JPH11254833A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPH11254833A
JPH11254833A JP10356976A JP35697698A JPH11254833A JP H11254833 A JPH11254833 A JP H11254833A JP 10356976 A JP10356976 A JP 10356976A JP 35697698 A JP35697698 A JP 35697698A JP H11254833 A JPH11254833 A JP H11254833A
Authority
JP
Japan
Prior art keywords
layer
recording
recording medium
optical recording
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10356976A
Other languages
Japanese (ja)
Inventor
Hajime Yuzurihara
肇 譲原
Hiroko Tashiro
浩子 田代
Koji Deguchi
浩司 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP10356976A priority Critical patent/JPH11254833A/en
Publication of JPH11254833A publication Critical patent/JPH11254833A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To determine a composition which enables a high frequency of repeated overwrite at a high writing density to be performed in an Ag-In-Sb-Te phase changing recording material and further, make available the appropriate material of a protecting layer and a medium structure which helps determine the composition. SOLUTION: This photorecording medium is structured of a first dielectric protecting layer 2, a recording layer 3, a second dielectric protecting layer 4 and a reflective heat radiation layer 6 formed, in that order, on a base 1. The recording layer 3 is composed of a material represented by a chemical formula: AgαInβSbγTeδ. In the formula, α, β and γ are independently a composition ratio (atomic %) and satisfy the following requirements: 1<=α<10, 1<β<=20, 35<=γ<=70, 20<=δ<=35, α+β+γ+δ=100, 4β-δ<=0, γ-2δ>=0, γ-8α>=0.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、大容量かつ書き換え可
能な相変化型光記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large-capacity and rewritable phase-change optical recording medium.

【0002】[0002]

【従来技術】半導体レーザビーム照射により情報の記録
・再生及び消去可能な光記録媒体には、熱を利用して磁
化の反転を行ない記録消去する光磁気記録方式と、結晶
と非晶質の可逆的相変化を利用し記録消去可能な相変化
光記録方式がある。後者は単一ビームオーバーライトが
可能であること、CD−ROM、CD−Rメディアとの
互換性の点で有利であることから、書き換え可能なメデ
ィアとして今日、CD−RWメディアとして標準規格が
確立され、製品化に至っている。
2. Description of the Related Art An optical recording medium capable of recording / reproducing and erasing information by irradiating a semiconductor laser beam has a magneto-optical recording system in which magnetization is reversed by utilizing heat, and a recording / erasing method is used. There is a phase-change optical recording system that can record and erase data using a specific phase change. The latter is advantageous in that it allows single-beam overwriting and is compatible with CD-ROM and CD-R media. Therefore, a standard has been established today as a rewritable medium for CD-RW media. Has been commercialized.

【0003】一方、相変化光記録媒体の大容量化の研究
が行われ、DVD−ROMメディアの発売とともに書き
換え可能なDVDメディアとしてDVD−RAMと称さ
れるメディアの開発が行われている。DVD−RAMは
2.6GB容量のものが世に出ようとしているが、RO
M以上の容量が望まれている。相変化記録媒体の記録層
に用いられる材料はカルコゲン系のGe−Sb−Te、
In−Sb−Te、Ge−Se−Te、Ge−Te−B
i、Sb−Se−Te、In−Te−Auがこれまでに
調べられているが、中でもGe−Sb−Teが実用レベ
ルに達している。しかし、このGe−Sb−Teにして
も記録感度、消去感度の向上とオーバーライト時の消し
残りによる消去比の低下等、特性の向上は望まれる。
On the other hand, studies have been made on increasing the capacity of a phase change optical recording medium, and with the release of DVD-ROM media, a rewritable DVD medium called a DVD-RAM has been developed. A DVD-RAM with a capacity of 2.6 GB is about to appear,
A capacity of M or more is desired. Materials used for the recording layer of the phase change recording medium are chalcogen-based Ge-Sb-Te,
In-Sb-Te, Ge-Se-Te, Ge-Te-B
i, Sb-Se-Te, and In-Te-Au have been investigated so far, but among them, Ge-Sb-Te has reached a practical level. However, even with Ge-Sb-Te, it is desired to improve the recording sensitivity and erasing sensitivity, and to improve the characteristics such as a reduction in the erasing ratio due to the unerased portion during overwriting.

【0004】そこでオーバーライト時の消去比を一段と
向上させることができた材料として、Ag−In−Sb
−Te系がある(特開平4−78031、特開平9−2
63055)。この系において消去比向上したのは消去
時に微結晶AgSbTe2とアモルファスIn−Sbの
2相状態になっていることによる。Ag−In−Sb−
Te系記録材料はさらに高密度記録において優れており
今後の大容量光記録媒体、DVD−RWへの応用に期待
されている。そこで本出願人も高密度で、記録再生特性
のより優れた組成範囲のものを提案している。
Accordingly, Ag-In-Sb has been proposed as a material capable of further improving the erasing ratio during overwriting.
-Te system (JP-A-4-78031, JP-A-9-2)
63055). The improvement in the erasing ratio in this system is due to the two-phase state of microcrystalline AgSbTe 2 and amorphous In—Sb during erasing. Ag-In-Sb-
Te-based recording materials are more excellent in high-density recording, and are expected to be applied to large-capacity optical recording media and DVD-RWs in the future. Therefore, the present applicant has also proposed a composition having a high density and a composition range having more excellent recording and reproduction characteristics.

【0005】また、記録媒体に要求される繰り返し回数
の向上は上記記録材料だけでは達成できずこの上下の保
護層、さらに放熱層を積層することで向上が図れてい
る。これまで、保護層材料としてZnS・SiO2(特
公平7−114031)をはじめ金属酸化物、金属硫化
物、金属窒化物の単体もしくは混合物が考えられてい
る。ZnSとSiO2の混合比においては特に80:2
0の比が良いとされている。さらにAlTiに代表され
る反射放熱層により反射率の向上、くり返しオーバーラ
イト特性が向上する。
Further, the improvement in the number of repetitions required for a recording medium cannot be achieved by using only the recording material described above, and the improvement is achieved by laminating the upper and lower protective layers and the heat radiation layer. Heretofore, as the material of the protective layer, ZnS.SiO 2 (Japanese Patent Publication No. 7-114031), metal oxides, metal sulfides, and metal nitrides alone or in mixtures have been considered. The mixing ratio of ZnS and SiO 2 is particularly 80: 2.
It is said that a ratio of 0 is good. Further, the reflective heat dissipation layer represented by AlTi improves the reflectance and the repetitive overwrite characteristics.

【0006】[0006]

【発明が解決しようとする課題】本発明は、今後期待さ
れる大容量かつ書き換え可能な相変化型光記録媒体に関
するものである。相変化型記録媒体は、CD−RWとし
て商品化され、パーソナルコンピュータの外部メモリー
に使われている。そして今日、DVD−ROMプレーヤ
ーが世に出始め、さらにこの後大容量で書き換え可能な
DVDメディアの商品化が期待されている。本発明はこ
れらメディアに使用可能な相変化記録方式を用いて、記
録再生特性の優れた、特に繰り返しオーバーライト回数
を高くするための記録層材料、組成に関するものであ
る。また、これら特性が高速記録再生においても、特性
が劣化させないための保護層の構成、材料、組成に関す
るものである。
The present invention relates to a large-capacity and rewritable phase-change optical recording medium expected in the future. The phase-change recording medium is commercialized as a CD-RW and is used for an external memory of a personal computer. Today, DVD-ROM players have begun to appear, and commercialization of large-capacity and rewritable DVD media is expected. The present invention relates to a recording layer material and composition excellent in recording / reproducing characteristics, particularly for increasing the number of repeated overwrites, using a phase change recording method usable for these media. Further, these characteristics relate to the configuration, material, and composition of the protective layer so that the characteristics are not deteriorated even in high-speed recording / reproducing.

【0007】書き換え可能なDVDメディアとしてDV
D−RAMが登場した。容量2.6GBであり、線速は
約6m/sec近傍で記録再生を行う。DVD−ROM
においては、線速約3.5m/sec、容量4.7GB
である。書き換え可能なDVDメディアに要求されるこ
とはROM以上の容量、倍速以上で記録再生可能にし、
さらにROMとの互換性がとれることである。このよう
な仕様を満足するには、線密度が高くても低ジッター、
特性のマージンが広く、しかも繰り返しオーバーライト
回数が高いことが基本であり要求が厳しくなってくる。
特に繰り返しオーバーライト回数は相変化記録媒体にお
いて一つの大きな課題であり、信頼性を高くするために
はこの特性をより良くすることが必要である。Ag−I
n−Sb−Te系相変化記録材料は高密度記録に適した
材料であり、繰り返しオーバーライト回数をいかに高く
するかが課題である。本発明では、Ag−In−Sb−
Te系相変化記録材料において高密度、高い繰り返しオ
ーバーライト回数をもつ組成を見出すこと、さらにそれ
を可能にするための保護層の材料、構成を提案すること
を目的とする。
[0007] DV as rewritable DVD media
D-RAM has appeared. It has a capacity of 2.6 GB and performs recording and reproduction at a linear velocity of about 6 m / sec. DVD-ROM
, A linear velocity of about 3.5 m / sec and a capacity of 4.7 GB
It is. What is required of rewritable DVD media is to enable recording and reproduction at a capacity larger than ROM and at double speed or higher,
Further, compatibility with the ROM can be obtained. To satisfy such specifications, low jitter, even at high linear density,
A wide margin of characteristics and a high number of repeated overwrites are fundamental, and the requirements are becoming stricter.
In particular, the number of repetitive overwrites is one of the major issues in a phase change recording medium, and it is necessary to improve this characteristic in order to increase the reliability. Ag-I
The n-Sb-Te phase change recording material is a material suitable for high-density recording, and the problem is how to increase the number of repetitive overwrites. In the present invention, Ag-In-Sb-
It is an object of the present invention to find a composition having a high density and a high number of repetitive overwrites in a Te-based phase change recording material, and to further propose a material and a configuration of a protective layer for enabling the composition.

【0008】[0008]

【課題を解決するための手段】本発明者らは、基板上に
第1の誘電体保護層、記録層、第2の誘電体保護層、反
射放熱層の順に積層してなる光記録媒体の記録層に用い
る式AgαInβSbγTeδで表わされる材料につい
て検討した結果、該材料として前式の各元素の組成比
(原子%)を表わすα、β、γおよびδが下記の要件を
満足するものを用いると、高密度においても記録再生特
性の優れた光記録媒体が得られることを見い出し、本発
明に到達することができた。 1≦α<10 1<β≦20 35≦γ≦70 20≦δ≦35 α+β+γ+δ=100 4β−δ≦0 γ−2δ≧0 γ−8α≧0
Means for Solving the Problems The present inventors have developed an optical recording medium comprising a first dielectric protective layer, a recording layer, a second dielectric protective layer, and a reflective heat dissipation layer which are laminated on a substrate in this order. As a result of examining the material represented by the formula AgαInβSbγTeδ used for the recording layer, it is assumed that a material having α, β, γ and δ representing the composition ratio (atomic%) of each element of the above formula satisfying the following requirements is used. It has been found that an optical recording medium having excellent recording and reproduction characteristics can be obtained even at high density, and the present invention has been achieved. 1 ≦ α <10 1 <β ≦ 20 35 ≦ γ ≦ 70 20 ≦ δ ≦ 35 α + β + γ + δ = 100 4β-δ ≦ 0 γ-2δ ≧ 0 γ-8α ≧ 0

【0009】以下、本発明の光記録媒体の構成を図1に
基づいて具体的に説明する。1が基板、2が第1の誘電
体保護層、3が記録層、4が第2の誘電体保護層、5が
放熱層、6が反射放熱層、7が有機環境保護層である。
前記各層、例えば5の放熱層は必要に応じて2層以上の
積層構造であっても良い。
Hereinafter, the configuration of the optical recording medium of the present invention will be specifically described with reference to FIG. 1 is a substrate, 2 is a first dielectric protection layer, 3 is a recording layer, 4 is a second dielectric protection layer, 5 is a heat dissipation layer, 6 is a reflection heat dissipation layer, and 7 is an organic environment protection layer.
Each of the layers, for example, the five heat dissipation layers, may have a laminated structure of two or more layers as necessary.

【0010】第1、第2の誘電体保護層2、4として
は、SiOx、ZnO、SnO2、Al23、TiO2
In23、MgO、ZrO2、Ta25等の金属酸化
物、Si34、AlN、TiN、BN、ZrN等の窒化
物、ZnS、TaS4等の硫化物、SiC、TaC、B4
C、WC、TiC、ZrC等の炭化物が挙げられる。こ
れらの材料は、単体で用いるかあるいは、これらの混合
物として用いられる。該混合物としては、例えばZnS
とSiOx、Ta25とSiOxが挙げられる。これら
材料物性は、熱伝導率、比熱、熱膨張係数、屈折率及び
基板材料あるいは記録層材料との密着性等があり、高融
点、熱伝導率が高く、熱膨張係数が小さく、密着性が良
いといったことが要求される。特に第2の誘電体保護層
は、繰り返しオーバーライト特性、感度を左右する。
[0010] The first, second dielectric protective layer 2,4, SiOx, ZnO, SnO 2 , Al 2 O 3, TiO 2,
Metal oxides such as In 2 O 3 , MgO, ZrO 2 and Ta 2 O 5 , nitrides such as Si 3 N 4 , AlN, TiN, BN and ZrN, sulfides such as ZnS and TaS 4 , SiC, TaC, B 4
Carbides such as C, WC, TiC, ZrC and the like can be mentioned. These materials are used alone or as a mixture thereof. As the mixture, for example, ZnS
SiOx, Ta 2 O 5 and SiOx and the like and. These material properties include thermal conductivity, specific heat, thermal expansion coefficient, refractive index, and adhesion to the substrate material or recording layer material, etc., high melting point, high thermal conductivity, low thermal expansion coefficient, and low adhesion. Good things are required. In particular, the second dielectric protection layer affects repeated overwrite characteristics and sensitivity.

【0011】前記保護層はさらに膜厚が重要であるが、
第1の誘電体保護層2の膜厚は50〜250nmの範囲
とし、75nm〜200nmが好ましい。50nmより
薄くなると、耐環境性保護機能の低下、耐熱性低下、蓄
熱効果の低下となり好ましくない。一方250nmより
厚くなるとスパッタ方法等により膜作製過程において、
膜温度の上昇により膜剥離やクラックが発生したり、記
録時の感度の低下をもたらすので好ましくない。第2の
誘電体保護層4の膜厚は10nm〜100nmの範囲と
し、15nm〜50nmが好ましい。第2保護層の場
合、10nmより薄いと基本的に耐熱性が低下し好まし
くない。100nmを越えると記録感度の低下、温度上
昇による膜剥離、変形、放熱性の低下により繰り返しオ
ーバーライト特性が悪くなる。
Although the thickness of the protective layer is more important,
The thickness of the first dielectric protection layer 2 is in the range of 50 to 250 nm, preferably 75 to 200 nm. If the thickness is less than 50 nm, the protective function for environmental resistance is reduced, the heat resistance is reduced, and the heat storage effect is reduced. On the other hand, if the thickness is more than 250 nm, in the film manufacturing process by a sputtering method or the like,
Undesirably, an increase in the film temperature causes film peeling or cracking, or lowers the sensitivity during recording. The thickness of the second dielectric protection layer 4 is in the range of 10 nm to 100 nm, preferably 15 nm to 50 nm. In the case of the second protective layer, if the thickness is less than 10 nm, the heat resistance basically decreases, which is not preferable. When the thickness exceeds 100 nm, the overwrite characteristics are repeatedly deteriorated due to a decrease in recording sensitivity, film peeling, deformation and heat dissipation due to a rise in temperature.

【0012】反射放熱層6としては、Al、Au、C
u、Ag、Cr、Sn、Zn、In、Pd、Zr、F
e、Co、Ni、Si、Ge、Sb、Ta、W、Ti、
Pb等の金属を中心とした材料の単体、あるいは合金、
混合物を用いることができる。必要に応じて、異なる金
属、合金または混合物を複数積層しても良い。この層
は、熱を効率的に逃がすことが重要であり、膜厚は30
nm〜250nmとする。好ましくは50nm〜150
nmが良い。膜厚が厚すぎると、放熱効率が良すぎて感
度が悪くなり、薄すぎると感度は良いが繰り返しオーバ
ーライト特性が悪くなる。特性としては、熱伝導率が高
く、高融点で保護層材料との密着性が良いこと等が要求
される。
The reflective heat radiation layer 6 is made of Al, Au, C
u, Ag, Cr, Sn, Zn, In, Pd, Zr, F
e, Co, Ni, Si, Ge, Sb, Ta, W, Ti,
A simple substance or alloy of a material mainly composed of a metal such as Pb,
Mixtures can be used. If necessary, a plurality of different metals, alloys or mixtures may be laminated. It is important for this layer to efficiently release heat, and the thickness is 30
nm to 250 nm. Preferably 50 nm to 150
nm is good. If the film thickness is too thick, the heat radiation efficiency is too good, resulting in poor sensitivity. If the film thickness is too thin, the sensitivity is good, but the repetitive overwrite characteristics deteriorate. As the characteristics, high thermal conductivity, high melting point, good adhesion to the protective layer material, and the like are required.

【0013】特に、In/(In+Mg)の比が、0.
60〜1.0の範囲にあるMg−In−O系酸化物の抵
抗率が10-4Ω・cm以下の能力を有し、高融点材料で
あるので特に好ましい。前記0.60〜1.0の範囲
は、In23にMgOをモル比で0.40以下の割合で
混合することに相当する。In23薄膜は、光透過率が
高いが、抵抗率が充分低いとはいえない。MgOは薄膜
作成時の成膜速度が遅く量産に向かない。In/(In
+Mg)の範囲として好ましいのは、0.8〜0.9で
ある。一方、Mg−In−O系酸化物は、In/(In
+Mg)の比が0.6〜1の範囲で電気伝導度が高いこ
とがわかっており、屈折率が2付近にある。そこで、高
融点の高いMgOを含み、光透過率が80%であるMg
−In−O系酸化物を、第2の保護層より熱伝導率が高
い放熱層として用いる。また、放熱層5の屈折率は第2
の誘電体保護層と同等の屈折率にするため、1.9〜
2.1の範囲のものが好ましい。
In particular, when the ratio of In / (In + Mg) is 0.1.
Mg-In-O-based oxides having a resistivity in the range of 60 to 1.0 have a capability of 10 -4 Ω · cm or less, and are particularly preferable because they are high melting point materials. The range of 0.60 to 1.0 corresponds to mixing MgO with In 2 O 3 at a molar ratio of 0.40 or less. Although the In 2 O 3 thin film has a high light transmittance, it cannot be said that the resistivity is sufficiently low. MgO is not suitable for mass production because the film formation speed when forming a thin film is slow. In / (In
+ Mg) is preferably 0.8 to 0.9. On the other hand, the Mg—In—O-based oxide is In / (In
+ Mg) in the range of 0.6 to 1, the electrical conductivity is known to be high, and the refractive index is around 2. Therefore, Mg containing high MgO having a high melting point and having a light transmittance of 80% is used.
-In-O-based oxide is used as a heat dissipation layer having higher thermal conductivity than the second protective layer. The refractive index of the heat radiation layer 5 is the second
1.9 to obtain a refractive index equivalent to that of the dielectric protective layer of
Those in the range of 2.1 are preferred.

【0014】次に第2の誘電体保護層であるZnS・S
iO2と放熱層5であるMgO−In23系の膜厚比を
最適化する必要がある。特に線密度が高いほど、線速が
速くなるほど前記膜厚比が重要となってくる。この場
合、記録周波数が大きくなり記録時のレーザーパルス幅
が狭くなるためパワーが必要になってくる。しかし、パ
ワーを大きくしていくとそれだけ温度上昇するが、熱が
こもり繰り返しオーバーライト回数が減ったり、記録マ
ークのエッジがぼけたり、マーク位置がシフトしてジッ
ターが良くならないことがある。これらMg−In−O
酸化物放熱層5とZnS・SiO2第2の誘電体保護層
4を積層した場合その効果が現れるためには、各層の最
適膜厚比の範囲がある。保護層膜厚:放熱層膜厚=5
0:50〜90:10の範囲にあり、好ましくは60:
40〜80:20の範囲である。保護層膜厚に比べ放熱
層が厚いと蓄熱されにくくなり、感度あるいはジッター
が悪くなる。また、放熱層が薄すぎてもその効果は小さ
い。
Next, the second dielectric protection layer ZnS.S
It is necessary to optimize the film thickness ratio between iO 2 and the MgO—In 2 O 3 based heat dissipation layer 5. In particular, the film thickness ratio becomes more important as the linear density is higher and the linear velocity is higher. In this case, power is required because the recording frequency increases and the laser pulse width during recording decreases. However, as the power is increased, the temperature rises accordingly. However, heat may be trapped, the number of repetitive overwrites may be reduced, the edge of the recording mark may be blurred, or the mark position may be shifted, resulting in poor jitter. These Mg-In-O
When the oxide heat dissipation layer 5 and the ZnS.SiO 2 second dielectric protection layer 4 are stacked, the effect is exhibited, and there is a range of the optimum thickness ratio of each layer. Protective layer thickness: heat dissipation layer thickness = 5
0:50 to 90:10, preferably 60:50.
The range is 40 to 80:20. When the heat radiation layer is thicker than the protective layer film thickness, it becomes difficult to store heat, and the sensitivity or jitter deteriorates. Further, even if the heat radiation layer is too thin, the effect is small.

【0015】上記で述べた材料、構成による光記録媒体
は、波長が、635nmの半導体レーザー、NA0.6
かあるいは650nmの半導体レーザーでNA0.6の
ピックアップを用い記録再生する。記録方法は、pul
se width modulationで変調コード
がEFM+〔8/16、RLL(2、10)〕方式で記
録する。
The optical recording medium having the above-mentioned materials and constitutions includes a semiconductor laser having a wavelength of 635 nm, an NA of 0.6.
Alternatively, recording and reproduction are performed using a 650 nm semiconductor laser and a NA 0.6 pickup. The recording method is pul
The modulation code is recorded in the EFM + [8/16, RLL (2, 10)] system by the second width modulation.

【0016】[0016]

【実施例】実施例1〜9と比較例1〜6 ポリカーボネートからなり、基板厚0.6mm、トラッ
クピッチ0.74μm、溝幅0.45μm、溝深さ50
nmの基板を用い、70〜80℃で脱水処理した後スパ
ッタにより成膜した。第1誘電体保護層として、ZnS
・SiO2ターゲットを用い膜厚170nmの厚さにつ
けた。次に所定の組成比のAgInSbTeターゲット
をアルゴンガス圧3×10-3torr、RFパワー30
0Wでスパッタし膜厚18nmつけ記録層とした。さら
に、その上に第1の誘電体保護層と同様ZnS・SiO
2の第2の誘電体保護層、その上にAlTi合金膜を反
射放熱層として厚さ120nmつけた。最後に紫外線硬
化型樹脂膜を保護膜としてつけ媒体とした。成膜後の記
録層は非晶質であり、結晶化させるための初期化を施し
た。記録はλ=635nm、NA0.6で行い、記録方
式はパルス変調法を用い、変調方式はEFM+〔8/1
6、RLL(2、10)〕変調方式で行った。記録再生
時の線速は、組成により3.5m/sec〜7m/se
cとした。記録パワー/消去パワーの比を約2〜2.2
にし、ボトムパワーを再生パワーと同じかそれより低く
し記録した。記録パワーを最大15mWまでかけた。記
録周波数を23.3MHz〜46.6MHzにしグルー
プに記録した。各記録層組成に対し記録再生を行い、d
ata to clkジッターを測定した。ジッターσ
/Tw(Tw:ウィンドウ幅)が最小となる最適記録パ
ワーで記録し、さらに繰り返しオーバーライトを行っ
た。オーバーライト回数はジッター10%以下となる場
合の回数である。表1に実施例1〜9と比較例1〜6、
また、表2に従来例を示す。比較例および従来例は、請
求項1記載の組成条件をひとつでもはずれている場合で
ある。このような組成範囲に限定することで、より高い
オーバーライト回数を得ることができ、データの信頼性
が高くなる。
Examples 1 to 9 and Comparative Examples 1 to 6 These were made of polycarbonate, and had a substrate thickness of 0.6 mm, a track pitch of 0.74 μm, a groove width of 0.45 μm, and a groove depth of 50.
After dehydration treatment at 70 to 80 ° C. using a substrate of nm, a film was formed by sputtering. ZnS as the first dielectric protection layer
- attached to a layer thickness of 170nm using a SiO 2 target. Next, an AgInSbTe target having a predetermined composition ratio was irradiated with an argon gas pressure of 3 × 10 −3 torr and an RF power of 30.
Sputtering was performed at 0 W to provide a recording layer having a thickness of 18 nm. Furthermore, ZnS.SiO is formed thereon similarly to the first dielectric protection layer.
(2 ) A second dielectric protection layer, on which an AlTi alloy film having a thickness of 120 nm was formed as a reflective heat dissipation layer. Finally, an ultraviolet-curable resin film was used as a protective film and used as a medium. The recording layer after the film formation was amorphous, and was initialized for crystallization. Recording was performed at λ = 635 nm and NA of 0.6, and the recording method used was a pulse modulation method, and the modulation method was EFM + [8/1
6, RLL (2, 10)]. The linear velocity at the time of recording / reproduction is 3.5 m / sec to 7 m / sec depending on the composition.
c. The ratio of recording power / erasing power is about 2 to 2.2.
Then, recording was performed with the bottom power equal to or lower than the reproduction power. The recording power was applied up to a maximum of 15 mW. The recording frequency was 23.3 MHz to 46.6 MHz, and recording was performed in the group. Recording / reproduction is performed for each recording layer composition, and d
The data to clk jitter was measured. Jitter σ
Recording was performed at an optimum recording power at which / Tw (Tw: window width) was minimized, and overwriting was repeated. The number of overwrites is the number of times when the jitter becomes 10% or less. Table 1 shows Examples 1 to 9 and Comparative Examples 1 to 6,
Table 2 shows a conventional example. The comparative example and the conventional example are cases where any one of the composition conditions described in claim 1 is out of the range. By limiting to such a composition range, a higher number of overwrites can be obtained and data reliability can be increased.

【0017】実施例10〜14 ポリカーボネートからなり、基板厚0.6mm、トラッ
クピッチ1.48μm、溝幅0.74μm、溝深さ65
nmの基板を用い、高温で脱水処理した後スパッタによ
り成膜した。第1の誘電体保護層として、ZnS・Si
2ターゲットを用い膜厚170nmの厚さにつけた。
次に実施例1の組成比の記録層をガス圧3×10-3to
rr、RFパワー300mWでスパッタする。このとき
Arガスと窒素ガス0.5sccm流し、Ar+N2
混合ガスとした。膜厚を18nmにし記録層とした。さ
らに、Mg−In−O放熱層の順に、厚さ250nmと
し、各層の膜厚比を50:50〜90:10の範囲でつ
けた。さらにその上にAlTi合金膜を反射放熱層とし
て厚さ120nmつけた。Mg−In−O放熱層の屈折
率を測定したところ約2.1であった。その上に紫外線
硬化型樹脂膜を保護膜としてつけ媒体とした。記録再生
条件は、波長635nm、NA0.6で記録再生する。
記録方式はパルス変調法を用い、変調方式はEFM+
〔8/16、RLL(2、10)〕変調方式で行った。
記録パワー/消去パワーの比を約2〜2.2にし、再生
パワーを1mW、ボトムパワーを再生パワーと同じかそ
れより低くし、グループに記録した。線速3.5m/s
ec、記録周波数23.3MHzで記録し、ジッター最
小となる記録パワーで繰り返しオーバーライトを行っ
た。ジッターはdata to clkジッターを測定
した。表3に実施例を示す。その結果、In/(In+
Mg)が0.96〜0.98の範囲で、保護層:放熱層
の膜厚比が80:20付近が最もくり返しオーバーライ
ト回数が多かった。くり返しオーバーライト回数は先と
同様、ジッター10%以下の場合である。表3に実施例
10〜14を示す。
Examples 10 to 14 A substrate made of polycarbonate, having a substrate thickness of 0.6 mm, a track pitch of 1.48 μm, a groove width of 0.74 μm, and a groove depth of 65
Using a substrate of nm, a film was formed by sputtering after dehydration treatment at a high temperature. ZnS · Si as the first dielectric protection layer
The thickness was set to 170 nm using an O 2 target.
Next, the recording layer having the composition ratio of Example 1 was applied to a gas pressure of 3 × 10 −3 ton.
Sputter at rr, RF power 300 mW. At this time, Ar gas and nitrogen gas were flowed at 0.5 sccm to obtain a mixed gas of Ar + N 2 . The recording layer was formed with a thickness of 18 nm. Further, the thickness was 250 nm in the order of the Mg—In—O heat radiation layer, and the thickness ratio of each layer was set in the range of 50:50 to 90:10. Further, an AlTi alloy film having a thickness of 120 nm was formed thereon as a reflective heat dissipation layer. The measured refractive index of the Mg—In—O heat radiation layer was about 2.1. An ultraviolet-curable resin film was applied thereon as a protective film to serve as a medium. Recording and reproduction conditions are such that recording and reproduction are performed at a wavelength of 635 nm and an NA of 0.6.
The recording method uses a pulse modulation method, and the modulation method is EFM +
[8/16, RLL (2, 10)] The modulation method was used.
The recording power / erasing power ratio was about 2 to 2.2, the reproducing power was 1 mW, and the bottom power was equal to or lower than the reproducing power. Linear velocity 3.5m / s
ec, recording was performed at a recording frequency of 23.3 MHz, and overwriting was repeatedly performed at a recording power that minimized jitter. Jitter measured the data to clk jitter. Table 3 shows examples. As a result, In / (In +
Mg) was in the range of 0.96 to 0.98, and the number of overwrites was the largest when the thickness ratio of the protective layer to the heat radiation layer was around 80:20. Similar to the above, the number of repeated overwrites is a case where the jitter is 10% or less. Table 3 shows Examples 10 to 14.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【効果】高密度においても記録再生特性が優れ、かつ、
繰り返しオーバーライト回数が向上した光記録媒体を得
ることができた。
[Effect] Excellent recording / reproducing characteristics even at high density, and
An optical recording medium with an improved number of overwrites was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いる光記録媒体の構成を示す説明図
である。
FIG. 1 is an explanatory diagram showing a configuration of an optical recording medium used in the present invention.

【符号の説明】 1 基板 2 第1の誘電体保護層 3 記録層 4 第2の誘電体保護層 5 放熱層 6 反射放熱層 7 有機環境保護層[Description of Signs] 1 Substrate 2 First Dielectric Protective Layer 3 Recording Layer 4 Second Dielectric Protective Layer 5 Heat Dissipation Layer 6 Reflective Heat Dissipation Layer 7 Organic Environmental Protection Layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に第1の誘電体保護層、記録層、
第2の誘電体保護層、反射放熱層の順に積層してなる光
記録媒体の記録層において、記録層が化学式AgαIn
βSbγTeδで表わされる材料で構成されていること
を特徴とする光記録媒体。前式中、α、βおよびγは各
組成比(原子%)を表わし、下記の要件を満足するもの
である。 1≦α<10 1<β≦20 35≦γ≦70 20≦δ≦35 α+β+γ+δ=100 4β−δ≦0 γ−2δ≧0 γ−8α≧0
A first dielectric protection layer, a recording layer,
In the recording layer of the optical recording medium formed by laminating the second dielectric protective layer and the reflective heat dissipation layer in this order, the recording layer has a chemical formula of AgαIn
An optical recording medium comprising a material represented by βSbγTeδ. In the above formula, α, β, and γ represent the respective composition ratios (atomic%), and satisfy the following requirements. 1 ≦ α <10 1 <β ≦ 20 35 ≦ γ ≦ 70 20 ≦ δ ≦ 35 α + β + γ + δ = 100 4β-δ ≦ 0 γ-2δ ≧ 0 γ-8α ≧ 0
【請求項2】 第2の誘電体保護層と反射放熱層の間に
Mg、In、Oからなる材料で構成される放熱層を設
け、該材料は、In/(In+Mg)で表わされる比
が、下記の要件を満足するものである請求項1記載の光
記録媒体。 0.60<In/(In+Mg)<1.0
2. A heat radiation layer made of a material made of Mg, In, and O is provided between the second dielectric protection layer and the reflection heat radiation layer, and the material has a ratio represented by In / (In + Mg). 2. The optical recording medium according to claim 1, satisfying the following requirements. 0.60 <In / (In + Mg) <1.0
【請求項3】 反射放熱層と第2の誘電体保護層の膜厚
比が10:90〜50:50である請求項2記載の光記
録媒体。
3. The optical recording medium according to claim 2, wherein the thickness ratio between the reflective heat dissipation layer and the second dielectric protection layer is 10:90 to 50:50.
【請求項4】 反射放熱層の屈折率が1.9〜2.1で
ある請求項2または3記載の光記録媒体。
4. The optical recording medium according to claim 2, wherein the reflective heat radiation layer has a refractive index of 1.9 to 2.1.
JP10356976A 1997-12-02 1998-12-01 Optical recording medium Pending JPH11254833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10356976A JPH11254833A (en) 1997-12-02 1998-12-01 Optical recording medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34717597 1997-12-02
JP9-347175 1997-12-02
JP10356976A JPH11254833A (en) 1997-12-02 1998-12-01 Optical recording medium

Publications (1)

Publication Number Publication Date
JPH11254833A true JPH11254833A (en) 1999-09-21

Family

ID=26578445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10356976A Pending JPH11254833A (en) 1997-12-02 1998-12-01 Optical recording medium

Country Status (1)

Country Link
JP (1) JPH11254833A (en)

Similar Documents

Publication Publication Date Title
US6177167B1 (en) Optical information recording medium
KR100586875B1 (en) Rewritable optical information medium
JP2000182274A (en) Optical recording medium and optical recording method
JP4249590B2 (en) Optical information recording medium and manufacturing method thereof
WO1999030908A1 (en) Write once optical information recording medium
JP2004220699A (en) Optical recording medium
JP2002074741A (en) Optical information recording medium
JP2003341240A (en) Optical recording medium
JP4093846B2 (en) Phase change optical recording medium
JPH11254833A (en) Optical recording medium
JP2002133718A (en) Optical recording medium
JP3920731B2 (en) Phase change optical recording medium
JP3651824B2 (en) Optical recording medium
JP4104067B2 (en) Optical information recording medium and recording method
JP3506621B2 (en) Optical recording medium
JPH1170738A (en) Optical recording medium
JPH11129620A (en) Optical recording medium
JP2967949B2 (en) Optical information recording medium
JP2967948B2 (en) Optical information recording medium
JP2002123977A (en) Write once read many optical recording medium
JP2004181742A (en) Phase changing optical recording medium
JP2005193663A (en) Optical recording medium
JP4248645B2 (en) Optical information recording medium
JPH1170737A (en) Optical recording medium
JP2004249603A (en) Phase transition type optical recording medium

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002