JPH11258613A - Substrate for liquid crystal panel and liquid crystal display device - Google Patents

Substrate for liquid crystal panel and liquid crystal display device

Info

Publication number
JPH11258613A
JPH11258613A JP6577498A JP6577498A JPH11258613A JP H11258613 A JPH11258613 A JP H11258613A JP 6577498 A JP6577498 A JP 6577498A JP 6577498 A JP6577498 A JP 6577498A JP H11258613 A JPH11258613 A JP H11258613A
Authority
JP
Japan
Prior art keywords
liquid crystal
spacer
spacers
crystal panel
rubbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6577498A
Other languages
Japanese (ja)
Inventor
Takao Minato
孝夫 湊
Katsuhiro Suzuki
克宏 鈴木
Shoji Higuchi
章二 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP6577498A priority Critical patent/JPH11258613A/en
Publication of JPH11258613A publication Critical patent/JPH11258613A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PROBLEM TO BE SOLVED: To allow the part except part to be sufficiently rubbed and uniformly aligned so that the spacers are not damaged by the rubbing processing by forming micro spacers composed of photosensitive resin being longitudinally almost in the same direction as the rubbing direction. SOLUTION: Spacer, extending in the direction in which a rubbing direction 102 of a substrate, on which spacers are to be formed, and a longitudinal direction 301 of the spacers almost matches with each other, are formed on a non- picture element part. Since a non-electrode part has a width of approximately 15-30 μm, the spacers are arranged so as to stay within this space. Elliptic, rhombic, parallelogram, straight forms are exemplified as examples of preferred forms of spacers. In such a manner, the spacers are relaxed in pressurization even if rubbed, so they are not shaved nor toppled. Moreover, the area of shaded part with respect to a rubbing method disappears. An alignment restriction force in the neighborhood of the spacers is also in the direction of extending the spacer wall and an abnormal alignment state is not induced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、家庭用、事務用お
よび産業用の情報表示端末として使われる液晶ディスプ
レイに関わる。更に詳しくは一対の基板間隙を保持する
基板間隔支持部材の形状に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display used as a home, office and industrial information display terminal. More specifically, the present invention relates to a shape of a substrate spacing support member for holding a gap between a pair of substrates.

【0002】[0002]

【従来の技術】液晶ディスプレイは、低消費電力、省ス
ペースという特徴を有するのでノートパソコンの表示部
として広く用いられている。近年、大型化が進み、対角
15インチから21インチの大きさのものが製造されつつあ
り、次第にデスクトップパソコンやテレビなどで使われ
ているCRT(Cathod Ray Tube )と入れ替わっていく
ものと予想されている。デスクトップ用の液晶ディスプ
レイには、ネマチック液晶を使用して薄膜トランジスタ
ー(TFT:Thin Film Transistor)で駆動するタイプ
の他に、強誘電性液晶(FLC:Ferroelectric Liquid
Crystal)あるいは反強誘電性液晶(AFLC:Anti-F
erroelectric Liquid Crystal )を使うタイプがある。
これらは表示の原理や駆動方式が異なるが、いずれの液
晶ディスプレイでも一対のガラス基板間(液晶パネル
枠)に液晶を狭持するという構造は変わらない。
2. Description of the Related Art Liquid crystal displays are widely used as display units for notebook computers because of their characteristics of low power consumption and space saving. In recent years, the size has increased,
It is expected that products with a size of 15 inches to 21 inches are being manufactured, and will gradually replace CRTs (Cathod Ray Tubes) used in desktop personal computers and televisions. Liquid crystal displays for desktops include nematic liquid crystal driven by thin film transistors (TFTs) and ferroelectric liquid crystal (FLC).
Crystal) or antiferroelectric liquid crystal (AFLC: Anti-F)
erroelectric Liquid Crystal).
These differ in the principle of display and the driving method, but the structure in which liquid crystal is sandwiched between a pair of glass substrates (liquid crystal panel frame) does not change in any liquid crystal display.

【0003】本発明の対象であるTFT駆動型のディス
プレイの一対の基板の間隔は、概略3〜6μmの範囲で
一定であるが可能な限り均一でなければならない。この
ために、スペーサービーズという球形もしくは棒状の基
板間隔支持部材を基板間に散布する方法が採用されてい
る。スペーサービーズは、ガラス製や樹脂製があり、適
当な溶媒にこれを分散させて基板上に塗布乾燥する。塗
布乾燥工程は静電気や異物の影響を受けやすく、結果と
してスペーサービーズが凝集したり、分布が不均一であ
ったりすると、基板間隔が一様でなくなり表示品質が落
ちる原因となる。液晶パネル体が大型化すると、均一に
散布すること自体が難しくなってくる。また、スペーサ
ービーズは基板間隙に浮遊しているにすぎないので、基
板間隔は外部からの圧力により容易に変形し変化する
が、こうしたことにより液晶が流動するとスペーサが移
動してしまうという問題も生じる。更に別の問題はスペ
ーサの位置が制御できないので表示画素上に位置した場
合、その部分が白抜けするなどである。
[0003] The distance between a pair of substrates of a TFT-driven display, which is the object of the present invention, is constant within a range of approximately 3 to 6 µm, but must be as uniform as possible. For this purpose, a method of dispersing a spherical or rod-shaped substrate spacing support member called spacer beads between the substrates has been adopted. The spacer beads are made of glass or resin, are dispersed in an appropriate solvent, and are applied and dried on a substrate. The coating and drying process is susceptible to static electricity and foreign matter. As a result, if the spacer beads are agglomerated or unevenly distributed, the spacing between the substrates becomes uneven and the display quality deteriorates. As the size of the liquid crystal panel increases, it becomes more difficult to spray the liquid crystal panel uniformly. In addition, since the spacer beads are only floating in the gap between the substrates, the spacing between the substrates is easily deformed and changed by an external pressure. However, such a problem also occurs that the spacer moves when the liquid crystal flows. . Still another problem is that if the spacer is located on a display pixel because the position of the spacer cannot be controlled, that portion is blanked out.

【0004】こうしたスペーサビーズ散布方式の欠点を
取り除く手段としてフォトリソグラフィにより微細な部
材を形成してスペーサとする、あるいは更に進めてこれ
らを介して一対の基板を完全に接着する技術が公開され
ている(例えば、特開昭63−50817号公報、特公
平2−36930号公報、特開平4−255826号公
報、特開平7−84267号公報など)。これらの技術
によれば非画素部に選択的に基板間隔支持部材(以下、
これはスペーサと同義である)を形成することが可能で
あり、かつ基板間隔の均一性が優れている。基板上に固
着しているため移動することが無く、かつ基板を洗浄す
ることができるので、セル作成時の歩留まりも格段に優
れる。
[0004] As a means for removing the disadvantages of the spacer bead dispersing method, there is disclosed a technique in which a fine member is formed by photolithography to form a spacer, or further, a pair of substrates is completely bonded through these. (For example, JP-A-63-50817, JP-B-2-36930, JP-A-4-255826, JP-A-7-84267, etc.). According to these techniques, a substrate spacing support member (hereinafter, referred to as a non-pixel portion) is selectively provided.
This is synonymous with a spacer), and the uniformity of the substrate spacing is excellent. Since it is fixed on the substrate, it does not move, and the substrate can be washed, so that the yield at the time of cell production is extremely excellent.

【0005】一対の基板を接着するにはまず基板上に配
向膜を形成し、次いでその上に所望の厚さの感光性樹脂
を塗布する。その後適切なパターンのマスクを使って露
光現像し乾燥する。この工程により所望の厚みを有する
感光性樹脂のパターン、即ちスペーサ部材を形成し得
る。このスペーサ部材を有する基板と他方の基板とを密
着させたまま、概略150〜170℃程度の環境に1時
間程度保持すると両基板は完全に接着する。感光性樹脂
は、高温にすると配向膜素材であるポリイミドとの化学
的に相互作用し強い粘接着性が発現するためである。感
光性樹脂としてはポジ型、ネガ型何れも使用可能であ
る。スペーサの形状は一応点状、直線状などどんな形状
も考えられる。配向用のポリイミド溶液の塗布はスペー
サを形成した後でも可能であるが、スペーサ部材の材質
によりポリイミドがはじかれるもしくは溶剤によりスペ
ーサが溶けるなど塗布の均一性に問題があり汎用性がな
い。両基板を接着しようとする場合にはスペーサ頂部に
ポリイミドが載ってしまい接着しないという重大な弱点
がある。
To bond a pair of substrates, first, an alignment film is formed on the substrates, and then a photosensitive resin having a desired thickness is applied thereon. After that, it is exposed and developed using a mask having an appropriate pattern and dried. By this step, a photosensitive resin pattern having a desired thickness, that is, a spacer member can be formed. When the substrate having the spacer member and the other substrate are kept in close contact with each other for about one hour in an environment of about 150 to 170 ° C., the two substrates are completely bonded. This is because, at a high temperature, the photosensitive resin chemically interacts with polyimide, which is a material for an alignment film, and exhibits strong adhesiveness. Both positive and negative photosensitive resins can be used. Any shape of the spacer, such as a point shape and a linear shape, can be considered. Although the application of the polyimide solution for orientation is possible even after the spacer is formed, the polyimide is repelled depending on the material of the spacer member or the spacer is dissolved by the solvent, and there is a problem in the uniformity of the application, and there is no general versatility. If both substrates are to be bonded, there is a serious weakness in that polyimide is placed on the top of the spacer and does not bond.

【0006】[0006]

【発明が解決しようとする課題】TFT駆動型の液晶パ
ネルにおいて、フォトリソ法で感光性樹脂スペーサを形
成するとその形状により次の問題が生じた。ストライプ
状の電極群の上に先ず液晶配向用のポリイミド膜を塗布
し、光感光性樹脂でスペーサを形成するが一般にはこの
後ラビング処理を施す。スペーサを形成する前にラビン
グ処理を施しても構わないが、アルカリ溶液による現像
過程によりポリイミド表面が加水分解により変質した
り、レジスト残膜が薄く残ったりして液晶の配向性が低
下する。そのため電極エッジ周囲にディスクリネーショ
ンが生じやすくなることが多い。従って現像後にリンス
等の処理を施したのちラビング処理するのが望ましい工
程である。この場合、3〜5μm程度の凸部があるとス
ペーサの形状によっては、頂部が布で強く摩擦されると
上部が削られたり、甚だしい場合は倒れたり潰れたりす
ることである。あるいはスペーサの厚みが増したとき
に、陰になる部分が摩擦されず配向性が付与できないも
しくは、スペーサの存在自体が配向性を低下させること
であった。
When a photosensitive resin spacer is formed by a photolithography method in a TFT-driven liquid crystal panel, the following problem occurs depending on the shape. First, a polyimide film for liquid crystal alignment is applied on the stripe-shaped electrode group, and a spacer is formed with a photosensitive resin. After that, a rubbing process is generally performed. A rubbing treatment may be performed before the spacer is formed. However, during the development process using an alkaline solution, the polyimide surface is deteriorated by hydrolysis or a thin resist remaining film is left, so that the alignment of the liquid crystal is reduced. Therefore, disclination often occurs easily around the electrode edge. Therefore, it is a desirable process to perform a rubbing treatment after performing a treatment such as rinsing after the development. In this case, depending on the shape of the spacer, if there is a convex portion of about 3 to 5 μm, the upper portion may be cut off if the top portion is strongly rubbed with a cloth, or may fall down or collapse in severe cases. Alternatively, when the thickness of the spacer is increased, the shaded portion is not rubbed and the orientation cannot be imparted, or the existence of the spacer itself lowers the orientation.

【0007】本発明は、以上の事柄を鑑みて考案された
ものである。その目的は、ラビング処理によりスペーサ
ができるだけダメージを受けず、スペーサ以外の部分が
十分にラビングされ均一な配向状態を与えるスペーサを
有する液晶パネル用基板及び液晶パネルを提供すること
である。
The present invention has been made in view of the above. It is an object of the present invention to provide a liquid crystal panel substrate and a liquid crystal panel having spacers in which the spacers are not damaged as much as possible by the rubbing treatment and portions other than the spacers are sufficiently rubbed to provide a uniform alignment state.

【0008】[0008]

【課題を解決するための手段】本発明になる請求項1に
記載の液晶パネル用基板は、ラビング方向とほぼ同一方
向に長手方向を有する光感光性樹脂からなる微細なスペ
ーサが形成されていることを特徴とする液晶パネル用基
板である。請求項2に記載の液晶パネル用基板は、微細
な形状のスペーサの高さが2. 5μmから5μmの範囲
にあることを特徴とするもので、主としてネマチック液
晶を用いるの液晶パネルに好適な液晶パネル用基板であ
る。請求項3に記載の液晶パネル用基板は、微細な形状
の形状のスペーサが液晶配向用の配向膜上に形成されて
いることを特徴とするものである。この手順により配向
膜がスペーサ部材の材質によらず、配向膜に含まれる溶
剤の影響を受けることなく均一に塗布可能となる。請求
項4に記載の液晶パネルは一対の両基板はスペーサを介
して完全に接着した液晶パネル枠にネマチック液晶を保
持したものである。
In the liquid crystal panel substrate according to the first aspect of the present invention, fine spacers made of a photosensitive resin having a longitudinal direction substantially in the same direction as the rubbing direction are formed. A liquid crystal panel substrate characterized by the above-mentioned. The liquid crystal panel substrate according to claim 2, wherein the height of the finely shaped spacer is in the range of 2.5 μm to 5 μm, and a liquid crystal suitable for a liquid crystal panel mainly using a nematic liquid crystal. This is a panel substrate. According to a third aspect of the present invention, there is provided a substrate for a liquid crystal panel, wherein a spacer having a fine shape is formed on an alignment film for liquid crystal alignment. By this procedure, the alignment film can be uniformly applied without being affected by the solvent contained in the alignment film, regardless of the material of the spacer member. A liquid crystal panel according to a fourth aspect of the present invention is a liquid crystal panel in which a pair of both substrates holds a nematic liquid crystal in a liquid crystal panel frame completely adhered via a spacer.

【0009】[0009]

【発明の実施の形態】以下、図面に基づいて本発明を説
明する。一般に液晶セルはストライプ状の透明電極が形
成された一対の基板を互いの透明電極が直交するように
張り合わせて製造する。TFT駆動用の液晶セルはマト
リックス状の多数のTFTが形成された一方の基板と、
平面状の電極を有する他方の基板を張り合わせて製造す
る。いずれにしても一方の基板に間隙支持部材として光
感光性樹脂を使って微細なスペーサを形成する。上下の
ラビング方向は同一(平行)でなく一方の基板側から見
ると略90度の角度をなすように対抗している。具体的
には図1に示したように基板の対角線方向101、10
2にラビングを行う。これは上下の基板の電極線の伸び
る方向103、104が長方形の辺方向に平行であっ
て、対角線方向にラビングすると表示画像の角度依存性
が左右上下で減少する効果があるからである。この時ス
トライプ状の電極に対し斜め方向からラビングが行われ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. In general, a liquid crystal cell is manufactured by laminating a pair of substrates on each of which a stripe-shaped transparent electrode is formed such that the transparent electrodes are orthogonal to each other. A liquid crystal cell for driving the TFT includes one substrate on which a large number of TFTs in a matrix are formed,
The other substrate having a planar electrode is laminated and manufactured. In any case, fine spacers are formed on one of the substrates using a photosensitive resin as a gap support member. The upper and lower rubbing directions are not the same (parallel) but oppose to form an angle of about 90 degrees when viewed from one substrate side. Specifically, as shown in FIG.
2 is rubbed. This is because the directions 103 and 104 in which the electrode lines of the upper and lower substrates extend are parallel to the sides of the rectangle, and rubbing in the diagonal direction has the effect of reducing the angle dependence of the displayed image in the right, left, up and down directions. At this time, rubbing is performed on the striped electrodes from an oblique direction.

【0010】従って、表示画素以外の場所にスペーサを
形成するとしてもその形状によっては先述した問題が生
じるので、その形状を適切に選択する必要がある。本発
明はスペーサが形成される基板のラビング方向102と
スペーサの長手方向301がほぼ一致する方向に伸びた
スペーサを非画素部に形成するものである(図2参
照)。非電極部の幅は概ね15〜30μm程度であるの
でこの中に収まる様に配置する。好ましい形状の例とし
ては、例えば、図3に示すような楕円状、菱形、平行四
辺形状、直線状のスペーサを挙げることができる。こう
するとラビングしてもスペーサにかかる圧力が緩和され
るのでスペーサが削られたりすることがないし倒れるこ
ともない。またラビング方法に対し陰になる部分の面積
がなくなる。スペーサ近傍の配向規制力もスペーサ壁の
延長方向であって異常な配向状態は誘導されない。勿論
スペーサの底面積が広いと形状の対称性を上げることも
可能であるが、これは非画素部の面積に依存する。スペ
ーサ高が増すと削られる量も増えてくるが本発明者の実
験では図3に示したような形状では8μm程度までは全
く問題がなかった。
Therefore, even if a spacer is formed at a place other than a display pixel, the above-described problem occurs depending on the shape, and it is necessary to appropriately select the shape. In the present invention, a spacer extending in a direction in which the rubbing direction 102 of the substrate on which the spacer is formed substantially coincides with the longitudinal direction 301 of the spacer is formed in the non-pixel portion (see FIG. 2). Since the width of the non-electrode portion is generally about 15 to 30 μm, the non-electrode portion is arranged so as to fit within this. Examples of preferred shapes include, for example, elliptical, rhombic, parallelogram, and linear spacers as shown in FIG. In this way, even if rubbing is performed, the pressure applied to the spacers is reduced, so that the spacers are not scraped or fall. Further, there is no area of a portion which is hidden by the rubbing method. The alignment regulating force in the vicinity of the spacer is also in the extending direction of the spacer wall, and an abnormal alignment state is not induced. Of course, if the bottom area of the spacer is large, it is possible to increase the symmetry of the shape, but this depends on the area of the non-pixel portion. As the height of the spacer increases, the amount of shaving increases. However, in the experiment conducted by the present inventor, there was no problem up to about 8 μm in the shape shown in FIG.

【0011】以下、実施例により説明する。Hereinafter, an embodiment will be described.

【0012】[0012]

【実施例】<実施例1>先ず透明な長方形のガラス基板
2枚を用意してスパッター法によりITO(indium tin
oxide) を2000オングストロームの厚みに製膜し
た。一方の基板は常方のフォトリソ法によりエッチング
して線幅270オングストロームでピッチ300オング
ストロームのストライプ状のITO(indium tin oxid
e) 透明電極群を形成した。何れも250度で1時間焼
成した。片側を平面状電極としたのはTFT駆動の液晶
表示素子を模したである。勿論両方をストライプ状電極
を形成して直交するように対抗させても良い。
<Example 1> First, two transparent rectangular glass substrates were prepared, and ITO (indium tin) was formed by sputtering.
oxide) was deposited to a thickness of 2000 Å. One of the substrates is etched by a conventional photolithography method to form a striped ITO (indium tin oxidized) having a line width of 270 Å and a pitch of 300 Å.
e) A transparent electrode group was formed. Each was fired at 250 degrees for 1 hour. The use of a flat electrode on one side simulates a TFT-driven liquid crystal display element. Of course, both may be formed as striped electrodes and opposed to be orthogonal to each other.

【0013】次いで両方の基板に液晶配向用のポリイミ
ド溶液HL1110(日立化成(株)製)を塗布し乾燥し70
0オングストロームの配向膜を形成した。次に平面状電
極を有する基板上にネガ型の光感光性樹脂MR83(東京応
化(株)製)を4. 5μm厚に塗布して90℃で30分乾燥
させた。その後、図3に示すスペーサパタンを有するマ
スクを用いて露光現像し、約140℃で1時間ほど乾燥
した。これにより図3のような扁平な菱形の形状のスペ
ーサが形成された。スペーサの長軸は40μm、単軸は
10μmでその比は4:1であった。その後スペーサを
形成した基板はスペーサの延長方向と平行に同一方向に
3回ラビングを行った。他方の基板は図1に示したラビ
ング方向になるようにラビング処理を施した。
Next, a polyimide solution HL1110 (manufactured by Hitachi Chemical Co., Ltd.) for liquid crystal alignment is applied to both substrates, dried and dried.
An alignment film having a thickness of 0 Å was formed. Next, a negative photosensitive resin MR83 (manufactured by Tokyo Ohka Co., Ltd.) was applied to a thickness of 4.5 μm on a substrate having a planar electrode, and dried at 90 ° C. for 30 minutes. Thereafter, exposure and development were performed using a mask having a spacer pattern shown in FIG. 3, and drying was performed at about 140 ° C. for about 1 hour. As a result, a flat diamond-shaped spacer as shown in FIG. 3 was formed. The major axis of the spacer was 40 μm, the single axis was 10 μm, and the ratio was 4: 1. Thereafter, the substrate on which the spacer was formed was rubbed three times in the same direction in parallel with the extending direction of the spacer. The other substrate was subjected to a rubbing treatment so as to be in the rubbing direction shown in FIG.

【0014】この一対の基板をスペーサが対抗するスト
ライプ状電極の間隙に収まるようにアライメントをとっ
て対抗させ基板間隙を減圧し、両基板を密着させてた.
このまま160度のオーブン中に1時間保持して冷却す
ると感光性スペーサにより両基板は完全に接着した。こ
の液晶パネル枠の液晶浸透用の開口部を除いて、周囲を
エポキシ樹脂でシールして後約90度に放置すると周囲
が補強された液晶パネル枠を得た。この液晶パネル枠に
ネマチック液晶(ZLI4536:メルク社製)を浸透
させ再度、液体状態から徐冷したところスペーサ周囲も
含めて異常な配向状態は全く見られなかった。適切な電
極を選択して駆動用の信号を印加しても、一方の直線状
電極のエッジ部にディスクリネーションが発生すること
もなかった。スペーサの厚みを6μm程度にしても全く
同じ結果が得られた。この液晶パネルに対して単位面積
当たり40ニュートンの圧力を加えても表示状態が乱れ
ることはなかった。
The pair of substrates was aligned with each other so as to fit in the gap between the stripe-shaped electrodes opposed by the spacer, the gap between the substrates was reduced, and both substrates were brought into close contact with each other.
When the substrate was kept in a 160 ° C. oven for 1 hour and cooled, the two substrates were completely bonded by the photosensitive spacer. The periphery of the liquid crystal panel frame except for the opening for liquid crystal penetration was sealed with an epoxy resin, and then left at about 90 ° to obtain a liquid crystal panel frame with a reinforced periphery. When a nematic liquid crystal (ZLI4536: manufactured by Merck) was penetrated into the liquid crystal panel frame and cooled again from the liquid state, no abnormal alignment state including the periphery of the spacer was found at all. Even when an appropriate electrode was selected and a driving signal was applied, disclination did not occur at the edge of one of the linear electrodes. The same result was obtained even when the thickness of the spacer was about 6 μm. Even when a pressure of 40 Newtons per unit area was applied to the liquid crystal panel, the display state was not disturbed.

【0015】<比較例1>実施例1と同じ手順により液
晶パネル枠を作製し同じ液晶を浸透させた。但し、実施
例1と異なりスペーサの形状は長方形(30μm×15
μm)で長手方向はストライプ電極の延長方向と同一で
ある。この場合ラビングが斜めに行われるのでスペーサ
の陰の部分が約20μm程度の幅で配向状態が周囲と異
なっていた。また陰に近接する部分の電極エッジには駆
動時にディスクリネーションが発生し光抜けが生じてコ
ントラストが低下するのが認められた。尚、付言すると
感光性樹脂としてはネガ型のみならずポジ型感光性樹脂
も使用できる。但し、ポジ型は高温で圧力がかかると潰
れて所望のセルギャップが得られない。従ってスペーサ
として用いて一対の基板を接着するのでない場合には利
用が可能である。
Comparative Example 1 A liquid crystal panel frame was manufactured in the same procedure as in Example 1, and the same liquid crystal was permeated. However, unlike the first embodiment, the shape of the spacer is rectangular (30 μm × 15
μm), and the longitudinal direction is the same as the extending direction of the stripe electrode. In this case, since the rubbing is performed diagonally, the shaded portion of the spacer has a width of about 20 μm and the orientation state is different from the surrounding. Further, it was recognized that disclination occurred at the electrode edge in the portion close to the shadow during driving, light leakage occurred, and the contrast was reduced. In addition, as a photosensitive resin, not only a negative photosensitive resin but also a positive photosensitive resin can be used. However, the positive type is crushed when pressure is applied at a high temperature, and a desired cell gap cannot be obtained. Therefore, it can be used when a pair of substrates is not used as a spacer and bonded.

【0016】[0016]

【発明の効果】本発明によれば、先ず配向用ポリイミド
が最初に塗布されるため配向膜が均一に塗布される。形
成されるスペーサ部材は、ラビング処理により磨耗変形
したり倒れたりすることがない。ラビング方向から見て
スペーサ部材の陰になる面積が少ないため、ラビングが
基板全体で均一に行われる。従って凸部があっても配向
乱れやディスクリネーションの発生が抑止される。両基
板上のポリイミド膜がスペーサ部材を介して柔軟強固に
接着されることにより耐衝撃性に優れた液晶パネルが製
造可能となった。
According to the present invention, since the alignment polyimide is first applied, the alignment film is applied uniformly. The formed spacer member will not be deformed or fall down due to rubbing. Rubbing is performed uniformly over the entire substrate because there is little area behind the spacer member as viewed from the rubbing direction. Therefore, even if there is a convex portion, occurrence of alignment disorder and disclination is suppressed. Since the polyimide films on both substrates are flexibly and firmly bonded via the spacer member, a liquid crystal panel having excellent impact resistance can be manufactured.

【0017】[0017]

【図面の簡単な説明】[Brief description of the drawings]

【図1】上下の基板のラビング方向及び電極方向を説明
する説明図である。
FIG. 1 is an explanatory diagram illustrating a rubbing direction and an electrode direction of upper and lower substrates.

【図2】スペーサの形状とそれらを電極線間(非画素
部)に配置する一例を示す説明図である。
FIG. 2 is an explanatory view showing an example of the shape of spacers and arranging them between electrode lines (non-pixel portions).

【図3】スペーサ部材形状の一例を示す説明図である。FIG. 3 is an explanatory diagram illustrating an example of a spacer member shape.

【符号の説明】[Explanation of symbols]

101、102 ラビング方向 103、104 電極方向 301 スペーサの長手方向 101, 102 Rubbing direction 103, 104 Electrode direction 301 Longitudinal direction of spacer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ラビング方向とほぼ同一方向に長手方向を
有する光感光性樹脂からなる微細なスペーサが形成され
ていることを特徴とする液晶パネル用基板。
1. A liquid crystal panel substrate comprising fine spacers made of a photosensitive resin having a longitudinal direction substantially in the same direction as the rubbing direction.
【請求項2】前記微細なスペーサの高さが2. 5μmか
ら5μmの範囲にあることを特徴とする請求項1に記載
の液晶パネル用基板。
2. The liquid crystal panel substrate according to claim 1, wherein the height of the fine spacer is in a range of 2.5 μm to 5 μm.
【請求項3】前記微細なスペーサが液晶配向用の配向膜
上に形成されていることを特徴とする請求項1及び請求
項2に記載の液晶パネル用基板。
3. The liquid crystal panel substrate according to claim 1, wherein said fine spacer is formed on an alignment film for liquid crystal alignment.
【請求項4】請求項1から請求項3のいずれか一つに記
載の液晶パネル用基板と対抗する電極付基板とを前記微
細なスペーサを介して接着した液晶パネル枠にネマチッ
ク液晶を保持したことを特徴とする液晶表示素子。
4. A nematic liquid crystal is held in a liquid crystal panel frame in which the liquid crystal panel substrate according to any one of claims 1 to 3 and a counter electrode-attached substrate are bonded via the fine spacer. A liquid crystal display device characterized by the above-mentioned.
JP6577498A 1998-03-16 1998-03-16 Substrate for liquid crystal panel and liquid crystal display device Pending JPH11258613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6577498A JPH11258613A (en) 1998-03-16 1998-03-16 Substrate for liquid crystal panel and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6577498A JPH11258613A (en) 1998-03-16 1998-03-16 Substrate for liquid crystal panel and liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH11258613A true JPH11258613A (en) 1999-09-24

Family

ID=13296726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6577498A Pending JPH11258613A (en) 1998-03-16 1998-03-16 Substrate for liquid crystal panel and liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH11258613A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202510A (en) * 2000-11-02 2002-07-19 Semiconductor Energy Lab Co Ltd Liquid crystal display device and method of manufacturing for the same
JP2003098531A (en) * 2001-09-26 2003-04-03 Toppan Printing Co Ltd Electrode plate for flat panel display
JP2005107494A (en) * 2003-09-08 2005-04-21 Sharp Corp Liquid crystal display device
JP2009250991A (en) * 2008-04-01 2009-10-29 Epson Imaging Devices Corp Liquid crystal display and electronic apparatus
JP2014197132A (en) * 2013-03-29 2014-10-16 株式会社ジャパンディスプレイ Display device
CN109407410A (en) * 2017-08-18 2019-03-01 京东方科技集团股份有限公司 Display base plate, display device and display base plate production method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202510A (en) * 2000-11-02 2002-07-19 Semiconductor Energy Lab Co Ltd Liquid crystal display device and method of manufacturing for the same
JP2003098531A (en) * 2001-09-26 2003-04-03 Toppan Printing Co Ltd Electrode plate for flat panel display
JP2005107494A (en) * 2003-09-08 2005-04-21 Sharp Corp Liquid crystal display device
US7295277B2 (en) 2003-09-08 2007-11-13 Sharp Kabushiki Kaisha Liquid crystal display apparatus with spacer positioned over contact hole
JP2009250991A (en) * 2008-04-01 2009-10-29 Epson Imaging Devices Corp Liquid crystal display and electronic apparatus
JP2014197132A (en) * 2013-03-29 2014-10-16 株式会社ジャパンディスプレイ Display device
US9612443B2 (en) 2013-03-29 2017-04-04 Japan Display Inc. Display device
US9772501B2 (en) 2013-03-29 2017-09-26 Japan Display Inc. Display device
CN109407410A (en) * 2017-08-18 2019-03-01 京东方科技集团股份有限公司 Display base plate, display device and display base plate production method
CN109407410B (en) * 2017-08-18 2020-02-21 京东方科技集团股份有限公司 Display substrate, display device and display substrate manufacturing method

Similar Documents

Publication Publication Date Title
JP3567183B2 (en) Liquid crystal display
US5000545A (en) Liquid crystal device with metal electrode partially overlying transparent electrode
JP3234357B2 (en) Liquid crystal display
JP3850002B2 (en) Liquid crystal electro-optical device
JPH0764089A (en) Liquid crystal display device
JPH11258613A (en) Substrate for liquid crystal panel and liquid crystal display device
JPH08146468A (en) Liquid crystal display device
JP3208189B2 (en) Liquid crystal display
JP2005010721A (en) Liquid crystal display device
JP4051763B2 (en) Liquid crystal display
US7646467B2 (en) Method of fabricating liquid crystal display devices having various driving modes on a common substrate
US20050094063A1 (en) Liquid crystal display device
JP3127626B2 (en) LCD panel
JP5315117B2 (en) Liquid crystal display
KR20050067908A (en) Color filter array substrate
JP3097498B2 (en) Liquid crystal display device using liquid crystal having ferroelectric phase
JP3099262B2 (en) Alignment split type liquid crystal display
JP2004272218A (en) Liquid crystal display device and its manufacturing method
JP3123250B2 (en) LCD panel
KR101023731B1 (en) Liquid Crystal Display Device
JPH1124055A (en) Liquid crystal panel and display device using the panel
JPH05303105A (en) Liquid crystal display element
JP2000147512A (en) Liquid crystal element and its manufacture
JPH1138441A (en) Liquid crystal display element and its production
JPH09211458A (en) Liquid crystal display element