JPH1192292A - Bismuth substituted type garnet single crystal thick film material and its production - Google Patents

Bismuth substituted type garnet single crystal thick film material and its production

Info

Publication number
JPH1192292A
JPH1192292A JP27534997A JP27534997A JPH1192292A JP H1192292 A JPH1192292 A JP H1192292A JP 27534997 A JP27534997 A JP 27534997A JP 27534997 A JP27534997 A JP 27534997A JP H1192292 A JPH1192292 A JP H1192292A
Authority
JP
Japan
Prior art keywords
garnet
single crystal
thick film
film material
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27534997A
Other languages
Japanese (ja)
Inventor
Tadakuni Sato
忠邦 佐藤
Kazumitsu Endo
和光 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP27534997A priority Critical patent/JPH1192292A/en
Publication of JPH1192292A publication Critical patent/JPH1192292A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a bismuth substituted type garnet single crystal thick film material having a small insertion loss (<=0.2 dB) and slight in cracks during crystal growth, crystal defects and variability of characteristics and to provide a method for producing the material. SOLUTION: This bismuth substituted type garnet single crystal thick film material is an optical garnet material obtained by growing a garnet single crystal thick film comprising TbGaBiFeGa as a main component on a garnet substrate by a liquid phase growth method. SGGG is used as the growing substrate. The composition of the optical garnet material is shown by the chemical formula, Tb3-a-b Gda Bib Fe5-x Gax O12 , in which (a) is 0.03-0.50, (x) is 0.02-0.50 and (b) is 0.7-1.3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ファラデー回転効
果を有する光学用ガーネット材料の中でも、特にビスマ
ス(Bi)置換型ガーネット製造に関し、液相成長法
(LPE法)にて育成した(TbGdBi)3(FeG
a)512系ガーネット単結晶厚膜材料及びその製造方
法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of bismuth (Bi) -substituted garnets among optical garnet materials having a Faraday rotation effect, and is grown by liquid phase growth (LPE) (TbGdBi) 3. (FeG
a) The present invention relates to a 5 O 12 -based garnet single crystal thick film material and an improvement in a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、光通信において、ファラデー回転
を応用したデバイスが、開発、実用化されている。半導
体レーザ発振器を使用した光通信では、光ファイバーケ
ーブルやコネクタなどからの反射光が発振部に戻ると発
振が不安定になったり、停止する状態となる。それ故、
戻り光を遮断し、安定した発振状態を確保するために光
アイソレータが使用されている。
2. Description of the Related Art Hitherto, devices using Faraday rotation in optical communication have been developed and put into practical use. In optical communication using a semiconductor laser oscillator, when reflected light from an optical fiber cable, a connector, or the like returns to the oscillation unit, the oscillation becomes unstable or stops. Therefore,
An optical isolator is used to block return light and secure a stable oscillation state.

【0003】大きなファラデー回転能を有するBi置換
型ガーネットは、LPE法、フラックス法等で育成さ
れ、近赤外線領域でのアイソレータに使用されている。
特に、LPE法で育成されるガーネット厚膜は、生産性
に優れており、低価格で材料を製造できるので、主に現
在はLPE法が多く用いられている。
A Bi-substituted garnet having a large Faraday rotation ability is grown by an LPE method, a flux method or the like, and is used as an isolator in the near infrared region.
In particular, the garnet thick film grown by the LPE method is excellent in productivity and can be manufactured at low cost, and thus the LPE method is mainly used at present.

【0004】光アイソレータは、光の進行に関し、順方
向には、より高い透過率を示し、逆方向には、より低い
透過率を示すことが望ましい。従って、ガーネット材料
としては、ファラデー回転角が約450degとなる厚
さにおいて、順方向における損失である挿入損失が0.
3dB以下であることが要求されてきた。
It is desirable that the optical isolator exhibits a higher transmittance in the forward direction and a lower transmittance in the reverse direction with respect to the propagation of light. Therefore, as a garnet material, at a thickness where the Faraday rotation angle is about 450 deg, the insertion loss, which is the loss in the forward direction, is equal to 0.
It has been required to be less than 3 dB.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、最近で
は、通信技術の進展に伴い、更なる低損失化が要望され
てきている。従って、挿入損失が0.2dB以下が望ま
しい。
However, recently, with the development of communication technology, further reduction in loss has been demanded. Therefore, the insertion loss is desirably 0.2 dB or less.

【0006】ところで、前述したLPE法は、溶液中の
過飽和成分の析出により、基板上にBi置換型ガーネッ
トを育成するものである。従って、過飽和成分の濃度管
理が極めて重要となり、溶液の温度や流動状態によって
育成ガーネットの組成や結晶性が変化し、材料特性の変
化や結晶欠陥の割れの発生を生じる欠損があった。この
LPE法の現状は、溶液の温度制御や基板の回路等を制
御することにより、結晶育成状態を管理している。
The above-mentioned LPE method grows a Bi-substituted garnet on a substrate by precipitating a supersaturated component in a solution. Therefore, it is extremely important to control the concentration of the supersaturated component, and the composition and crystallinity of the grown garnet change depending on the temperature and the flow state of the solution, and there are defects that change the material properties and generate cracks in crystal defects. In the current state of the LPE method, the crystal growth state is managed by controlling the temperature of the solution, the circuit of the substrate, and the like.

【0007】しかしながら、Tb、Bi、Feを主成分
とするTbBi系ガーネット材では、結晶の育成状態を
十分に制御できる状態には至っていない。そのため、育
成割れや結晶欠陥の発生を生じ、特性のばらつきを生じ
ている。
However, the TbBi-based garnet material containing Tb, Bi, and Fe as a main component has not reached a state where the crystal growth state can be sufficiently controlled. For this reason, growth cracks and crystal defects are generated, and characteristics are varied.

【0008】その主要因のひとつとして、育成に使用す
るSGGG基板の格子定数aのばらつきが、約0.00
1オングストロームと非常に大きいことがあげられる。
SGGGは(GdCa)3(GaMgZr)512であ
り、結晶格子の同一サイトを複数の元素で構成できる可
能性のあることから、この結晶において、格子定数のば
らつきが大きくなることは不可避であるといえる。
One of the main factors is that the dispersion of the lattice constant a of the SGGG substrate used for growth is about 0.00.
One angstrom is very large.
SGGG is (GdCa) 3 (GaMgZr) 5 O 12 , and there is a possibility that the same site of the crystal lattice can be constituted by a plurality of elements. Therefore, in this crystal, it is inevitable that the dispersion of the lattice constant becomes large. It can be said that.

【0009】一方、TbBi系ガーネットの格子定数
は、約12.497オングストロームが特性上好適な範
囲であり、育成用基板として市販されているものはSG
GGのみである。
On the other hand, the lattice constant of TbBi-based garnet is preferably about 12.497 angstroms in terms of characteristics, and the commercially available growth substrate is SG.
GG only.

【0010】従って、SGGG基板を使用したTbBi
系ガーネット厚膜の製造で、安定した育成状態を得るた
めには、基板の格子定数のばらつきに対応したガーネッ
ト格子配列がとらなければならない。同一結晶系での格
子定数は、一義的には格子を占めるイオン半径にて決定
されることになる。前述したTb、Bi、Feのみを主
成分としたTbBiガーネットにおいては、各格子サイ
トが一種の原子のみで占有されることになり、SGGG
基板の格子定数のばらつきに対応したガーネットの格子
定数のばらつきを実現することは不可能となり、ガーネ
ット結晶の育成割れや結晶欠陥の発生、特性のばらつき
を生じている。
[0010] Therefore, TbBi using the SGGG substrate
In order to obtain a stable growth state in the production of a system-based garnet thick film, a garnet lattice arrangement corresponding to the variation in the lattice constant of the substrate must be obtained. The lattice constant in the same crystal system is determined primarily by the ionic radius occupying the lattice. In the above-described TbBi garnet containing only Tb, Bi, and Fe as main components, each lattice site is occupied by only one kind of atom.
It is impossible to realize variation in the lattice constant of garnet corresponding to the variation in the lattice constant of the substrate, resulting in the growth of garnet crystals, generation of crystal defects, and variation in characteristics.

【0011】よって、本発明は、挿入損失が小さく
(0.2dB以下で)、結晶育成中の割れや結晶欠陥や
特性のばらつきが少ないビスマス置換型ガーネット単結
晶厚膜材料及びその製造方法を提供することを目的とす
るものである。
Accordingly, the present invention provides a bismuth-substituted garnet single-crystal thick film material having a small insertion loss (less than 0.2 dB) and a small number of cracks, crystal defects, and variations in characteristics during crystal growth, and a method for producing the same. It is intended to do so.

【0012】[0012]

【課題を解決するための手段】課題を解決するための手
段は下記の通りである。
Means for solving the problem are as follows.

【0013】本発明は、ガーネット基板上に、液相成長
法によりTb、Gd、Bi、Fe、Gaを主成分とする
ガーネット単結晶厚膜を育成する光学用ガーネット材料
であって、育成用基板にSGGGを使用し、該光学用ガ
ーネッ材料の組成を、Tb3- a-bGdaBibFe5-xGa
x12なる化学式で、a=0.03〜0.50,x=0.0
2〜0.50,b=0.7〜1.3とすることを特徴とす
るビスマス置換型ガーネット単結晶厚膜材料である。
The present invention relates to an optical garnet material for growing a garnet single crystal thick film mainly composed of Tb, Gd, Bi, Fe and Ga on a garnet substrate by a liquid phase growth method. using the SGGG in the composition of the optical for garnet material, Tb 3- ab Gd a Bi b Fe 5-x Ga
x = O 12 , a = 0.03-0.50, x = 0.0
A bismuth-substituted garnet single crystal thick film material characterized by 2 to 0.50, b = 0.7 to 1.3.

【0014】本発明は、単結晶を、930ないし112
0℃の範囲で保持する熱処理を行う前記ビスマス置換型
ガーネット単結晶厚膜材料の製造方法である。
According to the present invention, a single crystal is formed in the range of 930 to 112.
The method for producing a bismuth-substituted garnet single crystal thick film material, wherein the heat treatment is performed at a temperature of 0 ° C.

【0015】本発明は、単結晶を、酸素含有量が5ない
し100%の範囲の雰囲気中で熱処理を行う前記ビスマ
ス置換型ガーネット単結晶厚膜材料の製造方法である。
The present invention is the method for producing a bismuth-substituted garnet single crystal thick film material, wherein the single crystal is heat-treated in an atmosphere having an oxygen content of 5 to 100%.

【0016】[0016]

【発明の実施の形態】以下、本発明のビスマス置換型ガ
ーネット単結晶厚膜材料及びその製造方法について説明
する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a bismuth-substituted garnet single crystal thick film material of the present invention and a method for producing the same will be described.

【0017】まず、はじめに、前記挿入損失が0.2d
B以下のビスマス置換型ガーネットの液晶成長法は、次
のようにして得られる。
First, the insertion loss is 0.2d.
A liquid crystal growth method for a bismuth-substituted garnet of B or less can be obtained as follows.

【0018】白金るつぼの中にPbO、Bi23、B2
3等をフラックス成分とし、ガーネット成分(Tb2
3、Gd23、Fe23、Ga23等)を約900〜1
100℃にて溶解して溶液を作成した後、降温し過冷却
状態(過飽和溶液状態)とする。その溶液中に、ガーネ
ット基板を浸漬し、長時間回転することにより、Bi置
換型ガーネットの厚膜を育成する。
In a platinum crucible, PbO, Bi 2 O 3 , B 2
O 3 and the like are used as flux components, and garnet components (Tb 2 O
3, Gd 2 O 3, Fe 2 O 3, Ga 2 O 3 , etc.) of about 900 to 1
After dissolving at 100 ° C. to prepare a solution, the temperature is lowered to a supercooled state (supersaturated solution state). The garnet substrate is immersed in the solution and rotated for a long time to grow a thick Bi-substituted garnet film.

【0019】このBi置換型ガーネットの中でも(Tb
Bi)3Fe512系ガーネットは、高ファラデー回転能
を有し、ガーネットに対する必要印加磁場も比較的小さ
く、ファラデー回転の温度依存性も小さいといった特徴
を有している。
Among the Bi-substituted garnets, (Tb
Bi) 3 Fe 5 O 12 -based garnet has features such as high Faraday rotation ability, a relatively small applied magnetic field to the garnet, and small temperature dependence of Faraday rotation.

【0020】ここでいう必要印加磁場は、ガーネットの
挿入損低下が飽和状態に達するために必要な最小の飽和
磁場(Hs)であり、物理的にはガーネット内の磁場ス
ピンの方向を完全に揃えるのに必要な印加磁界である。
The required applied magnetic field is the minimum saturation magnetic field (Hs) required for the insertion loss reduction of the garnet to reach a saturated state, and physically completely aligns the directions of the magnetic field spins in the garnet. This is the applied magnetic field required for

【0021】一般には、この印加磁場は、ガーネット膜
の周辺に配置した永久磁石から供給されるものであり、
Hsが約750Oe以下であれば、温度特性が比較的良
好なSm2Co17系永久磁石の標準品を使用することが
でき、マグネットの大径化も必要としないので、本発明
においては飽和磁場Hsを750Oe以下とした。ま
た、ガーネットのファラデー回転角の温度依存性につい
て良好であるTbBi材の特徴を保持するために、−
0.05deg/℃以上(絶対値で0.05deg/℃以
下)とした。そこで、ガーネットの構成元素として、T
b及びFeとわずかに異なるイオン半径を有するGd及
びGaを主成分として含有させることにより、ガーネッ
ト厚膜の育成状態が著しく向上することを見いだした。
また、ガーネット厚膜の組成中Biの含有は、本発明の
製造条件においては、Bi23の含有量とTb3-a-b
aBibFe5-xGax12なる組成式においてb=0.
7〜1.3の範囲とすることにより、結晶性の良好な光
学用結晶を得ることができることがわかった。
Generally, the applied magnetic field is supplied from a permanent magnet disposed around the garnet film.
If Hs is about 750 Oe or less, a standard Sm 2 Co 17 permanent magnet having relatively good temperature characteristics can be used, and it is not necessary to increase the diameter of the magnet. Hs was set to 750 Oe or less. Further, in order to maintain the characteristic of the TbBi material, which is good in the temperature dependence of the Faraday rotation angle of garnet,-
It was 0.05 deg / ° C. or more (0.05 deg / ° C. or less in absolute value). Therefore, as a constituent element of garnet, T
It has been found that the growth state of a garnet thick film is significantly improved by containing Gd and Ga having ionic radii slightly different from b and Fe as main components.
Further, in the composition of the garnet thick film, the content of Bi is determined by the content of Bi 2 O 3 and the content of Tb 3-ab G under the production conditions of the present invention.
d a Bi b Fe 5-x Ga x O 12 b = 0 in the formula made.
It was found that by setting the content in the range of 7 to 1.3, an optical crystal having good crystallinity can be obtained.

【0022】これらの観点に立ち、種々改善を重ねた結
果、本発明におけるBi置換型Tbガーネット材厚膜の
組成は、Tb3-a-bGdaBibFe5-xGax12なる組
成において、a=0.03〜0.50、x=0.02〜0.
50、b=0.7〜1.3とすることにより、光学特性が
良好となる。
[0022] Standing on these aspects, as a result of various improvement, the composition of Bi substituted Tb garnet material thick film in the present invention is the Tb 3-ab Gd a Bi b Fe 5-x Ga x O 12 having a composition , A = 0.03-0.50, x = 0.02-0.0.
By setting 50 and b = 0.7 to 1.3, the optical characteristics are improved.

【0023】ここで、a=0.03〜0.50としたの
は、a=0.03未満ではHsが750Oe以上とな
り、a=0.50を越えるとファラデー回転角の温度依
存性が絶対値で0.05deg/℃以上となるためであ
る。また、b=0.7〜1.3としたのは、b=0.7未
満ではファラデー回転能が低下し、使用膜厚での挿入損
失が0.2dB以上となり、b=1.3を越えると結晶欠
陥が多くなり、挿入損失が0.2dB以上となるからで
ある。
Here, the reason for setting a = 0.03 to 0.50 is that Hs becomes 750 Oe or more when a is less than 0.03, and the temperature dependency of the Faraday rotation angle becomes absolute when a exceeds 0.50. This is because the value becomes 0.05 deg / ° C. or more. Also, the reason why b = 0.7 to 1.3 is that if b is less than 0.7, the Faraday rotation ability is reduced, the insertion loss at the used film thickness becomes 0.2 dB or more, and b = 1.3 is satisfied. If it exceeds, the number of crystal defects increases, and the insertion loss becomes 0.2 dB or more.

【0024】また、x=0.02〜0.50としたのは、
x=0.02未満ではHsが750Oe以上となり、x
=0.50を越えるとファラデー回転角の温度依存性が
絶対値で0.05deg/℃以上となるためである。
The reason for setting x = 0.02 to 0.50 is that
When x is less than 0.02, Hs becomes 750 Oe or more, and x
If it exceeds 0.50, the temperature dependence of the Faraday rotation angle becomes 0.05 deg / ° C. or more in absolute value.

【0025】更に、本発明は、このガーネット膜を酸素
濃度が5〜100%の雰囲気中で、930〜1120℃
の範囲で熱処理することにより、挿入損失の低減を図れ
る。熱処理雰囲気の酸素濃度を5%以上としたのは、5
%未満では酸素の欠乏により、ガーネット元素のイオン
バランスの修正が不十分で、挿入損失が0.2dB以上
となるためである。
Further, according to the present invention, the garnet film is heated in an atmosphere having an oxygen concentration of 5 to 100% at 930 to 1120 ° C.
By performing the heat treatment in the range, the insertion loss can be reduced. The reason why the oxygen concentration in the heat treatment atmosphere is set to 5% or more is 5%.
If the amount is less than%, the correction of the ion balance of the garnet element is insufficient due to the lack of oxygen, and the insertion loss becomes 0.2 dB or more.

【0026】一方、熱処理温度を930℃〜1120℃
の範囲としたのは、930℃未満では、組成の均質化が
不十分で挿入損失が0.2dB以上となり、1120℃
を越えるとガーネット膜の分解が生じ挿入損失が0.2
dB以上となるからである。
On the other hand, the heat treatment temperature is 930 ° C. to 1120 ° C.
When the temperature is lower than 930 ° C., the homogenization of the composition is insufficient, and the insertion loss becomes 0.2 dB or more.
If it exceeds, the garnet film is decomposed and the insertion loss is 0.2
This is because it is not less than dB.

【0027】[0027]

【実施例】次に、実施例について示す。Next, examples will be described.

【0028】(実施例1)以下、本発明の実施例1につ
いて説明する。
(Embodiment 1) Hereinafter, Embodiment 1 of the present invention will be described.

【0029】高純度の酸化テルビニウム(Tb23)、
酸化ガドリニウム(Gd23)、酸化第2鉄(Fe
23)、酸化ガリウム(Ga23)、酸化ビスマス(B
23)、酸化鉛(PbO)、及び酸化ホウ素(B
23)の粉末を原料として使用し、フラックスとしてP
bO−Bi23−B23系を使用して、LPE法により
SGGG基板[組成式(GdCa)3(GaMgZr)5
12]を使用し、組成比がTb2- aGdaBi1Fe4.9
0.112で、a=0.05,0.1,0.2,0.3,0.
4,0.5,0.6なる単結晶ガーネット厚膜を得た。こ
れらの膜厚は約600μmであり、膜面は(888)で
あり、格子定数は約12.495オングストロームであ
った。
High-purity terbinium oxide (Tb 2 O 3 );
Gadolinium oxide (Gd 2 O 3 ), ferric oxide (Fe
2 O 3 ), gallium oxide (Ga 2 O 3 ), bismuth oxide (B
i 2 O 3 ), lead oxide (PbO), and boron oxide (B
2 O 3 ) powder is used as a raw material and the flux is P
Using a bO—Bi 2 O 3 —B 2 O 3 system, an SGGG substrate [composition formula (GdCa) 3 (GaMgZr) 5
Using O 12], the composition ratio of Tb 2- a Gd a Bi 1 Fe 4.9 G
With a 0.1 O 12 , a = 0.05, 0.1, 0.2 , 0.3, 0.3.
A single crystal garnet thick film of 4, 0.5, 0.6 was obtained. These films had a thickness of about 600 μm, a film surface of (888), and a lattice constant of about 12.495 Å.

【0030】次に、これら試料の基板を除去した後、約
40%の酸素を含有した雰囲気中、1050℃で20時
間保持し、熱処理した。次にこれら試料の両面を研磨
し、厚さ約350μmの試料板とした。上述した組成
は、これら試料の両面について10点ずつEPMA分析
を行い、その平均値として求めた。
Next, after removing the substrates of these samples, they were kept at 1050 ° C. for 20 hours in an atmosphere containing about 40% oxygen and heat-treated. Next, both surfaces of these samples were polished to obtain a sample plate having a thickness of about 350 μm. The above-mentioned composition was obtained by conducting EPMA analysis on each side of each of these samples at 10 points and obtaining an average value thereof.

【0031】次に、これらの試料板にSiO2膜による
無反射被覆処理を行った後、電磁石を用いて磁界を約1
KOeまで印加していき、波長1.31μmでの透過率
が飽和値に到達する飽和磁場Hsと挿入損失I.L.を求
めた。
Next, after subjecting these sample plates to a non-reflection coating treatment with a SiO 2 film, a magnetic field of about 1 was applied using an electromagnet.
The voltage was applied up to KOe, and the saturation magnetic field Hs at which the transmittance at a wavelength of 1.31 μm reached a saturation value and the insertion loss IL were determined.

【0032】その結果を図1に示す。Hsが750Oe
以下は、a=0.03以上であり、I.L.が0.2dB以
下は、a=0.01以上の領域であった。
FIG. 1 shows the results. Hs is 750 Oe
In the following, a is 0.03 or more, and when IL is 0.2 dB or less, the area is a = 0.01 or more.

【0033】次に、これら試料のファラデー回転角を測
定したところ、約45degであり、室温近傍における
温度依存性はa=0.5で−0.048deg/℃、a=
0.6で−0.055deg/℃であった。以上の結果か
ら、a=0.03〜0.50の範囲が有用であるといえ
る。
Next, when the Faraday rotation angle of these samples was measured, it was about 45 deg. The temperature dependence near room temperature was a = 0.5, -0.048 deg / ° C., and a =
At 0.6, it was -0.055 deg / ° C. From the above results, it can be said that the range of a = 0.03 to 0.50 is useful.

【0034】(実施例2)以下、本発明の実施例2につ
いて説明する。
(Embodiment 2) Hereinafter, Embodiment 2 of the present invention will be described.

【0035】実施例1と同様にして、組成比がTb1.8
Gd0.2Bi1Fe5-xGax12で、a=0.05,0.
1,0.2,0.3,0.4,0.5,0.6なるガーネッ
ト厚膜を得た後、Hs、I.L.及びファラデー回転角を
測定した。
In the same manner as in Example 1, the composition ratio was Tb 1.8
Gd 0.2 Bi 1 Fe 5-x Ga x O 12 , where a = 0.
After obtaining a garnet thick film of 1, 0.2, 0.3, 0.4, 0.5, 0.6, Hs, IL and Faraday rotation angle were measured.

【0036】その結果を図2に示す。Hsが750Oe
以下は、x=0.02以下であり,I.L.が0.2dB以
下は、x=0.01dB以上の領域であった。
FIG. 2 shows the results. Hs is 750 Oe
In the following, x is equal to or less than 0.02, and when the IL is equal to or less than 0.2 dB, the area is equal to or more than x = 0.01 dB.

【0037】また、ファラデー回転角は、約45deg
であり、室温における温度依存性は、x=0.5で−0.
049deg/℃、x=0.6で−0.057deg/℃
であった。以上の結果から、x=0.02〜0.50の範
囲が有用であるといえる。
The Faraday rotation angle is about 45 deg.
The temperature dependence at room temperature is -0.5 at x = 0.5.
049 deg / ° C, -0.057 deg / ° C at x = 0.6
Met. From the above results, it can be said that the range of x = 0.02 to 0.50 is useful.

【0038】(実施例3)以下、本発明の実施例3につ
いて説明する。
(Embodiment 3) Hereinafter, Embodiment 3 of the present invention will be described.

【0039】実施例1と同様にして、組成比がTb1.8
Gd0.2Bi1Fe4.9Ga0.112なる組成式のガーネッ
ト膜を得た後、熱処理温度を900℃,950℃,10
00℃,1050℃,1150℃とし、約40%の酸素
雰囲気中にて20時間保持して熱処理をした後、Hs、
I.L.、ファラデー回転角を測定した。
In the same manner as in Example 1, the composition ratio was Tb 1.8
After obtaining a garnet film having a composition formula of Gd 0.2 Bi 1 Fe 4.9 Ga 0.1 O 12 , the heat treatment temperature was set to 900 ° C., 950 ° C., and 10 ° C.
After heat-treating at 00 ° C., 1050 ° C., and 1150 ° C. in an oxygen atmosphere of about 40% for 20 hours, Hs,
IL and Faraday rotation angle were measured.

【0040】全ての試料において、Hsは700Oe以
下で、ファラデー回転角は、約45deg、ファラデー
回転の温度依存性は、絶対値で0.045deg/℃以
下であった。
In all the samples, Hs was 700 Oe or less, the Faraday rotation angle was about 45 deg, and the temperature dependence of the Faraday rotation was 0.045 deg / ° C. or less in absolute value.

【0041】I.L.の結果を図3に示す。熱処理温度が
930〜1120℃の範囲でI.L.が顕著に低減してお
り、有用な熱処理温度範囲となる。
FIG. 3 shows the results of IL. When the heat treatment temperature is in the range of 930 to 1120 ° C., the IL is significantly reduced, which is a useful heat treatment temperature range.

【0042】(実施例4)以下、本発明の実施例4につ
いて説明する。
(Embodiment 4) Hereinafter, Embodiment 4 of the present invention will be described.

【0043】実施例3と同様にして、熱処理温度を10
50℃とし、雰囲気の酸素含有量を0,10,20,4
0,60,80,100%とし、20時間保持した後、
Hs、I.L.、ファラデー回転角を測定した。
In the same manner as in Example 3, the heat treatment temperature was set at 10
50 ° C. and the oxygen content of the atmosphere is 0, 10, 20, 4
0,60,80,100% and after holding for 20 hours,
Hs, IL, and Faraday rotation angle were measured.

【0044】全ての試料において、Hsは700Oe以
下で、ファラデー回転角は、約45deg、ファラデー
回転の温度依存性は、絶対値で0.045deg/℃以
下であった。
In all the samples, Hs was 700 Oe or less, the Faraday rotation angle was about 45 deg, and the temperature dependence of Faraday rotation was 0.045 deg / ° C. or less in absolute value.

【0045】I.L.の結果を図4に示す。雰囲気中の酸
素含有量が5〜100%の範囲でI.L.が顕著に低減し
ており、有用な熱処理雰囲気酸素濃度範囲となる。
FIG. 4 shows the results of IL. When the oxygen content in the atmosphere is in the range of 5 to 100%, the IL is remarkably reduced, which is a useful oxygen concentration range in the heat treatment atmosphere.

【0046】[0046]

【発明の効果】以上、説明した通り、挿入損失が0.2
dB以下と小さく、結晶育成中の割れや結晶欠陥や特性
のばらつきが極めて小さく、すぐれたビスマス置換型ガ
ーネット単結晶厚膜材料及びその製造方法を提供でき
る。
As described above, the insertion loss is 0.2.
The present invention can provide an excellent bismuth-substituted garnet single-crystal thick film material and a method for producing the same, which are as small as dB or less and have extremely small cracks, crystal defects, and variations in characteristics during crystal growth.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1においてTb2-aGdaBi1Fe4.9
0.112なる組成式におけるGdの置換量aと飽和印
加磁場Hs及び挿入損I.L.との関係を示す図。
FIG. 1 shows Tb 2-a Gd a Bi 1 Fe 4.9 G in Example 1.
diagram showing the relationship between the substitution amount a saturated applied magnetic field Hs and the insertion loss I.L. of Gd in a 0.1 O 12 having a composition formula.

【図2】実施例2においてTb1.8Gd0.2Bi1Fe5-x
Gax12なる組成式におけるGa置換量xとHs及び
I.L.との関係を示す図。
FIG. 2 shows Tb 1.8 Gd 0.2 Bi 1 Fe 5-x in Example 2.
Diagram showing the relationship between the Ga substitution amount x and Hs and I.L. in Ga x O 12 having a composition formula.

【図3】実施例3において、熱処理温度とI.L.の関係
を示す図。
FIG. 3 is a diagram showing a relationship between a heat treatment temperature and IL in Example 3.

【図4】実施例4において、熱処理雰囲気の酸素濃度と
I.L.の関係を示す図。
FIG. 4 is a diagram showing the relationship between the oxygen concentration in a heat treatment atmosphere and IL in Example 4.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガーネット基板上に、液相成長法により
Tb、Gd、Bi、Fe、Gaを主成分とするガーネッ
ト単結晶厚膜を育成する光学用ガーネット材料であっ
て、育成用基板にSGGGを使用し、該光学用ガーネッ
ト材料の組成を、Tb3-a-bGdaBibFe5-xGax
12なる化学式で、a=0.03〜0.50,x=0.02
〜0.50,b=0.7〜1.3とすることを特徴とする
ビスマス置換型ガーネット単結晶厚膜材料。
1. An optical garnet material for growing a garnet single crystal thick film containing Tb, Gd, Bi, Fe, and Ga as main components on a garnet substrate by a liquid phase growth method. using the composition of the optical for garnet material, Tb 3-ab Gd a Bi b Fe 5-x Ga x O
In the chemical formula 12 , a = 0.03 to 0.50, x = 0.02
Bismuth-substituted garnet single crystal thick film material characterized by being 0.5 to 1.3 and b = 0.7 to 1.3.
【請求項2】 単結晶を、930ないし1120℃の範
囲で保持する熱処理を行うことを特徴とする請求項1記
載のビスマス置換型ガーネット単結晶厚膜材料の製造方
法。
2. The method for producing a bismuth-substituted garnet single crystal thick film material according to claim 1, wherein a heat treatment for maintaining the single crystal at a temperature in a range of 930 to 1120 ° C. is performed.
【請求項3】 単結晶を、酸素含有量が5ないし100
%の範囲の雰囲気中で熱処理を行うことを特徴とする請
求項1及び2記載のビスマス置換型ガーネット単結晶厚
膜材料の製造方法。
3. A single crystal having an oxygen content of 5 to 100.
3. The method for producing a bismuth-substituted garnet single crystal thick film material according to claim 1, wherein the heat treatment is performed in an atmosphere in the range of%.
JP27534997A 1997-09-22 1997-09-22 Bismuth substituted type garnet single crystal thick film material and its production Withdrawn JPH1192292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27534997A JPH1192292A (en) 1997-09-22 1997-09-22 Bismuth substituted type garnet single crystal thick film material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27534997A JPH1192292A (en) 1997-09-22 1997-09-22 Bismuth substituted type garnet single crystal thick film material and its production

Publications (1)

Publication Number Publication Date
JPH1192292A true JPH1192292A (en) 1999-04-06

Family

ID=17554243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27534997A Withdrawn JPH1192292A (en) 1997-09-22 1997-09-22 Bismuth substituted type garnet single crystal thick film material and its production

Country Status (1)

Country Link
JP (1) JPH1192292A (en)

Similar Documents

Publication Publication Date Title
US6733587B2 (en) Process for fabricating an article comprising a magneto-optic garnet material
JPH09328398A (en) Faraday rotator exhibiting angular hysteresis
US4698281A (en) Garnet-type magnetic material high faraday rotation magnetic film containing such a material and process for the production thereof
US5466388A (en) Material for magnetostatic-wave devices
US6542299B2 (en) Material for bismuth substituted garnet thick film and a manufacturing method thereof
JPH09202697A (en) Production of bismuth-substituted type garnet
JPH1192292A (en) Bismuth substituted type garnet single crystal thick film material and its production
JP3217721B2 (en) Faraday element and method of manufacturing Faraday element
JP2000086396A (en) Bismuth-substituted type garnet thick-film material and its production
US6770223B1 (en) Article comprising a faraday rotator that does not require a bias magnet
JPS60134404A (en) Magnetooptical material
JP3132094B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JPH11100300A (en) Bismuth-substituted garnet material and its production
JPH11116396A (en) Bismuth-substituted type garnet material and its production
JPH11260622A (en) Bismuth-substituted garnet thick film material and its manufacture
JPH1031112A (en) Faraday rotator which shows square hysteresis
JP3917859B2 (en) Faraday rotator
JPH1192290A (en) Bismuth substituted type garnet thick film material and its production
JPH11260621A (en) Bismuth-substituted garnet thick film material and its manufacture
JPH11236297A (en) Bismuth-substituted garnet thick film material and its production
JPH11268992A (en) Bismuth substitution type garnet thick membrane material and its production
JPH11268993A (en) Bismuth substitution type garnet thick membrane material and its production
JPH11263700A (en) Bismuth substitution type garnet thick film material and its production
JP2514398B2 (en) Method for growing single crystal for magneto-optical element
JPH111394A (en) Unsaturated bismuth substituted rare-earth iron garnet monocrystal film

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050720