JPH11256203A - Forming die for high orientation rare earth metal sintered magnet - Google Patents

Forming die for high orientation rare earth metal sintered magnet

Info

Publication number
JPH11256203A
JPH11256203A JP10303881A JP30388198A JPH11256203A JP H11256203 A JPH11256203 A JP H11256203A JP 10303881 A JP10303881 A JP 10303881A JP 30388198 A JP30388198 A JP 30388198A JP H11256203 A JPH11256203 A JP H11256203A
Authority
JP
Japan
Prior art keywords
cavity
magnetic field
magnetic
mold member
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10303881A
Other languages
Japanese (ja)
Other versions
JP2989178B2 (en
Inventor
Kazunori Tawara
一憲 田原
Motoharu Shimizu
元治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP10303881A priority Critical patent/JP2989178B2/en
Publication of JPH11256203A publication Critical patent/JPH11256203A/en
Application granted granted Critical
Publication of JP2989178B2 publication Critical patent/JP2989178B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing

Abstract

PROBLEM TO BE SOLVED: To provide a forming die, in which a high orientation rare earth metals sintered magnet (further desiarably, the large scaled magnet) suitable to a wiggler for corpuscular ray accelerator can stably be manufactured. SOLUTION: This forming die for a high orientation rare earth metal sintered magnet is composed of a ferromagnetic die member which forms the long side or large diameter A and the short side or small diameter B of a cavity and a non-magnetic die member which forms the short side or small diameter B and thickness C of the cavity and (A>=B>C) so as to generate a parallel magnetic field in which the inclination of lines of magnetic force at the time of impressing the magnetic field passing through a plane (reference plane) formed with the long side or large diameter A and the short side or small diameter B of the cavity is within 3 deg..

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばウィグラー
用磁石等の粒子線加速器から放射光を取り出す装置、M
RI(核磁気共鳴イメージング)等に有用な高配向度希
土類焼結磁石用成形金型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for extracting radiation from a particle accelerator, such as a wiggler magnet.
The present invention relates to a molding die for a highly oriented rare earth sintered magnet useful for RI (nuclear magnetic resonance imaging) and the like.

【0002】[0002]

【従来の技術】自由電子レーザやシンクロトロン放射光
等の粒子線加速器から放射光を取り出す装置において
は、永久磁石を多数連続配置して使用している。この種
の装置では、電子ビームの通路を挟んで両側にウイグラ
ーまたはアンデュレータと呼ばれる複数個の永久磁石を
連続配置させ、各永久磁石は一般に隣接するものと対向
するものとが互いに逆極となるように構成され、通過す
る電子ビームの進行方向と直角方向に周期的磁場を付与
させるものがある。あるいは、パーメンジュール、パー
マロイ等のヨークと組み合わせたいわゆるハイブリッド
タイプと呼ばれる形式のものもある。ウィグラーの一例
を図5に示す。板の長辺aと短辺bとで形成される面
(以下、ab面と呼ぶ)に垂直に磁束が出入りするよう
に磁化された磁石がN,S極を交互にして数十対が配置
されている。電子ビームはその交番磁場の中を曲げられ
ながら進行し、ある特定の波長の放射光を発生する。こ
のような用途に使用する永久磁石は磁気特性の高いもの
が要求され、Sm−Co系やNd−Fe−B系の異方性
希土類永久磁石が使用されている。一般に、ウイグラー
等においては長辺または長径a、短辺または短径b、お
よび厚さcの間に、a≧b>cなる関係があるものが使
用される。また、粒子線加速器用ウィグラー等に用いら
れる永久磁石には、組み立ての基準面の法線に対して磁
化方向の傾角が3度以内、好ましくは2度以内という厳
しい仕様が要求されている。磁化方向の傾角が3度を越
える場合には、電子ビームの進行方向に対して直角でな
い磁界成分が発生し、その分だけ有効成分が減少するこ
とによって電子ビームの曲げられ方が変動して放射光の
波長が変動する等の問題点がある。したがって、磁化方
向の傾角は永久磁石のab面(基準面)内の法線に対し
て3度以内、より好ましくは2度以内に均一に分布する
ことが要求されている。
2. Description of the Related Art In an apparatus for extracting radiation from a particle beam accelerator such as a free electron laser or synchrotron radiation, a large number of permanent magnets are continuously arranged and used. In this type of device, a plurality of permanent magnets called wiggler or undulator are continuously arranged on both sides of the electron beam path, and each permanent magnet generally has an opposite polarity to an adjacent one and an opposite one. There is a device configured to apply a periodic magnetic field in a direction perpendicular to a traveling direction of a passing electron beam. Alternatively, there is a so-called hybrid type combined with a yoke such as permendur or permalloy. One example of a wiggler is shown in FIG. Dozens of pairs of magnets magnetized so that magnetic flux enters and exits perpendicularly to the plane formed by the long side a and the short side b of the plate (hereinafter referred to as ab plane) are arranged with N and S poles alternately arranged. Have been. The electron beam travels while being bent in the alternating magnetic field, and emits radiation of a specific wavelength. Permanent magnets used for such applications are required to have high magnetic properties, and Sm-Co-based and Nd-Fe-B-based anisotropic rare earth permanent magnets are used. In general, a wiggler or the like having a relationship of a ≧ b> c among the long side or long diameter a, the short side or short diameter b, and the thickness c is used. Strict specifications are required for permanent magnets used in wiggler for particle beam accelerators, etc., such that the inclination angle of the magnetization direction with respect to the normal to the reference plane of assembly is within 3 degrees, preferably within 2 degrees. When the tilt angle of the magnetization direction exceeds 3 degrees, a magnetic field component that is not perpendicular to the traveling direction of the electron beam is generated, and the effective component is reduced by that amount. There is a problem that the wavelength of light fluctuates. Therefore, it is required that the tilt angle of the magnetization direction be uniformly distributed within 3 degrees, more preferably within 2 degrees with respect to the normal line in the ab plane (reference plane) of the permanent magnet.

【0003】また最近では、より大きな能力の粒子線加
速器が望まれており、そのような場合、大型の永久磁石
が必要であるので、複数個のブロック磁石を接着剤で組
み立て接合することにより大きな形状にして使用してい
る。しかし、複数個のブロック磁石を接着剤で接着して
大きな形状の異方性永久磁石を作製する場合は、次のよ
うな問題がある。接着剤が各ブロック磁石の相互間に介
在して磁気的空隙を形成するため、その部分で磁束密度
が低下し、全体として磁気特性が不均一となり、それを
使用した装置の性能が低下してしまう。また大型の異方
性永久磁石が自由電子レーザ等に組み込まれたときに
は、高真空および紫外線の存在する環境におかれるの
で、永久磁石に使用した接着剤が紫外線による光化学反
応により樹脂の高分子構造が破壊されるため劣化するこ
とが多い。さらに複数のブロック磁石を接着剤で組み立
て接合する作業は煩雑であって、この作業時間に多くを
要し、均一な品質のものを供給することが困難であっ
た。また、焼結磁石は磁石材料を成形、焼結して作製さ
れるが、成形体の焼結に伴う収縮によりそりが生じるこ
とがあり、特に小型磁石に比べて大型磁石の場合に割れ
やそりが大きい。その理由は、従来の成形用金型内で磁
場配向させる方法だと、第1に成形体内の圧力分布の不
均一に帰因する成形体密度の不均一があり、第2に成形
用金型内における配向用磁場の不均一に帰因する配向度
の不均一があるためである。第2の理由について詳述す
ると、従来の成形用金型は強度ならびに剛性上の要求か
ら工具鋼等の強磁性材料の一体物で構成されることが多
く、そのため成形用キャビティの端部付近では、金型と
成形体との透磁率の相異によって、磁束が成形体ではな
く金型の方を通り易くなるためである。上述の通り、従
来の成形用金型で磁場中成形することはウィグラー用磁
石等には適当ではなかった。そこで、非磁性体の容器
と、成形材として与えられる粉末を前記容器の中で加圧
するために、該容器を貫通するように設けられた磁性体
よりなる上下一対のパンチと、これら上下パンチの間に
挿入される前記粉末に対して磁場を与えるために、これ
ら上下パンチのそれぞれの周囲に巻かれた2つのコイル
と、前記磁場印加される粉末に対して静水圧を加えるた
めに、前記容器の側面に開けられた送水用の細孔を備え
た磁場中湿式ラバープレスに関する発明がされた(特開
昭62−64498号)。冷間静水圧成形法(Cold Iso
static Pressing,略してCIPと呼ばれる)である。
該公報の実施例には(002)面のX線回折強度と磁場
の印加方向に対する傾角の関係が図示されており、比較
的改善された磁化方向の傾角を示している。
Recently, a particle beam accelerator having a larger capacity is desired. In such a case, a large permanent magnet is required. Shaped and used. However, when a large-shaped anisotropic permanent magnet is manufactured by bonding a plurality of block magnets with an adhesive, there are the following problems. Since the adhesive is interposed between the block magnets to form a magnetic gap, the magnetic flux density decreases at that portion, the magnetic characteristics become non-uniform as a whole, and the performance of the device using the same decreases. I will. When a large anisotropic permanent magnet is incorporated into a free electron laser or the like, it is placed in an environment where high vacuum and ultraviolet light are present. Is often degraded because it is destroyed. Furthermore, the work of assembling and joining a plurality of block magnets with an adhesive is complicated, requiring a lot of time for this work, and making it difficult to supply uniform quality. Sintered magnets are manufactured by molding and sintering magnet materials. Warping may occur due to shrinkage due to the sintering of the molded body. Is big. The reason for this is that in the conventional method of magnetic field orientation in a molding die, firstly, there is unevenness in the density of the molding due to uneven pressure distribution in the molding, and secondly, in the molding die. This is because there is non-uniformity of the degree of orientation due to non-uniformity of the magnetic field for orientation in the inside. To explain the second reason in detail, conventional molding dies are often made of an integral body of a ferromagnetic material such as tool steel due to requirements for strength and rigidity, and therefore, near the end of the molding cavity, This is because, due to the difference in magnetic permeability between the mold and the molded body, the magnetic flux easily passes through the mold rather than the molded body. As described above, molding in a magnetic field with a conventional molding die was not suitable for a wiggler magnet or the like. Therefore, a container made of a non-magnetic material, a pair of upper and lower punches made of a magnetic material provided so as to penetrate the container to pressurize the powder given as a molding material in the container, Two coils wound around each of the upper and lower punches to apply a magnetic field to the powder inserted therebetween, and the container to apply hydrostatic pressure to the powder to be applied with the magnetic field (Japanese Patent Application Laid-Open No. Sho 62-64498) has been proposed which relates to a wet rubber press in a magnetic field having pores for water supply opened on the side surface. Cold isostatic pressing (Cold Iso
static Pressing, abbreviated as CIP).
In the example of the publication, the relationship between the X-ray diffraction intensity of the (002) plane and the tilt angle with respect to the direction of application of the magnetic field is shown, and shows a relatively improved tilt angle of the magnetization direction.

【0004】[0004]

【発明が解決しようとする課題】前述の磁場中湿式ラバ
ープレスを用いる方法においては、磁性体よりなる上下
パンチが必須であるからラバープレスにおける加圧力は
等方的とはならず、側圧付加されるために成形体の端部
が変形するだけでなく、そのことによって磁化方向の傾
角にも影響を与えるという問題点がある。また、成形用
金型には、CIP内部から受ける圧力に十分耐える強度
が要求され、さらにコイルをCIP装置内に設置するた
めに十分な電気的絶縁も必要となり、技術的側面および
安全性の面から著しい困難を伴なうという問題点があっ
た。さらにまた、このようにして得られた永久磁石であ
っても、粒子線加速器用ウィグラー等が要求する上述し
たような特性を満足するものは未だ実現されていなかっ
た。その理由は、特開昭62ー64498号公報に記載
の発明の構成では、プレス方向と印加磁場方向が平行な
縦磁場プレスと称される方法に実際上は制約されるた
め、配向度の向上がある程度以上は望めないからであ
る。一般に異方性希土類焼結磁石の成形工程において
は、磁粉を金型に充填して加圧する場合に磁粉が扁平形
状のため、その磁粉の長手方向が加圧の方向と略垂直に
なるように配列する傾向がある。したがって、高性能の
希土類焼結磁石を製造する場合には横磁場プレスと称さ
れる加圧の方向と直角方向に磁場を印加して磁場中成形
する製造方法の方が高配向度を得られて好ましい。この
ように、前記従来の成形用金型では磁化方向の傾角が3
度以内という高配向度希土類焼結磁石の製作が困難であ
り、この高配向度希土類焼結磁石を実現できる成形金型
が要望されていた。したがって、本発明の課題は、例え
ば粒子線加速器用ウィグラー等に好適な高配向度希土類
焼結磁石(より好ましくは大型のもの)を安定に製作で
きる成形金型を提供することである。
In the above-mentioned method using a wet rubber press in a magnetic field, the upper and lower punches made of a magnetic material are indispensable, so that the pressing force in the rubber press is not isotropic, and a side pressure is applied. Therefore, there is a problem that not only the end of the molded body is deformed, but also the inclination of the magnetization direction is affected. Further, the molding die is required to have sufficient strength to withstand the pressure received from the inside of the CIP. Further, sufficient electrical insulation is required to install the coil in the CIP device, and technical and safety aspects are required. However, there is a problem that significant difficulties are involved. Furthermore, even the permanent magnets thus obtained have not yet been realized which satisfy the above-mentioned characteristics required by a wiggler for a particle accelerator. The reason for this is that the configuration of the invention described in Japanese Patent Application Laid-Open No. 62-64498 is practically limited to a method called a vertical magnetic field press in which the press direction and the applied magnetic field direction are parallel. However, it cannot be expected to some extent. In general, in the molding step of anisotropic rare earth sintered magnets, when the magnetic powder is filled into a mold and pressed, the magnetic powder has a flat shape, so that the longitudinal direction of the magnetic powder is substantially perpendicular to the pressing direction. Tends to align. Therefore, when manufacturing a high-performance rare-earth sintered magnet, a manufacturing method in which a magnetic field is applied in a direction perpendicular to the direction of pressure called transverse magnetic field pressing and molding in a magnetic field can obtain a higher degree of orientation. Preferred. As described above, in the conventional molding die, the inclination angle of the magnetization direction is 3 degrees.
It is difficult to manufacture a rare earth sintered magnet having a high degree of orientation within a degree, and there has been a demand for a molding die capable of realizing the rare earth sintered magnet having a high degree of orientation. Therefore, an object of the present invention is to provide a molding die capable of stably producing a highly oriented rare earth sintered magnet (more preferably, a large one) suitable for, for example, a wiggler for a particle beam accelerator.

【0005】[0005]

【課題を解決するための手段】前記従来の課題を解決し
た本発明は、キャビティの長辺若しくは長径Aおよび短
辺若しくは短径Bを形成する強磁性金型部材とキャビテ
ィの短辺若しくは短径Bおよび厚さCを形成する非磁性
金型部材(A≧B>C)とからなり、前記非磁性金型部
材はキャビティの厚さC方向に沿う寸法がキャビティの
厚さCと略同一寸法に形成されているとともにキャビテ
ィの短辺若しくは短径B方向に沿う寸法がキャビティの
短辺若しくは短径Bよりも大寸法に形成されている突設
部分を有し、前記強磁性金型部材が前記非磁性金型部材
の突設部分を挟み込んでかつ相対向するように配置され
ているとともに、前記非磁性金型部材の突設部分の先端
をその突設部分を挟み込んでいる前記強磁性金型部材の
両端位置よりもキャビティ側に突出させてかつ相対向す
るように配置することにより、キャビティの長辺若しく
は長径Aおよび短辺若しくは短径Bで形成される平面
(基準面)を通る磁場印加時の磁力線の傾角を3度以内
とした平行磁場を発生させるようにした高配向度希土類
焼結磁石用成形金型である。本発明の金型を用いれば、
長辺若しくは長径a、短辺若しくは短径b、厚さcの間
にa≧b>cなる関係があり、厚さc方向に磁化された
扁平形状をなし、前記のaとbとで形成される平面(基
準面)の法線に対する磁化方向の傾角が3度以内である
とともに、25kOeのパルス磁場で着磁した場合の磁
極面の表面磁束密度(Bo)が3.5kG以上である高
配向度希土類焼結磁石を得ることができる。前記高配向
度希土類焼結磁石は厚さcが連続的に変化するテーパ形
状でもよい。また、前記高配向度希土類焼結磁石がSm
−Co系磁石またはR−TM−B系磁石(RはNd,D
y等に代表される希土類元素の1種または2種以上、T
MはFeまたはFeとCo)からなる場合が実用性に富
んでおり、さらに前記R−TM−B系磁石には13重量
%以下のGa,Si,Al他を含んでいてもよい。本発
明の成形金型のキャビティに、希土類焼結磁石用原料粉
末を充填し、その成形金型のキャビティの基準面を通る
磁場印加時の磁力線の傾角を3度以内とした平行磁場を
印加しながら磁場中圧縮成形することにより、基準面の
法線に対する磁化方向の傾角が3度以内である成形体を
得、この成形体を焼結、熱処理することにより前記高配
向度希土類焼結磁石が得られる。本発明の成形金型は、
プレス方向に対して垂直方向に磁場を印加する横磁場プ
レス方式を採用している。図2は本発明の成形金型を用
いて得られた成形体の一例を示している。(a)は本発
明の成形金型を用いて得られた成形体、(b)は(a)
の成形体にさらにCIPを施して得られたより高密度な
成形体を示している。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a ferromagnetic mold member for forming a long side or a long diameter A and a short side or a short diameter B of a cavity and a short side or a short diameter of the cavity. B and a non-magnetic mold member (A ≧ B> C) forming a thickness C, wherein the dimension of the non-magnetic mold member along the direction of the thickness C of the cavity is substantially the same as the thickness C of the cavity. And the protrusion along the short side or short diameter B direction of the cavity is formed to be larger than the short side or short diameter B of the cavity, and the ferromagnetic mold member is The ferromagnetic metal mold, which is disposed so as to sandwich the projecting portion of the non-magnetic mold member and face each other, and which has the tip of the projecting portion of the non-magnetic mold member sandwiching the projecting portion. Key than both ends of the mold By arranging them so as to protrude to the side of the cavity and face each other, the inclination of the magnetic field lines when a magnetic field is applied through a plane (reference plane) formed by the long side or long diameter A and the short side or short diameter B of the cavity is set. This is a molding die for a rare earth sintered magnet with a high degree of orientation, which generates a parallel magnetic field within 3 degrees. With the mold of the present invention,
There is a relationship of a ≧ b> c between the long side or long diameter a, the short side or short diameter b, and the thickness c, and a flat shape magnetized in the thickness c direction is formed by the above a and b. The inclination angle of the magnetization direction with respect to the normal line of the plane (reference plane) to be formed is within 3 degrees, and the surface magnetic flux density (Bo) of the pole face is 3.5 kG or more when magnetized with a pulse magnetic field of 25 kOe. A rare earth sintered magnet with a degree of orientation can be obtained. The high-orientation rare earth sintered magnet may have a tapered shape in which the thickness c changes continuously. Further, the high-orientation rare earth sintered magnet is Sm
-Co magnet or R-TM-B magnet (R is Nd, D
one or more rare earth elements represented by y or the like;
M is composed of Fe or Fe and Co), and the R-TM-B-based magnet may further contain 13% by weight or less of Ga, Si, Al and the like. The cavity of the molding die of the present invention is filled with the raw material powder for a rare earth sintered magnet, and a parallel magnetic field is applied in which the inclination of the line of magnetic force when applying a magnetic field passing through the reference surface of the cavity of the molding die is within 3 degrees. While being compacted in a magnetic field, a compact having a tilt angle of the magnetization direction with respect to the normal of the reference plane within 3 degrees is obtained, and the compact is sintered and heat-treated to obtain the highly oriented rare earth sintered magnet. can get. Molding mold of the present invention,
A horizontal magnetic field press method in which a magnetic field is applied in a direction perpendicular to the press direction is employed. FIG. 2 shows an example of a molded body obtained by using the molding die of the present invention. (A) is a molded article obtained by using the molding die of the present invention, (b) is (a)
Shows a higher density molded product obtained by further applying CIP to the molded product of Example 1.

【0006】本発明者らは、鋭意検討の結果、横磁場プ
レス法を用いつつ、従来の希土類焼結磁石用成形金型の
問題点であるキャビティ端部での磁場の不均一を解消す
るために、図1に示す成形金型の構成を採用した。この
成形金型の構成において、キャビティの一部を構成する
非磁性材料からなる金型部材を突出させてL>lになる
ような寸法関係にしたときにキャビティ内に前記平行磁
場を形成できることを知見した。すなわち、図1の金型
は、キャビティの長辺若しくは長径Aおよび短辺若しく
は短径Bを形成する強磁性金型部材とキャビティの短辺
若しくは短径Bおよび厚さCを形成する非磁性金型部材
(A≧B>C)とからなっている。前記非磁性金型部材
はキャビティの厚さC方向に沿う寸法がキャビティの厚
さCと略同一寸法に形成されているとともにキャビティ
の短辺若しくは短径B方向に沿う寸法がキャビティの短
辺若しくは短径Bよりも大寸法に形成されている突設部
分を有している。そして、前記強磁性金型部材が前記非
磁性金型部材の突設部分を挟み込んでかつ相対向するよ
うに配置されているとともに、前記非磁性金型部材の突
設部分の先端をその突設部分を挟み込んでいる前記強磁
性金型部材の両端位置よりもキャビティ側に突出させて
かつ相対向するように配置することにより、キャビティ
の長辺若しくは長径Aおよび短辺若しくは短径Bで形成
される平面(基準面)を通る磁場印加時の磁力線の傾角
を3度以内とした平行磁場を発生させる磁場異方性金型
を実現することができた。
The inventors of the present invention have conducted intensive studies and, as a result, have attempted to solve the problem of the conventional molding die for rare earth sintered magnets by using the transverse magnetic field pressing method to eliminate the non-uniformity of the magnetic field at the end of the cavity. The configuration of the molding die shown in FIG. In the configuration of the molding die, the parallel magnetic field can be formed in the cavity when the dimensional relationship such that L> l is obtained by projecting a mold member made of a nonmagnetic material constituting a part of the cavity. I learned. That is, the mold shown in FIG. 1 is composed of a ferromagnetic mold member forming the long side or major axis A and a short side or minor axis B of the cavity and a nonmagnetic mold forming the short side or minor axis B and the thickness C of the cavity. And a mold member (A ≧ B> C). The dimension of the nonmagnetic mold member along the direction of the thickness C of the cavity is substantially the same as the thickness C of the cavity, and the dimension of the non-magnetic mold member along the short side of the cavity or the direction of the minor axis B is the short side of the cavity or It has a protruding portion formed to be larger than the minor diameter B. The ferromagnetic mold member is disposed so as to sandwich the projecting portion of the non-magnetic mold member and face each other, and the tip of the projecting portion of the non-magnetic mold member is protruded from the ferromagnetic mold member. By arranging the ferromagnetic mold member sandwiching the portion so as to protrude toward the cavity from both end positions and face each other, the cavity is formed with the long side or long diameter A and the short side or short diameter B. A magnetic field anisotropic mold capable of generating a parallel magnetic field with a tilt angle of a magnetic field line of 3 degrees or less when a magnetic field is applied through a plane (reference plane) can be realized.

【0007】本発明の金型を用いて製作された高配向度
希土類焼結磁石の基準面の法線に対する磁化方向の傾角
は、ヘルムホルツコイルを組み合わせた測定装置を用い
て測定することができる。なお、前述の特開昭62−6
4498号公報記載の(002)面の回折X線強度を用
いて磁場の印加方向に対する傾角を求める方法、あるい
はX線回折法、さらには代替特性として製品の表面磁束
密度の分布の均一性を測定する方法等でも測定可能であ
る。また、x,y,zの3個のサーチコイルを配置し積
分型磁束計で検出した磁束をVSM(振動型試料磁束
計)の原理を応用してコンピュータで情報処理する方法
も高精度の測定法である。
[0007] The inclination of the magnetization direction with respect to the normal line of the reference plane of the highly oriented rare earth sintered magnet manufactured using the mold of the present invention can be measured by using a measuring device combined with a Helmholtz coil. The above-mentioned Japanese Patent Application Laid-Open No. 62-6 / 1987
No. 4498, a method of obtaining a tilt angle with respect to the direction of application of a magnetic field using the diffracted X-ray intensity of the (002) plane, or an X-ray diffraction method. It can also be measured by such a method. In addition, a method of arranging three search coils of x, y, and z and applying a computer to process the magnetic flux detected by an integrating magnetometer by applying the principle of a VSM (vibrating sample magnetometer) is also a highly accurate method. Is the law.

【0008】[0008]

【発明の実施の形態】以下、実施例により本発明を説明
するが、本発明はこれら実施例に限定されるものではな
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

【0009】(実施例1)重量百分比率でSm38%、
残部CoからなるSmCoの永久磁石合金をアーク溶
解により作製した。次いで、スタンプミルで35メッシ
ュスルーまで粗粉砕し、ボールミルで3時間微粉砕し
た。このようにして得られた磁粉を図1に示す成形金型
の69cm×45cmの断面寸法を持ったキャビティに
充填し、20kOeの平行磁場を印加しながら成形体の
高さが16cmになるまで0.7トン/cmの圧力で
リフティング付の一軸プレスで予備成形した。その後、
69cm×45cmの断面寸法を持ったラテックスゴム
製のゴム型に移した。このとき、予備成形体の強度は落
下試験をしても破壊しないくらいに十分であったため、
格段取扱いに注意を要しなかった。次に、ゴム型に入っ
た予備成形体を4トン/cmで高さが14cmになる
ようにCIPした。次に、CIPしたものを1140℃
で1時間、アルゴンガス雰囲気中で焼結し、次いで10
00℃で1時間、アルゴンガス雰囲気中で熱処理した。
このとき、CIPされた試験片は十分な密度に達してお
り、焼結後の収縮も無視し得るくらい小さかった。した
がって、この場合には表面の酸化皮膜を取り去る程度で
十分であった。
Example 1 Sm 38% by weight percentage
The permanent magnet alloy of SmCo 5 balance consisting Co were prepared by arc melting. Next, it was coarsely pulverized to 35 mesh through with a stamp mill and finely pulverized with a ball mill for 3 hours. The magnetic powder thus obtained is filled in a cavity having a sectional size of 69 cm × 45 cm of the molding die shown in FIG. 1, and a magnetic field of 20 kOe is applied thereto until the height of the molded body becomes 16 cm while applying a parallel magnetic field of 20 kOe. It was preformed by a uniaxial press with lifting at a pressure of 0.7 ton / cm 2 . afterwards,
It was transferred to a rubber mold made of latex rubber having a cross-sectional dimension of 69 cm x 45 cm. At this time, the strength of the preform was sufficient to prevent it from breaking even in a drop test.
No special handling was required. Next, the preform in a rubber mold was CIPed at 4 tons / cm 2 to a height of 14 cm. Next, the CIPed 1140 ° C
For 1 hour in an argon gas atmosphere, and then
Heat treatment was performed at 00 ° C. for 1 hour in an argon gas atmosphere.
At this time, the CIPed test piece had reached a sufficient density, and shrinkage after sintering was so small as to be negligible. Therefore, in this case, it was sufficient to remove the oxide film on the surface.

【0010】(比較例1)比較のために、予備成形せず
にCIPだけを施した場合を検討すべく、70cm×4
6cmの断面寸法を持ったラテックスゴムのゴム型に充
填し、高さが16cmになるまで4トン/cmでCI
Pした。成形体を取り出して前述の条件と同一条件で焼
結、熱処理した。試験片は端部で変形していたため、最
終寸法が69cm×45cm×14cmになるように研
削加工を施さざるを得なかった。
(Comparative Example 1) For comparison, in order to examine the case where only CIP was applied without preforming, 70 cm × 4
Fill a rubber mold of latex rubber having a cross-sectional dimension of 6 cm, and apply CI at 4 ton / cm 2 until the height becomes 16 cm.
P. The compact was taken out and sintered and heat-treated under the same conditions as described above. Since the test piece was deformed at the end, it had to be ground to a final size of 69 cm × 45 cm × 14 cm.

【0011】実施例1および比較例1で得られたものを
試験片として、両試験片についての磁場印加方向(磁化
方向)に対する(002)面のX線回折強度分布を図3
に示す。縦軸は最大回折強度に対する相対強度で示す。
この図から比較例1のものでは配向が乱れ分布がなだら
かになってしまっているのに対して、実施例1のもので
は鋭いことがわかる。また、磁気特性を表1に示す。表
1で、上段の値は試験片の上側から採取したものの磁気
特性を、中断の値は試験片の中央部から採取したものの
磁気特性を、下段の値は試験片の下側から採取したもの
の磁気特性を示す。表1からも比較例1のものは磁気特
性のバラツキが大きくかつ絶対値も低いのに対し、実施
例1のものではバラツキが少なくかつ絶対値も大きい希
土類焼結磁石が得られることがわかる。また、基準面の
法線に対する磁化方向の傾角を測定したところ、、実施
例1のものでは0.7度であるのに対して、比較例1の
ものでは5.4度もあった。
Using the specimens obtained in Example 1 and Comparative Example 1 as test pieces, the X-ray diffraction intensity distribution of the (002) plane with respect to the magnetic field application direction (magnetization direction) for both test pieces is shown in FIG.
Shown in The vertical axis indicates the relative intensity with respect to the maximum diffraction intensity.
From this figure, it can be seen that in the case of Comparative Example 1, the orientation was disordered and the distribution became gentle, whereas in the case of Example 1, the distribution was sharp. Table 1 shows the magnetic characteristics. In Table 1, the values in the upper row are the magnetic properties of those obtained from the upper side of the test piece, the values of interruption are the magnetic properties of those obtained from the center of the test piece, and the values in the lower row are those obtained from the lower side of the test piece. Shows magnetic properties. From Table 1, it can be seen that Comparative Example 1 has a large variation in magnetic properties and a low absolute value, whereas Example 1 provides a rare-earth sintered magnet with a small variation and a large absolute value. Further, when the inclination angle of the magnetization direction with respect to the normal line of the reference plane was measured, it was 0.7 degrees in Example 1 and 5.4 degrees in Comparative Example 1.

【0012】[0012]

【表1】 [Table 1]

【0013】(実施例2)予備成形の圧力を0.4〜1
0トン/cmまで変えた以外は実施例1と同様の条件
で試験片を作製した。配向の均一性を調べるために表面
の酸化皮膜を取り去った後、25kOeのパルス磁場で
パルス着磁を行った後、ジーメンス社製造のFA−22
Eプローブにより、上記試験片表面の表面磁束密度Bo
を測定した。図4にBoの分布を示す。測定個所は上記
試験片のN極面である。この図から、4トン/cm
越える場合は表面磁束密度が3.5kGより低下してし
まうことがわかる。さらに、図4から、予備成形圧力が
0.4〜4トン/cmの場合にBo分布の均一性が良
好であり、好ましいことがわかる。
(Embodiment 2) The preforming pressure is set to 0.4 to 1
A test piece was prepared under the same conditions as in Example 1 except that the test piece was changed to 0 ton / cm 2 . After removing the oxide film on the surface in order to examine the uniformity of orientation, pulse magnetization was performed with a pulse magnetic field of 25 kOe, and then FA-22 manufactured by Siemens Co., Ltd.
Using the E probe, the surface magnetic flux density Bo of the test piece surface
Was measured. FIG. 4 shows the distribution of Bo. The measurement point is the N pole face of the test piece. From this figure, it can be seen that, when it exceeds 4 tons / cm 2 , the surface magnetic flux density drops below 3.5 kG. Furthermore, FIG. 4 shows that when the preforming pressure is 0.4 to 4 ton / cm 2 , the uniformity of the Bo distribution is good and preferable.

【0014】(実施例3)重量%で、Nd31.7%,
Dy4.0%、B(硼素)1.1%、Co1%,Ga
0.8%,残部FeからなるNd−Fe−B系焼結磁石
用合金を用いた以外は実施例1と同様にして粉末とし、
得られた粉末を図1に示す構成の横断面24.5mm×
120mmの成形空間を有する成形型内に充填し、高さ
95mmの予備成形ブロックを形成した。実施例1と同
様にリフティング付の油圧プレスを用いた。次に、得ら
れた予備成形ブロックを実施例1と同様の方法でCIP
した。得られたCIP成形体を支持台上に設置した多数
のNd球体(φ10mm)上に置き、1090℃
×1時間、アルゴンガス雰囲気中で焼結した。球体上に
CIP成形体を置いた理由は、焼結時の収縮に伴う変形
を防止するためである。焼結後、試料を室温まで炉中冷
却し、再度900℃×2時間加熱し、1.5℃/分の冷
却速度で連続冷却した。室温への冷却後、580℃で時
効処理(熱処理)を行ったが、何らクラックは入らなか
った。次に、実施例1と同様にテストピースを切り出し
て磁気特性を測定したところBr=10900G,
=23800Oe,(BH)max=28.7MGOe
のものが得られた。また、磁化方向の傾角はab面内の
いずれでも0.9度以内であり均一性が極めてよいもの
が得られた。
Example 3 31.7% by weight of Nd
Dy 4.0%, B (boron) 1.1%, Co 1%, Ga
A powder was prepared in the same manner as in Example 1 except that an alloy for a Nd-Fe-B-based sintered magnet consisting of 0.8% and the balance Fe was used.
The obtained powder was converted into a cross section of 24.5 mm ×
It was filled into a mold having a molding space of 120 mm to form a preformed block having a height of 95 mm. A hydraulic press with lifting was used in the same manner as in Example 1. Next, the obtained preformed block was subjected to CIP in the same manner as in Example 1.
did. The obtained CIP compact is placed on a large number of Nd 2 O 3 spheres (φ10 mm) placed on a support table and placed at 1090 ° C.
Sintering was performed in an argon gas atmosphere for × 1 hour. The reason for placing the CIP compact on the sphere is to prevent deformation due to shrinkage during sintering. After sintering, the sample was cooled in a furnace to room temperature, heated again at 900 ° C. for 2 hours, and continuously cooled at a cooling rate of 1.5 ° C./min. After cooling to room temperature, aging treatment (heat treatment) was performed at 580 ° C., but no cracks were found. Next, a test piece was cut out in the same manner as in Example 1 and the magnetic properties were measured. Br = 10900 G, B H
C = 23800 Oe, (BH) max = 28.7 MGOe
Was obtained. In addition, the tilt angle of the magnetization direction was within 0.9 degrees in any of the ab planes, and a film having extremely excellent uniformity was obtained.

【0015】[0015]

【発明の効果】本発明の金型を用いることにより、基準
面の法線に対する磁化方向の傾角が3度以内という高配
向度の厳しい要求を満足する高配向度希土類焼結磁石を
安定して製作することができ、例えば粒子線加速器用ウ
ィグラーや核磁気共鳴断面撮影装置(MRI)等の用途
のものを製作する上で極めて有用なものである。
By using the mold of the present invention, it is possible to stably produce a highly oriented rare earth sintered magnet which satisfies the strict requirement of a high orientation degree that the inclination angle of the magnetization direction with respect to the normal line of the reference plane is within 3 degrees. It can be manufactured, and is extremely useful for manufacturing, for example, a wiggler for a particle beam accelerator or a nuclear magnetic resonance imaging (MRI).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の金型の一例を示す要部断面図である。FIG. 1 is a sectional view of a main part showing an example of a mold of the present invention.

【図2】本発明の金型を用いて得られた成形体(a)お
よび(a)の成形体をCIPした成形体(b)を示す図
である。
FIG. 2 is a view showing a molded article (a) obtained by using the mold of the present invention and a molded article (b) obtained by subjecting the molded article of (a) to CIP.

【図3】(002)面の回折X線強度と磁化方向に対す
る傾角の相関の一例を示す図である。
FIG. 3 is a diagram illustrating an example of a correlation between a diffraction X-ray intensity of a (002) plane and a tilt angle with respect to a magnetization direction.

【図4】予備成形圧力とBo分布の相関の一例を示す図
である。
FIG. 4 is a diagram showing an example of a correlation between a preforming pressure and a Bo distribution.

【図5】ウィグラーを説明する図である。FIG. 5 is a diagram illustrating a wiggler.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01F 41/02 H05H 13/04 F H05H 13/04 H01S 3/30 A // H01S 3/30 B22F 3/02 B ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01F 41/02 H05H 13/04 F H05H 13/04 H01S 3/30 A // H01S 3/30 B22F 3/02 B

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 キャビティの長辺若しくは長径Aおよび
短辺若しくは短径Bを形成する強磁性金型部材とキャビ
ティの短辺若しくは短径Bおよび厚さCを形成する非磁
性金型部材(A≧B>C)とからなり、前記非磁性金型
部材はキャビティの厚さC方向に沿う寸法がキャビティ
の厚さCと略同一寸法に形成されているとともにキャビ
ティの短辺若しくは短径B方向に沿う寸法がキャビティ
の短辺若しくは短径Bよりも大寸法に形成されている突
設部分を有し、前記強磁性金型部材が前記非磁性金型部
材の突設部分を挟み込んでかつ相対向するように配置さ
れているとともに、前記非磁性金型部材の突設部分の先
端をその突設部分を挟み込んでいる前記強磁性金型部材
の両端位置よりもキャビティ側に突出させてかつ相対向
するように配置することにより、キャビティの長辺若し
くは長径Aおよび短辺若しくは短径Bで形成される平面
(基準面)を通る磁場印加時の磁力線の傾角を3度以内
とした平行磁場を発生させるようにしたことを特徴とす
る高配向度希土類焼結磁石用成形金型。
1. A ferromagnetic mold member forming a long side or major axis A and a short side or minor axis B of a cavity and a non-magnetic mold member (A) defining a short side or minor axis B and a thickness C of a cavity. ≧ B> C), the dimension of the non-magnetic mold member along the direction of the thickness C of the cavity is substantially the same as the thickness C of the cavity, and the short side of the cavity or the direction of the short diameter B Has a protruding portion having a dimension along the shorter side or the shorter diameter B of the cavity, and the ferromagnetic mold member sandwiches the protruding portion of the nonmagnetic mold member and has a relative position. And the tip of the protruding portion of the non-magnetic mold member protrudes more toward the cavity than both end positions of the ferromagnetic mold member sandwiching the protruding portion. To face Thereby, a parallel magnetic field is generated in which the inclination angle of the magnetic field lines when applying a magnetic field passing through a plane (reference plane) formed by the long side or long diameter A and the short side or short diameter B of the cavity is within 3 degrees. A molding die for a highly oriented rare earth sintered magnet, characterized by the following features.
JP10303881A 1988-08-19 1998-10-26 Mold for high orientation rare earth sintered magnet Expired - Lifetime JP2989178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10303881A JP2989178B2 (en) 1988-08-19 1998-10-26 Mold for high orientation rare earth sintered magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-205849 1988-08-19
JP20584988 1988-08-19
JP10303881A JP2989178B2 (en) 1988-08-19 1998-10-26 Mold for high orientation rare earth sintered magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP1206298A Division JP2922535B2 (en) 1988-08-19 1989-08-09 Highly oriented rare earth sintered magnet and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11256203A true JPH11256203A (en) 1999-09-21
JP2989178B2 JP2989178B2 (en) 1999-12-13

Family

ID=26515288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10303881A Expired - Lifetime JP2989178B2 (en) 1988-08-19 1998-10-26 Mold for high orientation rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JP2989178B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351957A (en) * 2005-06-17 2006-12-28 Neomax Co Ltd Manufacturing method of powder compact
CN109434100A (en) * 2018-12-27 2019-03-08 中铝广西有色金源稀土有限公司 A kind of sectional die of neodymium iron boron pressing under magnetic field profiled square block base

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351957A (en) * 2005-06-17 2006-12-28 Neomax Co Ltd Manufacturing method of powder compact
CN109434100A (en) * 2018-12-27 2019-03-08 中铝广西有色金源稀土有限公司 A kind of sectional die of neodymium iron boron pressing under magnetic field profiled square block base
CN109434100B (en) * 2018-12-27 2024-02-06 中铝广西有色金源稀土有限公司 Combined die for forming special-shaped square block blank by using magnetic field for neodymium iron boron

Also Published As

Publication number Publication date
JP2989178B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
TWI416556B (en) Method for manufacturing radiant anisotropic magnets
EP0355704B1 (en) Anisotropic rare-earth permanent magnets and method for making same
US7344606B2 (en) Permanent magnet manufacturing method and press apparatus
JP2016082175A (en) Samarium-iron-nitrogen based magnet mold and method for manufacturing the same
US5080731A (en) Highly oriented permanent magnet and process for producing the same
JP2989178B2 (en) Mold for high orientation rare earth sintered magnet
JP2922535B2 (en) Highly oriented rare earth sintered magnet and method for producing the same
KR20040085988A (en) Axial pressing method for improved magnetic alignment of rare earth magnet and apparatus thereof
JP2928494B2 (en) Rare earth sintered magnet and manufacturing method thereof
EP0455718A4 (en) Method and apparatus for making polycrystaline flakes of magnetic materials having strong grain orientation
JP3101798B2 (en) Manufacturing method of anisotropic sintered magnet
JPS63110605A (en) Method and apparatus for manufacturing magnet
JP4687267B2 (en) Method for producing powder compact
JP3357421B2 (en) Method for forming magnetic field of magnet powder and method for manufacturing magnet
JP4315340B2 (en) Magnetic field forming method, radial anisotropic ring magnet manufacturing method, magnetic field forming apparatus and radial anisotropic ring magnet
JP3182979B2 (en) Anisotropic magnet, manufacturing method and manufacturing apparatus
JP2006019386A (en) Compacting method in magnetic field, method for manufacturing radial anisotropic ring magnet, and compacting apparatus in magnetic field
JP3526493B2 (en) Manufacturing method of anisotropic sintered magnet
JP3937126B2 (en) Die for sintered magnet and method for producing sintered magnet
JPH0410503A (en) Rare-earth permanent magnet and manufacture thereof
JP2006097091A (en) Forming device and forming method
JPH03289103A (en) Rare earth permanent magnet and manufacture thereof
JP3101800B2 (en) Manufacturing method of anisotropic sintered permanent magnet
JP2012079822A (en) Production method of rare earth anisotropic magnet
JPH0935978A (en) Manufacture of anisotropic sintered permanent magnet

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

EXPY Cancellation because of completion of term