ
F / T less than 0.07 deg / ° C, Faraday rotation angle about 4
A Bi-substituted garnet thick film material having an IL of 0.2 dB or less (preferably 0.1 dB or less) at 5 deg is obtained.

【0012】即ち、本発明は、ガーネット基板上にLP
E法により育成したTb,Bi,Fe,Alを主成分と
するガーネット単結晶厚膜からなるBi置換型ガーネッ
ト厚膜材料において、前記単結晶厚膜中にPtO2を0
〜3.0wt%(0を含まず)含有するBi置換型ガー
ネット厚膜材料である。
That is, according to the present invention, the LP
In a Bi-substituted garnet thick film material composed of a garnet single crystal thick film mainly composed of Tb, Bi, Fe, and Al grown by the E method, PtO 2 is reduced to 0 in the single crystal thick film.
It is a Bi-substituted garnet thick film material containing up to 3.0 wt% (excluding 0).

【0013】また、本発明は、前記単結晶厚膜を、NG
G基板上に育成する上記のBi置換型ガーネット厚膜材
料の製造方法である。
[0013] Further, the present invention provides the above-mentioned single crystal thick film,
This is a method for producing the above Bi-substituted garnet thick film material grown on a G substrate.

【0014】また、本発明は、前記単結晶厚膜を、95
0〜1130℃の温度範囲で保持する熱処理を行う上記
のBi置換型ガーネット厚膜材料の製造方法である。
Further, the present invention provides a method for manufacturing a semiconductor device comprising:
The method for producing a Bi-substituted garnet thick film material according to the above, wherein the heat treatment is performed at a temperature in the range of 0 to 1130 ° C.

【0015】また、本発明は、前記単結晶厚膜を、10
〜100%の雰囲気の酸素濃度範囲で熱処理を行う上記
のBi置換型ガーネット材料の製造方法である。
Further, the present invention provides the above-mentioned single crystal thick film,
This is a method for producing the Bi-substituted garnet material, wherein the heat treatment is performed in an oxygen concentration range of an atmosphere of about 100%.

【0016】本発明において、PtO2を0〜3.0wt
%(0を含まず)としたのは、PtO2の微量の含有に
よってもI.L.の低減効果が認められ、3.0wt%を
越えた場合には、イオンバランスの不整合に起因する
I.L.の著しい増大が認められるからである。
In the present invention, PtO 2 is added in an amount of 0 to 3.0 wt.
% (Excluding 0) means that the effect of reducing IL is recognized even when a small amount of PtO 2 is contained, and when it exceeds 3.0 wt%, it is caused by mismatch of ion balance. This is because a remarkable increase in IL is observed.

【0017】また、この組成のTbBi系ガーネットを
NGG基板上に育成するのは、SGGG基板上での育成
に比べ、YbやHoの高いHsをもたらすイオン半径の
小さな元素との置換なしにBi組成値を増加させること
ができるからである。
The growth of the TbBi-based garnet of this composition on an NGG substrate is different from the growth on an SGGG substrate in that the Bi composition is not replaced by an element having a small ionic radius that provides high Ys or Ho and Hs. This is because the value can be increased.

【0018】更に、本発明は、このガーネット膜を酸素
濃度が10〜100%の雰囲気中で、950〜1130
℃の温度範囲で熱処理することにより、I.L.の低減を
実現している。熱処理雰囲気の酸素濃度を10〜100
%としたのは、10%未満では酸素の欠乏により、ガー
ネット構成元素のイオンバランスの修正が不十分とな
り、I.L.が増大するためである。また、熱処理温度を
950〜1130℃の範囲としたのは、950℃未満で
は、結晶の均質化が不十分でI.L.が殆ど低減せず、一
方、1130℃を越えると、ガーネットの分解が生じ、
I.L.が著しく増大するからである。
Further, according to the present invention, the garnet film is prepared in an atmosphere having an oxygen concentration of 10 to 100% in the atmosphere of 950 to 1130.
By performing heat treatment in a temperature range of ° C., a reduction in IL is realized. Oxygen concentration in heat treatment atmosphere is 10-100
The reason for setting the percentage is that if it is less than 10%, due to lack of oxygen, correction of the ion balance of the garnet constituent elements becomes insufficient and IL increases. Further, the reason why the heat treatment temperature is in the range of 950 to 1130 ° C. is that if the temperature is lower than 950 ° C., the homogenization of the crystals is insufficient and the IL is hardly reduced. Occurs,
This is because IL is significantly increased.

【0019】このようなBi置換型ガーネットの液相成
長は、次のようにして行われている。白金るつぼの中
に、PbO、酸化ビスマス(Bi23)、酸化ホウ素
(B23)等をフラックス成分とし、ガーネット成分
[酸化テルビウム(Tb23)、酸化第二鉄(Fe
23)、酸化アルミニウム(Al23)等]を約900
〜1100℃にて溶解して溶液(メルト)を作製した
後、降温し、過飽和溶液状態とする。そのメルトに、ガ
ーネット基板を浸漬し、長時間回転することにより、B
i置換型ガーネット厚膜を育成する。
The liquid phase growth of such a Bi-substituted garnet is performed as follows. In a platinum crucible, PbO, bismuth oxide (Bi 2 O 3 ), boron oxide (B 2 O 3 ) and the like are used as flux components, and garnet components [terbium oxide (Tb 2 O 3 ), ferric oxide (Fe)
2 O 3 ), aluminum oxide (Al 2 O 3 ) etc.
After dissolving at 1100 ° C. to prepare a solution (melt), the temperature is lowered to obtain a supersaturated solution state. By dipping the garnet substrate in the melt and rotating for a long time,
Grow i-substituted garnet thick films.

【0020】育成されるガーネット単結晶の格子定数
は、この基板の格子定数とほぼ同程度に拘束されること
になり、原子の構成比が決定される。従って、過飽和成
分の濃度管理が極めて重要となり、溶液の温度や流動状
態によって育成ガーネットの組成や結晶性が変化し、材
料特性の変化や結晶欠陥や割れの発生を生じる。このL
PE法の現状は、溶液の組成、温度制御や基板との格子
定数差や基板の回転数等を制御することにより、結晶育
成状況を管理している。しかしながら、育成の最適状態
は極めて狭い範囲に限定され、独立に要因を変化させて
調整することは不可能に近い。
The lattice constant of the garnet single crystal to be grown is constrained to be substantially the same as the lattice constant of this substrate, and the composition ratio of atoms is determined. Therefore, it is extremely important to control the concentration of the supersaturated component, and the composition and crystallinity of the grown garnet change depending on the temperature and the flow state of the solution, resulting in a change in material properties and the occurrence of crystal defects and cracks. This L
In the current state of the PE method, the crystal growth state is managed by controlling the composition of the solution, the temperature, the lattice constant difference with the substrate, the number of rotations of the substrate, and the like. However, the optimal state of breeding is limited to a very narrow range, and it is almost impossible to adjust by independently changing the factors.

【0021】特に、ガーネット結晶厚膜の割れ発生は、
育成基板とガーネットの格子定数や熱膨張が異なること
が主要因となっている。従って、育成されるガーネット
の膜厚が大きくなるに従い、割れ発生の頻度が高くな
る。従って、ガーネット膜のファラデー回転能を向上
し、必要膜厚を低減することは、割れ発生の低減効果を
もたらし、工業上、有益となる。
In particular, cracking of the garnet crystal thick film is caused by
The main factor is that the growth substrate and the garnet have different lattice constants and thermal expansions. Therefore, as the thickness of the grown garnet increases, the frequency of occurrence of cracks increases. Therefore, improving the Faraday rotation capability of the garnet film and reducing the required film thickness brings about the effect of reducing the occurrence of cracks, which is industrially beneficial.

【0022】なお、LPE法によるTbBi系ガーネッ
ト膜の文献としては、日本応用磁気学会誌Vol.1
1,No.2,1987,P.157や特開昭60−20
8730、特開平2−131216等があげられるが、
これらは、本発明に関する内容を示唆するには至ってい
ない。
The literature of the TbBi-based garnet film by the LPE method is described in Journal of the Japan Society of Applied Magnetics, Vol.
1, No. 2, 1987, p. 157 and JP-A-60-20
8730, JP-A-2-131216 and the like.
These do not suggest the contents related to the present invention.

【0023】なお、本発明に関して比較的良好な光学用
特性を示すガーネットは、主成分の組成比がTb3-x
xFe5-yAly12とした場合、x=0.9〜1.5、
y=0.02〜0.52の範囲で得られている。ただし、
実施例においては、その中でも代表的な組成としてx=
0.9〜1.4、y=0.1〜0.5について示している。
It should be noted that the garnet showing relatively good optical characteristics according to the present invention has a main component composition ratio of Tb 3-x B
If a i x Fe 5-y Al y O 12, x = 0.9~1.5,
It is obtained in the range of y = 0.02 to 0.52. However,
In the examples, among them, x =
0.9 to 1.4 and y = 0.1 to 0.5 are shown.

【0024】本発明に示した特性について、ガーネット
のI.L.は、光の進行方向における減衰に関するもので
あるから小さい方がよく、θFは高いほど、薄型化が可
能となり、θF/Tは0に近いほど、温度安定性がよい。
Hsは低い方が、ガーネット膜の磁化に使用する永久磁
石の特性を低くできたり、小型化、軽量化が実現でき
る。従って、I.L.の低減、θFの向上、θF/Tの低下、
Hsの低下は、工業上、有益となる。
[0024] The characteristics shown in the present invention, I.L. garnet may smaller because it relates to the damping in the traveling direction of the light, theta F is higher, it is possible to thin, theta F / The closer T is to 0, the better the temperature stability.
When Hs is lower, the characteristics of the permanent magnet used for the magnetization of the garnet film can be lowered, and the size and weight can be reduced. Therefore, I.L. Reduction, improve theta F, decrease in theta F / T,
Reduction of Hs is industrially beneficial.

【0025】[0025]

【発明の実施の形態】白金るつぼの中に、PbO、Bi
23、B23等をフラックス成分とし、ガーネット成分
(Tb23、Fe23、Al23等)を約900〜11
00℃にて溶解してメルトを作製した後、降温し、過飽
和溶液状態とする。そのメルトに、ガーネット基板を浸
漬し、長時間回転することにより、Bi置換型ガーネッ
ト厚膜を育成する。
BEST MODE FOR CARRYING OUT THE INVENTION In a platinum crucible, PbO, Bi
2 O 3 , B 2 O 3, etc. are used as flux components, and garnet components (Tb 2 O 3 , Fe 2 O 3 , Al 2 O 3, etc.) are about 900 to 11
After dissolving at 00 ° C. to produce a melt, the temperature is lowered to a supersaturated solution state. A garnet substrate is immersed in the melt and rotated for a long time to grow a Bi-substituted garnet thick film.

【0026】[0026]

【実施例】以下に、本発明の実施例について説明する。Embodiments of the present invention will be described below.

【0027】(実施例1)高純度のTb23、Fe
23、Al23、Bi23、PbO及びB23の粉末を
原料として使用し、PbO−Bi23−B23をフラッ
クスとして、NGG基板(格子定数12.509オング
ストローム)上に、主成分比がTb1.9Bi1.1Fe4.8
Al0.212で、PtO2を約1.0wt%含有する組成
のTbBi系ガーネット厚膜を厚さ約600μmに育成
した。
(Example 1) High purity Tb 2 O 3 , Fe
A powder of 2 O 3 , Al 2 O 3 , Bi 2 O 3 , PbO and B 2 O 3 is used as a raw material, and a PbO—Bi 2 O 3 —B 2 O 3 is used as a flux and an NGG substrate (with a lattice constant of 12. 509 angstroms) and the main component ratio is Tb 1.9 Bi 1.1 Fe 4.8
A TbBi-based garnet thick film having a composition containing about 1.0 wt% of PtO 2 was grown to a thickness of about 600 μm with Al 0.2 O 12 .

【0028】また、これと全く同様のメルトを使用し
て、SGGG基板(格子定数12.496オングストロ
ーム)上に約600μmのガーネット厚膜を育成した。
A garnet thick film having a thickness of about 600 μm was grown on an SGGG substrate (with a lattice constant of 12.496 angstroms) using the same melt as described above.

【0029】次に、これらの試料の基板を除去し、両面
を研磨し、波長1.55μmにおけるファラデー回転が
約45degとなる厚さに調整した。なお、上述した組
成は、これら試料の両面について5点ずつEPMA分析
を行い、その平均値として求めたものである。
Next, the substrates of these samples were removed, and both surfaces were polished to adjust the thickness so that the Faraday rotation at a wavelength of 1.55 μm was about 45 deg. The above-mentioned compositions were obtained by performing EPMA analysis on each side of each of these samples at five points, and calculating the average value.

【0030】次に、これら試料板にSiO2膜による無
反射被覆処理を行った後、電磁石を用いて磁界を約1.
5kOeまで印加していき、波長1.55μmにおい
て、Hs、I.L.、θF及びθF/Tを求めた。その結果を
表1に示す。
Next, after subjecting these sample plates to a non-reflective coating treatment with a SiO 2 film, a magnetic field of about 1.
With application up to 5 kOe, Hs, IL, θ F and θ F / T were determined at a wavelength of 1.55 μm. Table 1 shows the results.

【0031】 [0031]

【0032】表1より、NGG基板上に育成したガーネ
ット厚膜の方が、I.L.、θF及びθF/Tについて明らか
に優れている。また、Hsはやや高くなっているが、実
用上全く問題とはならない程度の差である。従って、N
GG基板上に育成する方が、明らかに有益であるといえ
る。
From Table 1, the garnet thick film grown on the NGG substrate is clearly superior in IL, θ F and θ F / T. Although Hs is slightly higher, it is a difference that does not cause any problem in practical use. Therefore, N
Growing on a GG substrate is clearly beneficial.

【0033】(実施例2)実施例1と同様にして、NG
G基板上に、主成分比がTb1.7Bi1.3Fe4.7Al0.3
12で、PtO2を0,0.5,1.0,2.0,3.0,
4.0,5.0wt%含有する組成のTbBi系ガーネッ
ト厚膜を厚さ約600μmに育成した後、試料を作製
し、諸特性を測定した。
(Embodiment 2) In the same manner as in Embodiment 1, NG
On a G substrate, the main component ratio is Tb 1.7 Bi 1.3 Fe 4.7 Al 0.3
With O 12 , PtO 2 is reduced to 0.5, 1.0, 2.0, 3.0,
After growing a TbBi-based garnet thick film having a composition containing 4.0 and 5.0 wt% to a thickness of about 600 μm, a sample was prepared and various characteristics were measured.

【0034】I.L.とPtO2含有量との関係を図1に
示す。すべての試料(0を除く)について、Hsは、約
750Oe、θFは、約1200deg/cm、θ
F/Tは、約0.05〜0.06deg/℃であった。
FIG. 1 shows the relationship between IL and PtO 2 content. For all samples (except 0), Hs is about 750 Oe, θ F is about 1200 deg / cm, θ
F / T was about 0.05-0.06 deg / ° C.

【0035】図1より、PtO2の含有により、I.L.
は、減少し、PtO2が3.0wt%を越える領域で、
I.L.は、著しく増加している。従って、PtO2の含
有量は、0〜3.0wt%(0を含まず)の範囲が有用
である。望ましくは、0.4〜2.3wt%の範囲が有用
であり、I.L.を0.1dB以下とすることができる。
From FIG. 1, it can be seen that the inclusion of PtO 2 allows the IL.
Decreases in the region where PtO 2 exceeds 3.0 wt%,
IL has increased significantly. Therefore, the content of PtO 2 is preferably in the range of 0 to 3.0 wt% (excluding 0). Desirably, the range of 0.4 to 2.3 wt% is useful, and the IL can be set to 0.1 dB or less.

【0036】(実施例3)実施例1と同様にして、主成
分比がTb2.1Bi0.9Fe4.9Al0.112で、PtO2
を約0.7wt%含有するガーネット厚膜を約700μ
mに育成した。次に、この試料を約50%の酸素濃度雰
囲気中で、950℃、1000℃、1050℃、110
0℃、1130℃、1150℃の各温度で10時間保持
し、熱処理した。次に、これらの試料の両面について研
磨し、波長1.55μmにおけるファラデー回転が約4
5degとなる厚さに調整した後、諸特性を測定した。
Example 3 In the same manner as in Example 1, the main component ratio was Tb 2.1 Bi 0.9 Fe 4.9 Al 0.1 O 12 and PtO 2
Garnet thick film containing about 0.7 wt%
m. Next, this sample was placed in an atmosphere of about 50% oxygen concentration at 950 ° C., 1000 ° C., 1050 ° C., and 110 ° C.
It was kept at 0 ° C., 1130 ° C., and 1150 ° C. for 10 hours and heat-treated. Next, both surfaces of these samples were polished, and Faraday rotation at a wavelength of 1.55 μm was about 4 μm.
After adjusting the thickness to 5 deg, various characteristics were measured.

【0037】I.L.と熱処理温度との関係を図2に示
す。すべての試料について、Hsは、約750Oe、θ
Fは、約900deg/cm、θF/Tは、約0.04de
g/℃であった。
FIG. 2 shows the relationship between IL and the heat treatment temperature. For all samples, Hs is about 750 Oe, θ
F is about 900 deg / cm, θ F / T is about 0.04 deg
g / ° C.

【0038】図2より、熱処理温度が950〜1130
℃の範囲で、熱処理によるI.L.の低減効果が認められ
る。従って、950〜1130℃の温度範囲での熱処理
が有用といえる。
FIG. 2 shows that the heat treatment temperature was 950 to 1130.
Within the range of ° C., the effect of reducing IL by heat treatment is recognized. Therefore, it can be said that heat treatment in a temperature range of 950 to 1130 ° C. is useful.

【0039】(実施例4)実施例3と同様にして、主成
分比がTb1.6Bi1.4Fe4.5Al0.512で、PtO2
を約1.3wt%含有するガーネット厚膜を約600μ
mに育成した。次に、この試料を1050℃の温度で、
雰囲気の酸素濃度を0、10、20、40、60、8
0、100%とし、20時間保持して熱処理した後、試
料を作製し、諸特性を測定した。
Example 4 In the same manner as in Example 3, the main component ratio was Tb 1.6 Bi 1.4 Fe 4.5 Al 0.5 O 12 and PtO 2
Garnet thick film containing about 1.3 wt% of
m. Next, this sample was heated at a temperature of 1050 ° C.
The oxygen concentration of the atmosphere is 0, 10, 20, 40, 60, 8
After keeping the temperature at 0% and 100% and holding for 20 hours, a sample was prepared and various characteristics were measured.

【0040】I.L.と熱処理雰囲気の酸素濃度との関係
を図3に示す。すべての試料について、Hsは、約70
0Oe、θFは、約1300deg/cm、θF/Tは、約
0.06deg/℃であった。
FIG. 3 shows the relationship between IL and the oxygen concentration in the heat treatment atmosphere. For all samples, Hs was about 70
0 Oe and θ F were about 1300 deg / cm, and θ F / T was about 0.06 deg / ° C.

【0041】図3より、熱処理雰囲気の酸素濃度が10
〜100%の範囲で、熱処理によるI.L.の低減効果が
認められる。従って、熱処理雰囲気の酸素濃度は10〜
100%が有用といえる。
FIG. 3 shows that the oxygen concentration in the heat treatment atmosphere was 10%.
In the range of 100%, the effect of reducing the IL by the heat treatment is recognized. Therefore, the oxygen concentration in the heat treatment atmosphere is 10 to
100% is useful.

【0042】[0042]

【発明の効果】本発明によれば、Hs等の諸特性に優れ
た高性能なBi置換型ガーネット厚膜材料及びその製造
方法を提供することができた。従って、本発明のBi置
換型ガーネット厚膜材料を用いることにより、高性能な
ファラデー回転素子が得られる。
According to the present invention, it is possible to provide a high-performance Bi-substituted garnet thick film material having excellent properties such as Hs and a method for producing the same. Therefore, a high-performance Faraday rotator can be obtained by using the Bi-substituted garnet thick film material of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例2において、TbBi系ガーネット厚膜
におけるPtO2含有量とI.L.との関係を示す図。
FIG. 1 is a graph showing the relationship between PtO 2 content and IL in a TbBi-based garnet thick film in Example 2.

【図2】実施例3において、TbBi系ガーネット厚膜
の熱処理温度とI.L.との関係を示す図。
FIG. 2 is a diagram showing a relationship between a heat treatment temperature and IL of a TbBi-based garnet thick film in Example 3.

【図3】実施例4において、TbBi系ガーネット厚膜
の熱処理雰囲気の酸素濃度とI.L.の関係を示す図。
FIG. 3 is a graph showing a relationship between an oxygen concentration and an IL in a heat treatment atmosphere of a TbBi-based garnet thick film in Example 4.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガーネット基板上に液相成長法により育
成したテルビウム(Tb),ビスマス(Bi),鉄(F
e),アルミニウム(Al)を主成分とするガーネット
単結晶厚膜からなるビスマス置換型ガーネット厚膜材料
において、前記単結晶厚膜中に酸化白金(PtO2)を
0〜3.0wt%(0を含まず)含有することを特徴と
するビスマス置換型ガーネット厚膜材料。
1. A terbium (Tb), bismuth (Bi), iron (F) grown on a garnet substrate by a liquid phase growth method.
e), in a bismuth-substituted garnet thick film material composed of a garnet single crystal thick film mainly containing aluminum (Al), platinum oxide (PtO 2 ) is contained in the single crystal thick film in an amount of 0 to 3.0 wt% (0%). (Bismuth-substituted garnet thick film material).
【請求項2】 前記単結晶厚膜を、ネオジム・ガリウム
・ガーネット(NGG)基板上に育成することを特徴と
する請求項1記載のビスマス置換型ガーネット厚膜材料
の製造方法。
2. The method for producing a bismuth-substituted garnet thick film material according to claim 1, wherein the single crystal thick film is grown on a neodymium gallium garnet (NGG) substrate.
【請求項3】 前記単結晶厚膜を、950〜1130℃
の温度範囲で保持する熱処理を行うことを特徴とする請
求項1または2記載のビスマス置換型ガーネット厚膜材
料の製造方法。
3. The method according to claim 1, wherein the single-crystal thick film is heated to 950 to 1130 °
3. The method for producing a bismuth-substituted garnet thick film material according to claim 1, wherein the heat treatment is performed in the temperature range of:
【請求項4】 前記単結晶厚膜を、10〜100%の雰
囲気の酸素濃度範囲で熱処理を行うことを特徴とする請
求項1〜3のいずれかに記載のビスマス置換型ガーネッ
ト材料の製造方法。
4. The method for producing a bismuth-substituted garnet material according to claim 1, wherein the single crystal thick film is subjected to a heat treatment in an oxygen concentration range of 10 to 100% atmosphere. .
JP10082566A 1998-03-13 1998-03-13 Bismuth-substituted garnet thick film material and its manufacture Withdrawn JPH11260621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10082566A JPH11260621A (en) 1998-03-13 1998-03-13 Bismuth-substituted garnet thick film material and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10082566A JPH11260621A (en) 1998-03-13 1998-03-13 Bismuth-substituted garnet thick film material and its manufacture

Publications (1)

Publication Number Publication Date
JPH11260621A true JPH11260621A (en) 1999-09-24

Family

ID=13778048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10082566A Withdrawn JPH11260621A (en) 1998-03-13 1998-03-13 Bismuth-substituted garnet thick film material and its manufacture

Country Status (1)

Country Link
JP (1) JPH11260621A (en)

Similar Documents

Publication Publication Date Title
US6733587B2 (en) Process for fabricating an article comprising a magneto-optic garnet material
WO2003000963A1 (en) Substrate for forming magnetic garnet single crystal film, optical device, and its production method
US6542299B2 (en) Material for bismuth substituted garnet thick film and a manufacturing method thereof
US5466388A (en) Material for magnetostatic-wave devices
JPH09202697A (en) Production of bismuth-substituted type garnet
JPH11260621A (en) Bismuth-substituted garnet thick film material and its manufacture
JPH11260622A (en) Bismuth-substituted garnet thick film material and its manufacture
JPH11263700A (en) Bismuth substitution type garnet thick film material and its production
JP3490143B2 (en) Oxide garnet single crystal
JP2000086396A (en) Bismuth-substituted type garnet thick-film material and its production
JP3217721B2 (en) Faraday element and method of manufacturing Faraday element
JPH1192291A (en) Bismuth substituted type garnet thick film material and its production
JPH11100300A (en) Bismuth-substituted garnet material and its production
JPH11116396A (en) Bismuth-substituted type garnet material and its production
JPH11268993A (en) Bismuth substitution type garnet thick membrane material and its production
JPH1192290A (en) Bismuth substituted type garnet thick film material and its production
JP3649935B2 (en) Magnetic garnet material and Faraday rotator using the same
JP2869951B2 (en) Magnetic garnet single crystal and microwave device material
JPH11236297A (en) Bismuth-substituted garnet thick film material and its production
JPH11268992A (en) Bismuth substitution type garnet thick membrane material and its production
JP3917859B2 (en) Faraday rotator
JPH1192292A (en) Bismuth substituted type garnet single crystal thick film material and its production
JP2003034596A (en) Bismuth substituted-type garnet thick film material, its manufacturing method, and faraday rotator
JPH10101492A (en) Bismuth-substituted garnet material and its production
JPH10101493A (en) Bismuth-substituted garnet material and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040820

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050711