JPH11254238A - Electrochemical machining method and device - Google Patents

Electrochemical machining method and device

Info

Publication number
JPH11254238A
JPH11254238A JP10053909A JP5390998A JPH11254238A JP H11254238 A JPH11254238 A JP H11254238A JP 10053909 A JP10053909 A JP 10053909A JP 5390998 A JP5390998 A JP 5390998A JP H11254238 A JPH11254238 A JP H11254238A
Authority
JP
Japan
Prior art keywords
workpiece
processing
potential
electrode
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10053909A
Other languages
Japanese (ja)
Other versions
JP3267922B2 (en
Inventor
Reiko Irie
礼子 入江
Masayuki Suda
正之 須田
Kunio Nakajima
邦雄 中島
Toshihiko Sakuhara
寿彦 作原
Tatsuaki Ataka
龍明 安宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP05390998A priority Critical patent/JP3267922B2/en
Publication of JPH11254238A publication Critical patent/JPH11254238A/en
Application granted granted Critical
Publication of JP3267922B2 publication Critical patent/JP3267922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately and easily control the distance between a workpiece and a machining electrode without deforming the tip of the machining electrode and the workpiece in an electrochemical machining method wherein the workpiece is machined by approximating the workpiece and machining electrode in electrolyte solution to cause electrochemical reaction between them. SOLUTION: At the beginning, while approximating the workface of a workpiece 303 and the tip of a machining electrode 304, the electric potential of the workpiece 303 is periodically measured and accumulated. By analyzing the accumulated electric potential, a zero contact reference position is detected, where the workface of the workpiece 303 and the tip of the machining electrode 304 are brought into contact with each other, as a result, the distance between them becomes zero. In the next step, the distance between the workpiece 303 and the machining electrode 304 is calculated using the zero contact reference position as a basis and the relative positions of the workpiece 303 and the machining electrode 304 are adjusted so that the distance value obtained by calculation conform to the desired distance value. The distance is thus controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属工業、電子工
業分野等において、電解溶液中で加工電極を用いて電気
化学反応により微細加工を行う電解加工方法及び電解加
工装置に係わり、特に、加工電極と被加工物との離間距
離が零となる零接触基準位置を基準に加工電極と被加工
物の所定の離間距離を保ちつつ電解加工が行われる電解
加工方法及び電解加工装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic processing method and an electrolytic processing apparatus for performing fine processing by electrochemical reaction using a processing electrode in an electrolytic solution in the metal industry, the electronic industry, and the like. The present invention relates to an electrolytic processing method and an electrolytic processing apparatus in which electrolytic processing is performed while maintaining a predetermined separation distance between a processing electrode and a workpiece with reference to a zero contact reference position at which a separation distance between the electrode and the workpiece becomes zero.

【0002】[0002]

【従来の技術】従来、金属工業、電子工業分野等におい
て、溶液中で微細な先端を有する探針を用いて電気化学
反応により被加工物の微細加工を行う方法が知られてい
る(特開平06-299390)。この方法において、加工精度
を向上させるためには、加工電極と被加工物間の距離を
短くする必要がある。ミクロンオーダーの精度を持つ加
工を行う場合、加工電極と被加工物間の距離は10μm
(ミクロン)以下にする必要があり、このような微小距
離を高い精度で制御することは困難である。その理由と
しては、 1.加工電極と被加工物が溶液中にあること、2.レー
ザー変位計等相対的な距離の変化を高精度に測定するこ
とが可能な技術はあるが、このような測定方法では距離
の原点が特定できないと絶対距離を測定することができ
ないこと、等が挙げられる。そこで、加工電極と被加工
物が接触する点を何等かの方法で測定し、そこを原点に
とり別の高精度なスケールを用いて距離を測定するとい
う方法が考えられる。この接触を検出する方法として
は、 1.加工電極と被加工物間の抵抗値を測定する方法など
が考えられる。また、他の微小な距離の測定方法として
は、2.加工電極と被加工物間の静電容量を測定するこ
と、3.トンネル電流を測定すること、等が考えられ
る。
2. Description of the Related Art Conventionally, in the metal industry, the electronics industry, and the like, there has been known a method of performing fine processing of a workpiece by an electrochemical reaction using a probe having a fine tip in a solution (Japanese Patent Application Laid-Open (JP-A) No) 06-299390). In this method, in order to improve the processing accuracy, it is necessary to shorten the distance between the processing electrode and the workpiece. When processing with micron-order accuracy, the distance between the processing electrode and the workpiece is 10 μm
(Micron) or less, and it is difficult to control such a minute distance with high accuracy. The reasons are: 1. The processing electrode and the workpiece are in solution. There are technologies such as laser displacement meters that can measure relative distance changes with high accuracy.However, with such a measurement method, it is impossible to measure the absolute distance unless the origin of the distance can be specified. No. Therefore, a method of measuring the point at which the processing electrode and the workpiece come into contact with each other by some method and taking the position as the origin to measure the distance using another high-precision scale is conceivable. Methods for detecting this contact include: A method of measuring the resistance value between the processing electrode and the workpiece can be considered. Other methods for measuring a minute distance include: 2. measuring the capacitance between the working electrode and the workpiece; Measuring the tunnel current may be considered.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
の方法には以下のような問題点が存在する。はじめに、
第1の方法では、加工電極や被加工物の表面が薄い酸化
膜等で覆われている場合があり、加工電極が被加工物に
ある程度の力で押しつけられないと、接触が検出できな
い可能性がある。加工精度を高めるために加工電極の先
端径は、数百μm以下となっているので、強く押しつけ
られた場合には先端がつぶれてしまうという技術的課題
を有する。また、抵抗値を測定するためには、加工電極
と被加工物間に電圧を印加する必要があるが、被加工物
が電解質溶液中で反応性が高い場合、溶液中で、加工電
極−被加工物間に標準電極電位差よりも大きな電圧が印
加されると、この電圧によって電気化学反応が起き、加
工が行われてしまうという技術的課題も有する。
However, these methods have the following problems. First,
In the first method, the surface of the processing electrode or the workpiece may be covered with a thin oxide film or the like, and if the processing electrode is not pressed against the workpiece with a certain force, contact may not be detected. There is. Since the tip diameter of the machining electrode is several hundred μm or less in order to enhance machining accuracy, there is a technical problem that the tip is crushed when strongly pressed. Further, in order to measure the resistance value, it is necessary to apply a voltage between the processing electrode and the workpiece, but when the workpiece has high reactivity in the electrolyte solution, the processing electrode-workpiece is applied in the solution. When a voltage larger than the standard electrode potential difference is applied between the workpieces, an electrochemical reaction occurs due to the voltage, and there is also a technical problem that the processing is performed.

【0004】つぎに、第2の方法では、使用する溶液の
種類や濃度が代わると誘電率も変るため、あらかじめ電
極間距離と静電容量の関係を測定しておく必要が生じ
る。また、溶液中での静電容量の測定は、溶液の対流な
どが原因となり測定値がノイズの影響を受けやすいとい
う技術的課題を有する。さらに、第3の方法では、厳密
には非接触であるため原点の検出には理想的であるが、
溶液中でトンネル電流を検出するためには、ファラデー
電流や電気二重層への充電電流等の影響を排除するた
め、加工電極の先端径を非常に小さくする必要があり、
加工速度を向上させるために加工電極の先端径を数十〜
数百μm(ミクロン)とした場合には、溶液中でのトン
ネル電流の検出が非常に困難であるという技術的課題を
有する。
In the second method, since the dielectric constant changes when the type and concentration of the solution used changes, it is necessary to measure the relationship between the distance between the electrodes and the capacitance in advance. Further, the measurement of the capacitance in a solution has a technical problem that the measured value is easily affected by noise due to convection of the solution. Furthermore, the third method is ideal for detecting the origin because it is strictly non-contact,
In order to detect the tunnel current in the solution, it is necessary to make the tip diameter of the processing electrode extremely small in order to eliminate the influence of the Faraday current and the charging current to the electric double layer, etc.
To improve the processing speed, increase the tip diameter of the processing electrode
When the thickness is several hundred μm (micron), there is a technical problem that it is very difficult to detect a tunnel current in a solution.

【0005】[0005]

【課題を解決するための手段】上記の技術的課題を解決
する手段として、本発明では、電解質溶液中で被加工物
と加工電極とを対向させ、前記被加工物の被加工面と前
記加工電極の先端部との間を所望の離間距離に制御した
状態で、前記被加工物の被加工面と前記加工電極の先端
部との間に電解反応を起こさせて加工を施す電解加工方
法において、前記離間距離の制御は、はじめに前記被加
工物と前記加工電極を接近させながら前記被加工物また
は前記加工電極の電位を定期的に測定・蓄積して解析す
ることにより、前記被加工物の被加工面と前記加工電極
の先端部とが接触して離間距離が零となる零接触基準位
置を検出し、つぎに前記零接触基準位置を基準として前
記被加工物の被加工面と前記加工電極の先端部との離間
距離を算出し、前記、離間距離の算出値が所望の離間距
離と一致するように前記被加工物と前記加工電極の相対
位置を調整する過程により行う事を特徴としている。
According to the present invention, as a means for solving the above technical problem, a workpiece and a processing electrode are opposed to each other in an electrolyte solution, and a processing surface of the workpiece and the processing surface are formed. In an electrolytic processing method in which an electrolytic reaction is caused between the processed surface of the workpiece and the distal end of the processed electrode while controlling the distance between the electrode and the distal end to a desired distance, the electrolytic processing method is performed. The control of the separation distance is performed by periodically measuring / accumulating and analyzing the potential of the workpiece or the processing electrode while approaching the workpiece and the processing electrode first, thereby analyzing the workpiece. The work surface and the tip of the processing electrode come into contact with each other to detect a zero contact reference position at which the separation distance becomes zero, and then the work surface of the work and the processing are performed with reference to the zero contact reference position. Calculate the separation distance from the electrode tip and It is characterized in that performing the process of calculating values of the distance to adjust the relative position of the processing electrode and the workpiece to match the desired distance.

【0006】また、前記零接触基準位置の検出は、前
記、定期的な電位測定の際に、蓄積された電位情報の一
部を用いて前記被加工物と前記加工電極の相対移動距離
に対する電位変化を外挿し、測定位置に対応する電位を
算出した値と、測定値との差が、設定したしきい値を越
える場合に接触と判定し、前記接触判定が行われた際の
接触位置を零接触基準位置とする事により行うことを特
徴としている。
The zero contact reference position is detected by using a part of the accumulated potential information at the time of the periodic potential measurement, with respect to the relative moving distance between the workpiece and the processing electrode. Extrapolating the change, the calculated value of the potential corresponding to the measurement position, and the difference between the measured value is determined to be a contact if the difference exceeds a set threshold, the contact position when the contact determination was performed It is characterized in that it is performed by setting the zero contact reference position.

【0007】また、請求項3記載の電解加工装置は、電
解質溶液中で被加工物を保持する被加工物保持手段と、
前記被加工物の被加工面に電解反応により加工を施す加
工電極と、前記被加工物および前記加工電極の電位・電
流を制御する電位・電流制御手段と、前記被加工物保持
手段に保持された被加工物の被加工面と前記加工電極の
先端部との間の離間距離を変更させる離間距離変更手段
とを備えた電解加工装置において、前記被加工物または
前記加工電極の電位を測定する電位測定手段と、前記電
位測定手段により測定される電位の情報を記憶する電位
情報記憶手段と、前記電位情報記憶手段に記憶された電
位情報を解析する電位情報解析手段と、前記電位情報解
析手段により電位情報を解析した結果から、前記被加工
物と前記加工電極とが相互に接触した際に接触判定を行
う接触判定手段と、前記接触判定手段によって接触が判
定された時の接触位置を、前記被加工物と前記加工電極
の離間距離が零となる零接触基準位置として記憶する零
接触基準位置記憶手段と、前記零接触基準位置を基準と
して、前記被加工物と前記加工電極の相対移動距離を基
に前記被加工物の被加工面と前記加工電極の先端部との
離間距離を算出する離間距離演算手段と、離間距離の目
標値を記憶する目標離間距離記憶手段と、前記離間距離
演算手段による算出に基づき、前記被加工物の被加工面
と前記加工電極の先端部との離間距離が前記目標離間距
離と一致するように、前記離間距離変更手段に離間距離
の調整を行わせる離間距離制御手段とを備えたことを特
徴としている。
Further, the electrolytic processing apparatus according to the third aspect of the present invention includes a workpiece holding means for holding the workpiece in an electrolyte solution;
A processing electrode for processing the surface to be processed of the workpiece by an electrolytic reaction, potential / current control means for controlling the potential / current of the workpiece and the processing electrode, and a processing electrode held by the workpiece holding means. And measuring a potential of the workpiece or the processing electrode in an electrolytic processing apparatus including a separation distance changing unit configured to change a separation distance between a processed surface of the processed workpiece and a tip end of the processing electrode. Potential measuring means, potential information storing means for storing information on potential measured by the potential measuring means, potential information analyzing means for analyzing potential information stored in the potential information storing means, and potential information analyzing means From the result of analyzing the potential information according to, contact determination means for performing a contact determination when the workpiece and the processing electrode contact each other, contact when the contact is determined by the contact determination means Zero contact reference position storage means for storing the position as a zero contact reference position at which the separation distance between the workpiece and the processing electrode becomes zero, and the workpiece and the processing electrode with reference to the zero contact reference position. Separation distance calculating means for calculating a separation distance between the processing surface of the workpiece and the tip of the processing electrode based on the relative movement distance, and a target separation distance storage means for storing a target value of the separation distance, The separation distance adjusting means adjusts the separation distance based on the calculation by the separation distance calculation means so that the separation distance between the processing surface of the workpiece and the tip of the processing electrode coincides with the target separation distance. And a separation distance control means for performing the following.

【0008】以上の課題を解決する手段にあって離間距
離変更手段には、被加工物側のみ移動させる場合、加工
電極側のみ移動させる場合、被加工物側と加工電極側の
両方を移動させる場合のいずれも含まれる。また、被加
工物の被加工面と加工電極の先端が接触するとは、両者
が物理的に完全接触するのみならず、加工電極の先端が
加工物の被加工面に電気的に接触したとみなされる場合
も含まれる。
[0008] In the means for solving the above problems, the separation distance changing means moves only the workpiece side, moves only the processing electrode side, and moves both the workpiece side and the processing electrode side. Both cases are included. In addition, the fact that the processed surface of the workpiece and the tip of the processing electrode are in contact with each other means that not only the two are physically in complete contact, but also that the distal end of the processing electrode is in electrical contact with the processed surface of the workpiece. Is included.

【0009】以下、本発明の原理について説明する。図
1(a)に示すように、2種類の金属板A101、B1
02を非接触状態で溶液中に浸漬した場合、次のような
反応が起こり、金属板A101の方が金属板B102よ
りもイオン化しやすいとする。このとき、金属板A10
1上で起こる反応としては、 M1→M1 n++ne- (1) M1 n++ne-→M1 (2) 金属板B102上で起こる反応としては、 M2→M2 n++ne- (3) M2 n++ne-→M2 (4) であり、金属板A101の平衡電位は(1)式と(2)
式の反応が平衡状態になるときの電位であり、金属板B
102の平衡電位は(3)式と(4)式の反応が平衡状
態になるときの電位である。
Hereinafter, the principle of the present invention will be described. As shown in FIG. 1A, two types of metal plates A101 and B1
When 02 is immersed in a solution in a non-contact state, the following reaction occurs, and it is assumed that the metal plate A101 is more easily ionized than the metal plate B102. At this time, the metal plate A10
The reactions occurring on 1, M 1 → M 1 n + + ne - (1) M 1 n + + ne - → M 1 (2) as a reaction occurring on the metal plate B102 is, M 2 → M 2 n + + ne - (3 ) M 2 n + + ne → M 2 (4), and the equilibrium potential of the metal plate A101 is given by the equation (1)
The potential when the reaction of the formula is in an equilibrium state.
The equilibrium potential of 102 is the potential at which the reactions of equations (3) and (4) enter an equilibrium state.

【0010】ここで、金属板A101を被加工物とし、
金属板B102を加工電極とし、参照電極305を基準
として電位差計103を用いて被加工物の電位を測定し
た場合、被加工物の電位は、(1)式と(2)式の反応
が平衡になるときの電位を測定することになる。一方、
図1(b)に示すように、金属板B102が金属板A1
01に接触すると、金属板A101は金属板B102よ
りもイオン化しやすいので、(1)式の反応は(3)式
の反応より起こりやすく、(4)式の反応は(2)式の
反応より起こりやすくなる。即ち、(1)式及び(4)
式の反応の平衡状態が主体となる電位が測定されると推
察される。
Here, the metal plate A101 is used as a workpiece,
When the potential of the workpiece is measured using the potentiometer 103 with the metal plate B102 as the working electrode and the reference electrode 305 as a reference, the potential of the workpiece is balanced by the reaction of the equations (1) and (2). Will be measured when the potential becomes. on the other hand,
As shown in FIG. 1B, the metal plate B102 is a metal plate A1.
When the metal plate A101 comes into contact with the metal plate A1, the metal plate A101 is more easily ionized than the metal plate B102. Therefore, the reaction of the formula (1) is more likely to occur than the reaction of the formula (3), and the reaction of the formula (4) is more easily performed than the reaction of the formula (2). More likely to happen. That is, equation (1) and equation (4)
It is presumed that the potential mainly measured by the equilibrium state of the reaction of the formula is measured.

【0011】以上より、金属板同士が接触することで化
学反応の平衡状態に変化が生じるので、例えば、被加工
物と加工電極を接近させながら参照電極に対する被加工
物の電位を定期的に測定すれば、電位が変化する位置で
被加工物と加工電極が接触したと判断することができ
る。そして、接触位置を基準として被加工物と加工電極
との相対移動距離を制御すれば、所望の離間距離を得る
事が可能となる。
As described above, since the equilibrium state of the chemical reaction changes when the metal plates come into contact with each other, for example, the potential of the workpiece with respect to the reference electrode is periodically measured while bringing the workpiece and the working electrode close to each other. Then, it can be determined that the workpiece and the processing electrode are in contact at the position where the potential changes. Then, if the relative movement distance between the workpiece and the processing electrode is controlled based on the contact position, a desired separation distance can be obtained.

【0012】ここで、電位変化を検出する際に、単純に
測定した電位の値を比較するだけでは接触点の検出は困
難である。その理由としては次の点が挙げられる。 1.加工電極の先端部のつぶれを防止するために被加工
物と加工電極を接近させる際の電位の測定間隔を小さく
すると、接触時の電位の変化は非常に緩やか起き、各測
定点における電位変化は小さくなる。
Here, when detecting a potential change, it is difficult to detect a contact point simply by comparing the measured potential values. The reasons are as follows. 1. If the potential measurement interval when bringing the workpiece and the processing electrode close together is reduced to prevent the tip of the processing electrode from collapsing, the potential change at the time of contact occurs very slowly, and the potential change at each measurement point Become smaller.

【0013】2.化学平衡に達するまでに時間がかかる
ため、被加工物と加工電極の相対距離に変化がなくても
電位は緩やかに変化する。 3.各測定点における電位の変化は比較的小さいため、
ノイズ等の影響による測定電位の変化によって誤って接
触を判定してしまう可能性がある。そこで、上記の問題
を解決するために、本発明でははじめに被加工物と加工
電極を接近させながら被加工物または加工電極の電位を
定期的に測定・蓄積し、蓄積された電位情報の一部を用
いて被加工物と加工電極の相対移動距離に対する電位変
化を外挿し、測定位置に対応する電位を算出した値と、
測定値との差が、設定したしきい値を越える場合に接触
と判定している。
2. Since it takes time to reach chemical equilibrium, the potential gradually changes even if there is no change in the relative distance between the workpiece and the processing electrode. 3. Since the change in potential at each measurement point is relatively small,
Contact may be erroneously determined due to a change in the measured potential due to the influence of noise or the like. Therefore, in order to solve the above problem, the present invention first measures and accumulates the potential of the workpiece or the processing electrode periodically while bringing the workpiece and the processing electrode close to each other, and a part of the accumulated potential information. Extrapolating the potential change with respect to the relative movement distance between the workpiece and the processing electrode using a calculated value of the potential corresponding to the measurement position,
If the difference from the measured value exceeds the set threshold value, it is determined that a contact has occurred.

【0014】例えば、図2(a)に示したように電位が
変化している場合、測定位置前後で明らかに電位の変化
が起きているが、各位置における電位変化はわずかであ
るため、単純に電位の値を比較しただけでは電位変化を
検出して接触を判定することは困難であることがわか
る。これに対して、図2(a)の中に矢印で示した部分
の電位情報を用いて被加工物と加工電極の相対移動距離
に対する電位変化を外挿し、測定位置に対応する電位値
を算出した値と、測定値との差を計算すると、測定位置
前後で前記の差の値が次第に大きくなり、設定したしき
い値を越えた場合に接触を判定すれば接触判定が容易に
できる。
For example, when the potential changes as shown in FIG. 2 (a), the potential changes clearly before and after the measurement position, but since the potential change at each position is slight, a simple change occurs. It can be seen that it is difficult to determine a contact by detecting a potential change only by comparing the potential values. On the other hand, the potential change with respect to the relative movement distance between the workpiece and the processing electrode is extrapolated using the potential information of the portion indicated by the arrow in FIG. 2A to calculate the potential value corresponding to the measurement position. When the difference between the calculated value and the measured value is calculated, the value of the difference gradually increases before and after the measurement position. If the contact is determined when the difference exceeds a set threshold value, the contact can be easily determined.

【0015】ここで、測定位置の直前部分の電位情報を
用いずに外挿を行っているのは、接触時の電位変化が非
常に緩やかに起きているため、直前の電位情報を用いて
外挿を行うと接触判定が困難となるためである。例え
ば、図2(b)のように、直前部分の電位情報を用いて
外挿を行った場合は、外挿により算出した値と測定値と
の差が小さくなり、検出が困難となることがわかる。
Here, the reason why the extrapolation is performed without using the potential information of the portion immediately before the measurement position is that the potential change at the time of contact occurs very slowly. This is because the insertion makes it difficult to determine the contact. For example, as shown in FIG. 2B, when extrapolation is performed using the potential information of the immediately preceding portion, the difference between the value calculated by the extrapolation and the measured value becomes small, which makes detection difficult. Recognize.

【0016】このように、電位変化を外挿する際に、電
位測定位置の直前部分の電位情報を用いずに、一定の間
隔より以前の電位情報を利用することによって、接触時
の電位変化が緩やかで各点における電位変化が小さい場
合でも接触位置を検出することが可能となる。また、電
位測定時のノイズの影響を受けることもない。さらに、
ミクロ的観点では、金属と溶液の界面には、溶液中とは
イオン密度の異なる電気2重層が存在し、この層厚は、
ナノメートルオーダーである。従って、物理的接触以前
に電位差に変化が生じると考えられるので、これを検出
すれば非接触で基準位置の設定が可能である。
As described above, when the potential change is extrapolated, the potential change at the time of contact can be reduced by using the potential information before a certain interval without using the potential information immediately before the potential measurement position. It is possible to detect the contact position even when the potential change at each point is gradual and small. Further, there is no influence of noise at the time of measuring the potential. further,
From a microscopic point of view, an electric double layer having a different ion density from that in the solution exists at the interface between the metal and the solution.
It is on the order of nanometers. Therefore, since it is considered that a change occurs in the potential difference before the physical contact, if this is detected, the reference position can be set without contact.

【0017】[0017]

【発明の実施の形態】◎実施の形態1 図3は、本発明を電解加工装置に適用した実施の形態1
を示すものである。本実施の形態は、加工溶液容器30
1内で加工溶液302に浸漬された被加工物303と、
被加工物303に対向配置されて被加工物303に電解
加工を行う加工電極304と、電極電位の基準となる参
照電極305と、被加工物303および加工電極304
の電位、電流を制御する電位・電流制御装置306と、
加工溶液容器301の下側に設置され、被加工物303
をZ軸方向(垂直方向)に移動させることが可能なZ軸
ステージ307と、Z軸ステージ307の下側に設置さ
れ、被加工物303をX軸およびY軸方向(水平方向)
に移動させることが可能なXY軸ステージ308と、Z
軸ステージ307の移動制御を行うZ軸ステージ制御装
置309と、XY軸ステージ308の移動制御を行うX
Y軸ステージ制御装置310と、被加工物303と加工
電極304が接触して離間距離が零となる零接触基準位
置を検出する零接触基準位置検出装置111と、零接触
基準位置を基準として、被加工物303の被加工面と加
工電極304の先端部との離間距離を制御する離間距離
制御装置112と、加工実行時にXY方向の移動位置を
制御する移動位置制御装置113より構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment FIG. 3 shows a first embodiment in which the present invention is applied to an electrolytic processing apparatus.
It shows. In the present embodiment, the processing solution container 30
1, a workpiece 303 immersed in a processing solution 302,
A processing electrode 304 disposed opposite to the workpiece 303 to perform electrolytic processing on the workpiece 303, a reference electrode 305 serving as a reference for the electrode potential, the workpiece 303 and the processing electrode 304
Potential / current control device 306 for controlling the potential and current of
The work piece 303 is installed below the processing solution container 301.
And a Z-axis stage 307 that can move the workpiece 303 in the Z-axis direction (vertical direction), and the work piece 303 is set below the Z-axis stage 307 (horizontal direction).
XY axis stage 308 that can be moved to
A Z-axis stage control device 309 for controlling the movement of the axis stage 307 and an X-axis for controlling the movement of the XY axis stage 308
A Y-axis stage control device 310, a zero-contact reference position detection device 111 that detects a zero-contact reference position at which the workpiece 303 and the processing electrode 304 come into contact with each other and the separation distance becomes zero, and a zero-contact reference position as a reference. A separation distance control device 112 for controlling a separation distance between a surface to be processed of the workpiece 303 and a tip portion of the processing electrode 304, and a movement position control device 113 for controlling a movement position in the X and Y directions at the time of execution of processing. .

【0018】Z軸ステージ307、XY軸ステージ30
8は、それぞれ、Z軸ステージ制御装置309、XY軸
ステージ制御装置310による制御の下で、電気的駆動
手段により、Z軸方向、XY軸方向へ移動され、その移
動量や移動位置が電気的に計測されるようになってい
る。零接触基準位置検出装置311は、電位・電流制御
装置306、Z軸ステージ制御装置309、および離間
距離制御装置312に接続され、電位・電流制御装置3
06より送られる被加工物303の電位情報を受け取っ
て記憶する電位情報記憶手段と、前記電位情報記憶手段
によって記憶された電位情報を解析する電位情報解析手
段と、電位情報を解析した結果から被加工物303の被
加工面と加工電極304の先端部が接触した際に接触判
定を行う接触判定手段と、接触判定手段によって接触が
判定された際のZ軸ステージの移動位置を零接触基準位
置として記憶する零接触基準位置記憶手段を備えてお
り、前記零接触基準位置を示す信号を離間距離制御装置
312に送り、接触が判定された際にZ軸ステージ制御
装置309に停止信号を送ることが可能となっている。
Z-axis stage 307, XY-axis stage 30
8 is moved in the Z-axis direction and the XY-axis direction by the electric driving means under the control of the Z-axis stage control device 309 and the XY-axis stage control device 310, respectively. Is to be measured. The zero contact reference position detecting device 311 is connected to the potential / current control device 306, the Z-axis stage control device 309, and the separation distance control device 312, and
06, a potential information storage means for receiving and storing the potential information of the workpiece 303 sent from the control unit 06, a potential information analyzing means for analyzing the potential information stored by the potential information storage means, and a potential information analyzing means for analyzing the potential information. Contact determination means for performing a contact determination when the processing surface of the workpiece 303 and the tip of the processing electrode 304 come into contact with each other, and the movement position of the Z-axis stage when the contact determination means determines the contact as a zero contact reference position. And sends a signal indicating the zero contact reference position to the separation distance control device 312, and sends a stop signal to the Z-axis stage control device 309 when contact is determined. Is possible.

【0019】離間距離制御装置312は、零接触基準位
置検出装置311とZ軸ステージ制御装置309に接続
され、離間距離の目標値を記憶する目標離間距離記憶手
段と、零接触基準位置とZ軸ステージ307の移動量を
基に、被加工物303の被加工面と加工電極304の先
端部との離間距離を算出する離間距離演算手段と、離間
距離の算出値が前記目標離間距離記憶手段に記憶された
離間距離の目標値と一致するように、Z軸ステージ30
7の移動量を調節する離間距離制御手段を備えている。
The separation distance control device 312 is connected to the zero contact reference position detection device 311 and the Z axis stage control device 309, and stores target separation distance storage means for storing a target value of the separation distance; A separation distance calculating means for calculating a separation distance between the processing surface of the workpiece 303 and the tip of the processing electrode 304 based on the movement amount of the stage 307, and a calculated value of the separation distance is stored in the target separation distance storage means. The Z-axis stage 30 is set so that it matches the stored target value of the separation distance.
7 is provided with a separation distance control means for adjusting the amount of movement.

【0020】電位・電流制御装置306は、例えば、ポ
テンショ・ガルバノスタットと呼ばれる加工電極回路3
06A、該加工電極回路306Aの加工電極304の電
位や加工電極304と被加工物303との間に流れる電
流等を制御するマイクロコンピュータ、並びに操作用の
各種操作キーなどを備える。加工電極回路306Aは、
例えば、図4に示すように、定電圧電源401のプラス
側に接続された可変抵抗402、可変抵抗402に接続
されたオペアンプ403、オペアンプ403の出力部に
接続された対向電極(加工電極)304、該対向電極
(加工電極)304と対向配置され定電圧電源401の
マイナス側に接続された作用極(被加工物)303、及
び作用極303の電位測定の基準となる参照電極305
などから構成されている。
The potential / current control device 306 includes, for example, a machining electrode circuit 3 called a potentio galvanostat.
06A, a microcomputer for controlling the potential of the processing electrode 304 of the processing electrode circuit 306A, a current flowing between the processing electrode 304 and the workpiece 303, and various operation keys for operation. The processing electrode circuit 306A is
For example, as shown in FIG. 4, a variable resistor 402 connected to the plus side of a constant voltage power supply 401, an operational amplifier 403 connected to the variable resistor 402, and a counter electrode (working electrode) 304 connected to the output of the operational amplifier 403. A working electrode (workpiece) 303 disposed opposite to the counter electrode (working electrode) 304 and connected to the negative side of the constant voltage power supply 401; and a reference electrode 305 serving as a reference for measuring the potential of the working electrode 303.
It is composed of

【0021】加工電極304は、棒状体であり、その被
加工面と対向する先端は尖鋭化され、かつ、最先端部の
一部のみが露出し、その他の部分は絶縁体で被覆されて
いる。また、棒状体の材質は、例えば、カーボン、タン
グステン、白金等が用いられる。また、参照電極305
は、例えば、ガラスの筒状体であり、加工溶液に浸漬す
る側の先端には液絡が備えられ、筒状体の中心には銀よ
りなる細線がガラス膜部に達するように設けられ、前記
細線を浸漬するように塩化銀溶液が満たされている。
The processing electrode 304 is a rod-shaped body, and the tip facing the surface to be processed is sharpened, only a part of the tip is exposed, and the other part is covered with an insulator. . Further, as the material of the rod-shaped body, for example, carbon, tungsten, platinum or the like is used. Also, the reference electrode 305
Is, for example, a glass cylindrical body, a liquid junction is provided at the tip of the side immersed in the processing solution, provided in the center of the cylindrical body so that a thin line of silver reaches the glass film portion, A silver chloride solution is filled so as to immerse the fine wires.

【0022】この加工電極回路306Aによれば、可変
抵抗402の抵抗値を変化させることで、対向電極(加
工電極)304と作用極(被加工物)303の間に流れ
る電流をほぼ零にしたり電解加工に必要な所要電流とす
ることが可能である。本実施の形態では図5(a)の概
念図に示すように、零接触基準位置を検出するときに被
加工物(金属板A)101と加工電極(金属板B)10
2との間に電流が流れないようにする検出時用の定電流
電源105を備え、参照電極305を基準に被加工物
(金属板A)101の電位を測定する構成となってお
り、零接触基準位置検出時に被加工物と加工電極の間に
電流が流れ、電解反応が起きて加工が進行してしてしま
うのを防ぐことが出来る。しかし(b)に示すように、
被加工物(金属板A)101が加工溶液中で安定なら
ば、被加工物(金属板A)101と加工電極(金属板
B)102との間に電流が流れないようにする検出時用
の定電流電源が組み込まれない構成としてもよい。
According to the machining electrode circuit 306A, the current flowing between the counter electrode (machining electrode) 304 and the working electrode (workpiece) 303 can be made substantially zero by changing the resistance value of the variable resistor 402. The required current required for the electrolytic processing can be set. In the present embodiment, as shown in the conceptual diagram of FIG. 5A, when detecting the zero contact reference position, the workpiece (metal plate A) 101 and the processing electrode (metal plate B) 10
A constant current power supply 105 for detection to prevent a current from flowing between the workpiece and the workpiece 2 (metal plate A) 101 with reference to the reference electrode 305. When the contact reference position is detected, a current flows between the workpiece and the processing electrode, and it is possible to prevent the electrolytic reaction from occurring and the processing from proceeding. However, as shown in (b),
If the workpiece (metal plate A) 101 is stable in the processing solution, the current is prevented from flowing between the workpiece (metal plate A) 101 and the processing electrode (metal plate B) 102. May not be incorporated.

【0023】なお、電位・電流制御装置306には、電
位差計104、定電流電源105、電流計106の機能
は含まれている。以下、図6に基づいて、本実施の形態
に係わる電解加工装置の使用方法について説明する。は
じめに、電位・電流制御装置306の加工電極回路30
6Aの可変抵抗402を無限大近くに大きくして、被加
工物303と加工電極304間に流れる電流がほぼ零と
なるようにする。この状態では被加工物303を加工電
極304に近づけても被加工物303と加工電極304
との間に加工現象につながる電気化学反応は生じない。
The potential / current control device 306 includes the functions of the potentiometer 104, the constant current power supply 105, and the ammeter 106. Hereinafter, a method of using the electrolytic processing apparatus according to the present embodiment will be described with reference to FIG. First, the machining electrode circuit 30 of the potential / current control device 306
The 6A variable resistor 402 is increased to near infinity so that the current flowing between the workpiece 303 and the processing electrode 304 becomes almost zero. In this state, even if the workpiece 303 is brought close to the processing electrode 304, the workpiece 303 and the processing electrode 304
There is no electrochemical reaction that leads to a processing phenomenon between the two.

【0024】つぎに、Z軸ステージ307をゆっくり上
昇させることにより被加工物303と加工電極304を
接近させながら、電位・電流制御装置306により被加
工物303の電位を定期的に測定し、零接触基準位置検
出装置311の電位情報解析手段によって電位情報を解
析する。そして、電位情報解析手段による解析結果をも
とに、接触判定手段によって接触が判定された時点でZ
軸ステージ307を停止させ、この時のZ軸ステージ3
07の移動位置を、零接触基準位置として零接触基準位
置記憶手段に記憶させる。
Next, the potential / current control device 306 periodically measures the potential of the workpiece 303 while slowly moving the Z-axis stage 307 to bring the workpiece 303 and the processing electrode 304 close to each other. The potential information is analyzed by the potential information analyzing means of the contact reference position detecting device 311. Then, based on the analysis result by the potential information analyzing means, when the contact is determined by the contact determining means, Z
The axis stage 307 is stopped, and the Z-axis stage 3 at this time is stopped.
The movement position of 07 is stored in the zero contact reference position storage means as the zero contact reference position.

【0025】つぎに、離間距離制御装置312によっ
て、検出された零接触基準位置を基準として被加工物3
03の被加工面と加工電極304の先端部との離間距離
を算出しながらZ軸ステージ307を下降させ、離間距
離が目標値と一致するようにZ軸ステージ307の移動
距離を制御する。そして、所望の離間距離を保った状態
で、電位・電流制御装置306により被加工物303と
加工電極304の間に所定の電圧を印加して一定の電流
が流れるように制御するとともに、加工形状に沿ってX
Y軸ステージを動作して電解加工を実行する。
Next, the workpiece 3 is controlled by the separation distance control device 312 with reference to the zero contact reference position detected.
The Z-axis stage 307 is lowered while calculating the distance between the surface to be processed 03 and the tip of the processing electrode 304, and the moving distance of the Z-axis stage 307 is controlled so that the distance matches the target value. Then, while maintaining a desired separation distance, a predetermined voltage is applied between the workpiece 303 and the processing electrode 304 by the potential / current control device 306 so that a constant current flows, and the processing shape is controlled. X along
The Y axis stage is operated to perform the electrolytic processing.

【0026】つぎに、図7および図8を用いて、零接触
基準位置検出方法について説明する。零接触基準位置検
出時には、被加工物303と加工電極304が離れてい
る状態から、Z軸ステージ307を動作させて被加工物
303の被加工面と加工電極304の先端部とを近づけ
ながら定期的に被加工物303の電位を測定し蓄積す
る。この過程において被加工物303と加工電極304
を一定間隔近づけるごとに、まず、蓄積された電位情報
の一部を用いてZ軸ステージ307の移動距離に対する
電位の変化を外挿し、測定位置に対応する電位を算出す
る。つぎに、電位を測定し前記算出値との差を計算す
る。例えば図8では、測定位置をkとすると、k−5〜
k−1までの電位情報を用いて電位変化を外挿し、kの
対応する電位値を算出した値と測定値との差を求めてい
る。そして、この時の差が設定したしきい値よりも大き
い場合には接触と判定し、小さい場合には再びZ軸ステ
ージを307動作させて被加工物303と加工電極30
4とを一定間隔だけ接近させ、最終的に接触を判定する
まで繰り返す。
Next, a method for detecting a zero contact reference position will be described with reference to FIGS. At the time of detecting the zero contact reference position, the Z-axis stage 307 is operated from the state where the workpiece 303 and the processing electrode 304 are separated from each other, and the processing surface of the workpiece 303 and the tip end of the processing electrode 304 are periodically brought close to each other. The potential of the work 303 is measured and accumulated. In this process, the workpiece 303 and the processing electrode 304
Each time is brought closer to the fixed interval, first, a change in potential with respect to the moving distance of the Z-axis stage 307 is extrapolated using a part of the stored potential information, and a potential corresponding to the measurement position is calculated. Next, the potential is measured and the difference from the calculated value is calculated. For example, in FIG. 8, if the measurement position is k, k−5
The potential change is extrapolated using the potential information up to k−1, and the difference between the calculated value of the corresponding potential value of k and the measured value is obtained. When the difference at this time is larger than the set threshold value, it is determined that the contact is made. When the difference is smaller, the Z-axis stage is operated 307 again to process the workpiece 303 and the processing electrode 30.
And 4 are brought close to each other by a fixed interval, and this is repeated until contact is finally determined.

【0027】図9は、本実施の形態を適用した電解加工
装置を用いて、実際に零接触基準位置の検出を行った例
を示す。X軸はZ軸ステージ307の機械的原点からの
移動距離を示しており、Y軸は、左側の軸が参照電極3
05を基準とした被加工物303の電位を、右側の軸が
外挿による計算値と測定値との差を算出した値をそれぞ
れ示している。
FIG. 9 shows an example in which the zero contact reference position is actually detected using the electrolytic processing apparatus to which the present embodiment is applied. The X axis indicates the moving distance of the Z axis stage 307 from the mechanical origin, and the Y axis indicates the reference electrode 3 on the left axis.
The right axis indicates the potential of the workpiece 303 with reference to 05, and the value obtained by calculating the difference between the calculated value and the measured value by extrapolation.

【0028】本実施例では、加工電極304として白金
−イリジウム合金線の先端を電解エッチングにより先端
径1μmにまで尖鋭化し、さらに先端部分以外を樹脂に
より被覆したものを用い、被加工物303としてクロム
板を用いた。また、参照電極305として銀/塩化銀電
極を使用した。零接触基準位置の検出は、加工電極30
4と被加工物303に流れる電流を零とながらZ軸ステ
ージを駆動して被加工物303と加工電極304を近づ
け、0.1μm移動するごとに参照電極305を基準と
して被加工物303の電位を測定し、電位情報を解析し
て接触判定をおこなった。その際、図10に示すよう
に、測定位置をkとして、k−50〜k−26までの電
位情報を用いて電位変化を直線近似して外挿し、kに対
応する電位値を算出した値と測定値との差を計算し、し
きい値を3mVと設定して差が3mVを越えた場合に接
触したと判定している。この時、直前に測定したk−1
〜k−25までの電位情報を用いずに外挿を行う事によ
って、緩やかな電位変化も検出することが可能となる。
In the present embodiment, the tip of a platinum-iridium alloy wire is sharpened to a tip diameter of 1 μm by electrolytic etching, and a portion other than the tip is coated with a resin. A plate was used. A silver / silver chloride electrode was used as the reference electrode 305. The detection of the zero contact reference position is performed by the machining electrode 30.
4 and the current flowing through the workpiece 303 is reduced to zero, the Z-axis stage is driven to bring the workpiece 303 and the processing electrode 304 close to each other, and the potential of the workpiece 303 is referenced with respect to the reference electrode 305 every 0.1 μm. Was measured, and potential information was analyzed to determine contact. At this time, as shown in FIG. 10, assuming that the measurement position is k, the potential change is extrapolated by linear approximation using the potential information from k-50 to k-26, and the potential value corresponding to k is calculated. The difference between the measured value and the measured value is calculated, and the threshold value is set to 3 mV, and when the difference exceeds 3 mV, it is determined that the contact is made. At this time, k-1 measured immediately before
By performing extrapolation without using the potential information from k to 25, a gradual change in potential can be detected.

【0029】本実施例の結果から、電位が変化しはじめ
た位置より1μm以内に接触の判定がされており、加工
電極の先端がほとんどつぶれることなく接触位置の検出
が可能であることが確認された。さらに、本実施の形態
では、被加工物303と加工電極304の接触位置を電
気的に検出し、その検出時のZ軸ステージ307の移動
位置を零接触基準位置とし、その零接触基準位置からの
Z軸テーブル307の下方への移動距離を被加工物30
3と加工電極304との離間距離とし、所望の離間距離
に制御した状態で被加工物303に電解加工を行ってい
るため、零接触基準位置を特定する際に加工電極304
の先端が被加工物303に物理的に接触して加工電極3
04先端や被加工物303が変形することにより零接触
基準位置がずれて所望の離間距離が不正確になるのを防
止することができる。また、溶液の液種やノイズの影響
を受けることもなく、トンネル電流を検知する必要もな
い。
From the results of the present embodiment, it was confirmed that the contact was determined within 1 μm from the position where the potential started to change, and it was confirmed that the contact position could be detected without almost crushing the tip of the machining electrode. Was. Further, in the present embodiment, the contact position between the workpiece 303 and the processing electrode 304 is electrically detected, and the movement position of the Z-axis stage 307 at the time of the detection is defined as a zero contact reference position. Of the downward movement of the Z-axis table 307 to the workpiece 30
Since the workpiece 303 is subjected to electrolytic machining while controlling the distance between the electrode 3 and the processing electrode 304 to a desired distance, the processing electrode 304 is used to specify the zero contact reference position.
The tip of the electrode 3 physically contacts the workpiece 303 and
It is possible to prevent a situation where the zero contact reference position shifts due to the deformation of the tip end 04 or the workpiece 303, and the desired separation distance becomes inaccurate. Also, there is no need to detect the tunnel current without being affected by the type of solution or noise.

【0030】◎変形の形態 図11、11は、変形の形態に係わる概念図を示すもの
である。本変形の形態における第1の態様は、実施の形
態1とほぼ同様の構成であるが、図11(a)に示すよ
うに、加工電極(金属板B)102の電位を測定して接
触位置を検出する点に特徴を有する。これによっても、
同様な手順により接触位置が検出される。
FIGS. 11 and 11 are conceptual diagrams showing a modified embodiment. The first mode of the present modification has substantially the same configuration as that of the first embodiment. However, as shown in FIG. 11A, the potential of the processing electrode (metal plate B) 102 is measured and the contact position is measured. Is characterized in that is detected. This also
The contact position is detected by a similar procedure.

【0031】また、図11(b)に示すように、被加工
物(金属板A)101が加工溶液中で安定ならば、接触
位置検出時に被加工物(金属板A)101と加工電極
(金属板B)102の間に電流が流れないようにする接
触位置検出時用の定電流電源を用いない構成でもよい。
本変形の形態における第2の態様は、実施の形態とほぼ
同様の構成であるが、図12(a)示すように、被加工
物(金属板A)101と加工電極(金属板B)102の
電位差を測定し接触位置を検出する点に特徴を有する。
これによれば、被加工物(金属板A)101と加工電極
(金属板B)102の接触位置で電位差が零となること
を利用して接触を検出することができる。また、同様
に、図12(b)に示すように、定電流電源を用いない
構成でも接触位置が検出される。
As shown in FIG. 11B, if the workpiece (metal plate A) 101 is stable in the processing solution, the workpiece (metal plate A) 101 and the processing electrode (metal plate A) are detected when the contact position is detected. A configuration that does not use a constant current power supply for detecting a contact position for preventing a current from flowing between the metal plates B) 102 may be used.
The second mode in this modification has substantially the same configuration as that of the embodiment. However, as shown in FIG. 12A, a workpiece (metal plate A) 101 and a processing electrode (metal plate B) 102 The feature is that the potential difference is measured to detect the contact position.
According to this, the contact can be detected by utilizing the fact that the potential difference becomes zero at the contact position between the workpiece (metal plate A) 101 and the processing electrode (metal plate B) 102. Similarly, as shown in FIG. 12B, the contact position is detected even in a configuration that does not use a constant current power supply.

【0032】◎実施の形態2 本実施の形態は、図13に示すように、実施の形態1と
ほぼ同様の構成であるが、Z軸ステージ制御装置309
により制御されるZ軸ステージ307に加工電極取付け
アーム314を介して加工電極304が取付けられた点
に特徴を有する。
Embodiment 2 As shown in FIG. 13, this embodiment has substantially the same configuration as that of Embodiment 1, but has a Z-axis stage controller 309.
Is characterized in that the machining electrode 304 is attached to the Z-axis stage 307 controlled by the above through the machining electrode attachment arm 314.

【0033】この装置の動作としては、加工電極取付け
アーム314がZ軸方向に上下運動することにより、加
工電極304は加工電極取付けアーム314に従動さ
れ、被加工物23の被加工面との離間距離が設定され
る。これによっても、実施の形態1と同様の効果が得ら
れる。
The operation of this apparatus is as follows. When the machining electrode mounting arm 314 moves up and down in the Z-axis direction, the machining electrode 304 is driven by the machining electrode mounting arm 314, and separates from the workpiece surface of the workpiece 23. The distance is set. This also provides the same effect as in the first embodiment.

【0034】[0034]

【発明の効果】本発明によれば、上記のように、被加工
物と加工電極の接触位置(接触点)を電気的に検出しそ
の検出時の位置を零接触基準位置とし、その零接触基準
位置からの移動によってできる被加工物と加工電極との
間隔を離間距離とし、その離間距離を所望の離間距離に
して被加工物に電解加工を行うこととしたので、零接触
基準位置を特定する際に加工電極の先端が被加工物に物
理的に接触して加工電極の先端や被加工物が変形するこ
とにより零接触基準位置がずれて所望の離間距離が不正
確になるのを防止することができる。さらに、零接触基
準位置検出時において被加工物と加工電極との相対移動
距離に対する電位変化を外挿する際に、電位測定位置の
直前部分の電位情報を用いずに一定の間隔より以前の電
位情報を利用することによって、接触時の電位変化が緩
やかで各点における電位変化が小さい場合でも接触位置
検出することが可能となる。
According to the present invention, as described above, the contact position (contact point) between the workpiece and the machining electrode is electrically detected, and the position at the time of the detection is defined as the zero contact reference position. The distance between the workpiece and the processing electrode formed by movement from the reference position is defined as the separation distance, and the separation distance is set to the desired separation distance to perform electrolytic processing on the workpiece. Prevents the end of the machining electrode from physically touching the workpiece and causing the tip of the machining electrode and the workpiece to deform, causing the zero contact reference position to shift and the desired separation distance to become inaccurate. can do. Furthermore, when extrapolating the potential change with respect to the relative movement distance between the workpiece and the processing electrode at the time of detecting the zero contact reference position, the potential before a certain interval is not used without using the potential information of the portion immediately before the potential measurement position. By using the information, it is possible to detect the contact position even when the potential change at the time of contact is gentle and the potential change at each point is small.

【0035】また、被加工物と加工電極との接触位置を
零接触基準位置と定める際の加工電極の先端のつぶれが
防止され、溶液の液種、ノイズの影響を受けることもな
く、また、トンネル電流を検知する必要もない。
Further, when the contact position between the workpiece and the machining electrode is determined as the zero contact reference position, the tip of the machining electrode is prevented from being crushed, and is not affected by the type of solution or noise. There is no need to detect tunnel current.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理を示す模式図である。FIG. 1 is a schematic diagram showing the principle of the present invention.

【図2】本発明の効果を示す説明図である。FIG. 2 is an explanatory diagram showing an effect of the present invention.

【図3】本発明の電解加工装置の第1の実施の形態を示
す模式図である。
FIG. 3 is a schematic view showing a first embodiment of the electrolytic processing apparatus of the present invention.

【図4】本発明で使用する定電流回路の例を示す回路図
である。
FIG. 4 is a circuit diagram showing an example of a constant current circuit used in the present invention.

【図5】(a)(b)は、図3に係わる回路の概念を示
す模式図である。
FIGS. 5A and 5B are schematic diagrams illustrating the concept of the circuit according to FIG. 3;

【図6】本発明による電解加工方法を示すフローチャー
トである。
FIG. 6 is a flowchart showing an electrolytic processing method according to the present invention.

【図7】零接触基準位置検出の手順を示すフローチャー
トである。
FIG. 7 is a flowchart showing a procedure for detecting a zero contact reference position.

【図8】本発明の零接触基準位置検出の方法を示す説明
図である。
FIG. 8 is an explanatory diagram showing a method of detecting a zero contact reference position according to the present invention.

【図9】本発明の電解加工装置を用いて、零接触基準位
置を検出した実験例を示す説明図である。
FIG. 9 is an explanatory diagram showing an experimental example in which a zero contact reference position is detected using the electrolytic processing apparatus of the present invention.

【図10】(a)(b)は、本発明の電解加工装置を用
いて零接触基準位置を検出した実験例における実験条件
を示す説明図である。
FIGS. 10A and 10B are explanatory diagrams showing experimental conditions in an experimental example in which a zero contact reference position is detected using the electrolytic processing apparatus of the present invention.

【図11】(a)(b)は、本発明の電解加工装置の変
形の形態を示す模式図である。
FIGS. 11A and 11B are schematic views showing a modification of the electrolytic processing apparatus of the present invention.

【図12】(a)(b)は、本発明の電解加工装置の変
形の形態を示す模式図である。
FIGS. 12A and 12B are schematic diagrams showing a modification of the electrolytic processing apparatus of the present invention.

【図13】本発明の部品製作装置の第2の実施の形態を
示す模式図である。
FIG. 13 is a schematic view showing a second embodiment of the component manufacturing apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

301 加工溶液容器 302 加工溶液 303 被加工物 304 加工電極 305 参照電極 306 電位・電流制御装置 307 Z軸ステージ 308 XY軸ステージ 309 Z軸ステージ制御装置 310 XY軸ステージ制御装置 311 零接触基準位置検出装置 312 離間距離制御装置 313 移動位置制御装置 301 Processing solution container 302 Processing solution 303 Workpiece 304 Processing electrode 305 Reference electrode 306 Potential / current control device 307 Z-axis stage 308 XY-axis stage 309 Z-axis stage control device 310 XY-axis stage control device 311 Zero contact reference position detection device 312 Separation distance control device 313 Moving position control device

【手続補正書】[Procedure amendment]

【提出日】平成11年5月25日[Submission date] May 25, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 電解加工方法及び電解加工装置[Title of the Invention] Electrolytic processing method and electrolytic processing apparatus

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、金属工業、電子工
業分野等において、電解溶液中で加工電極を用いて電気
化学反応により微細加工を行う電解加工方法及び電解加
工装置に係わり、特に、加工電極と被加工物との離間距
離が零となる零接触基準位置を基準に加工電極と被加工
物の所定の離間距離を保ちつつ電解加工が行われる電解
加工方法及び電解加工装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic processing method and an electrolytic processing apparatus for performing fine processing by electrochemical reaction using a processing electrode in an electrolytic solution in the metal industry, the electronic industry, and the like. The present invention relates to an electrolytic processing method and an electrolytic processing apparatus in which electrolytic processing is performed while maintaining a predetermined separation distance between a processing electrode and a workpiece with reference to a zero contact reference position at which a separation distance between the electrode and the workpiece becomes zero.

【0002】[0002]

【従来の技術】従来、金属工業、電子工業分野等におい
て、溶液中で微細な先端を有する探針を用いて電気化学
反応により被加工物の微細加工を行う方法が知られてい
る(特開平06-299390)。この方法において、加工精度
を向上させるためには、加工電極と被加工物間の距離を
短くする必要がある。ミクロンオーダーの精度を持つ加
工を行う場合、加工電極と被加工物間の距離は10μm
(ミクロン)以下にする必要があり、このような微小距
離を高い精度で制御することは困難である。その理由と
しては、 1.加工電極と被加工物が溶液中にあること、2.レー
ザー変位計等相対的な距離の変化を高精度に測定するこ
とが可能な技術はあるが、このような測定方法では距離
の原点が特定できないと絶対距離を測定することができ
ないこと、等が挙げられる。そこで、加工電極と被加工
物が接触する点を何等かの方法で測定し、そこを原点に
とり別の高精度なスケールを用いて距離を測定するとい
う方法が考えられる。この接触を検出する方法として
は、 1.加工電極と被加工物間の抵抗値を測定する方法など
が考えられる。また、他の微小な距離の測定方法として
は、2.加工電極と被加工物間の静電容量を測定するこ
と、3.トンネル電流を測定すること、等が考えられ
る。
2. Description of the Related Art Conventionally, in the metal industry, the electronics industry, and the like, there has been known a method of performing fine processing of a workpiece by an electrochemical reaction using a probe having a fine tip in a solution (Japanese Patent Application Laid-Open (JP-A) No) 06-299390). In this method, in order to improve the processing accuracy, it is necessary to shorten the distance between the processing electrode and the workpiece. When processing with micron-order accuracy, the distance between the processing electrode and the workpiece is 10 μm
(Micron) or less, and it is difficult to control such a minute distance with high accuracy. The reasons are: 1. The processing electrode and the workpiece are in solution. There are technologies such as laser displacement meters that can measure relative distance changes with high accuracy.However, with such a measurement method, it is impossible to measure the absolute distance unless the origin of the distance can be specified. No. Therefore, a method of measuring the point at which the processing electrode and the workpiece come into contact with each other by some method and taking the position as the origin to measure the distance using another high-precision scale is conceivable. Methods for detecting this contact include: A method of measuring the resistance value between the processing electrode and the workpiece can be considered. Other methods for measuring a minute distance include: 2. measuring the capacitance between the working electrode and the workpiece; Measuring the tunnel current may be considered.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
の方法には以下のような問題点が存在する。はじめに、
第1の方法では、加工電極や被加工物の表面が薄い酸化
膜等で覆われている場合があり、加工電極が被加工物に
ある程度の力で押しつけられないと、接触が検出できな
い可能性がある。加工精度を高めるために加工電極の先
端径は、数百μm以下となっているので、強く押しつけ
られた場合には先端がつぶれてしまうという技術的課題
を有する。また、抵抗値を測定するためには、加工電極
と被加工物間に電圧を印加する必要があるが、被加工物
が電解質溶液中で反応性が高い場合、溶液中で、加工電
極−被加工物間に標準電極電位差よりも大きな電圧が印
加されると、この電圧によって電気化学反応が起き、加
工が行われてしまうという技術的課題も有する。
However, these methods have the following problems. First,
In the first method, the surface of the processing electrode or the workpiece may be covered with a thin oxide film or the like, and if the processing electrode is not pressed against the workpiece with a certain force, contact may not be detected. There is. Since the tip diameter of the machining electrode is several hundred μm or less in order to enhance machining accuracy, there is a technical problem that the tip is crushed when strongly pressed. Further, in order to measure the resistance value, it is necessary to apply a voltage between the processing electrode and the workpiece, but when the workpiece has high reactivity in the electrolyte solution, the processing electrode-workpiece is applied in the solution. When a voltage larger than the standard electrode potential difference is applied between the workpieces, an electrochemical reaction occurs due to the voltage, and there is also a technical problem that the processing is performed.

【0004】つぎに、第2の方法では、使用する溶液の
種類や濃度が代わると誘電率も変るため、あらかじめ電
極間距離と静電容量の関係を測定しておく必要が生じ
る。また、溶液中での静電容量の測定は、溶液の対流な
どが原因となり測定値がノイズの影響を受けやすいとい
う技術的課題を有する。さらに、第3の方法では、厳密
には非接触であるため原点の検出には理想的であるが、
溶液中でトンネル電流を検出するためには、ファラデー
電流や電気二重層への充電電流等の影響を排除するた
め、加工電極の先端径を非常に小さくする必要があり、
加工速度を向上させるために加工電極の先端径を数十〜
数百μm(ミクロン)とした場合には、溶液中でのトン
ネル電流の検出が非常に困難であるという技術的課題を
有する。
In the second method, since the dielectric constant changes when the type and concentration of the solution used changes, it is necessary to measure the relationship between the distance between the electrodes and the capacitance in advance. Further, the measurement of the capacitance in a solution has a technical problem that the measured value is easily affected by noise due to convection of the solution. Furthermore, the third method is ideal for detecting the origin because it is strictly non-contact,
In order to detect the tunnel current in the solution, it is necessary to make the tip diameter of the processing electrode extremely small in order to eliminate the influence of the Faraday current and the charging current to the electric double layer, etc.
To improve the processing speed, increase the tip diameter of the processing electrode
When the thickness is several hundred μm (micron), there is a technical problem that it is very difficult to detect a tunnel current in a solution.

【0005】[0005]

【課題を解決するための手段】上記の技術的課題を解決
する手段として、本発明では、電解質溶液中で被加工物
と加工電極とを対向させ、前記被加工物の被加工面と前
記加工電極の先端部との間を所望の離間距離に制御した
状態で、前記被加工物の被加工面と前記加工電極の先端
部との間に電解反応を起こさせて加工を施す電解加工方
法において、前記離間距離の制御は、はじめに前記被加
工物と前記加工電極を接近させながら前記被加工物また
は前記加工電極の電位を定期的に測定・蓄積して解析す
ることにより、前記被加工物の被加工面と前記加工電極
の先端部とが接触して離間距離が零となる零接触基準位
置を検出し、つぎに前記零接触基準位置を基準として前
記被加工物の被加工面と前記加工電極の先端部との離間
距離を算出し、前記、離間距離の算出値が所望の離間距
離と一致するように前記被加工物と前記加工電極の相対
位置を調整する過程により行う事を特徴としている。
According to the present invention, as a means for solving the above technical problem, a workpiece and a processing electrode are opposed to each other in an electrolyte solution, and a processing surface of the workpiece and the processing surface are formed. In an electrolytic processing method in which an electrolytic reaction is caused between the processed surface of the workpiece and the distal end of the processed electrode while controlling the distance between the electrode and the distal end to a desired distance, the electrolytic processing method is performed. The control of the separation distance is performed by periodically measuring / accumulating and analyzing the potential of the workpiece or the processing electrode while approaching the workpiece and the processing electrode first, thereby analyzing the workpiece. The work surface and the tip of the processing electrode come into contact with each other to detect a zero contact reference position at which the separation distance becomes zero, and then the work surface of the work and the processing are performed with reference to the zero contact reference position. Calculate the separation distance from the electrode tip and It is characterized in that performing the process of calculating values of the distance to adjust the relative position of the processing electrode and the workpiece to match the desired distance.

【0006】また、前記零接触基準位置の検出は、前
記、定期的な電位測定の際に、蓄積された電位情報の一
部を用いて前記被加工物と前記加工電極の相対移動距離
に対する電位変化を外挿し、測定位置に対応する電位を
算出した値と、測定値との差が、設定したしきい値を越
える場合に接触と判定し、前記接触判定が行われた際の
接触位置を零接触基準位置とする事により行うことを特
徴としている。
The zero contact reference position is detected by using a part of the accumulated potential information at the time of the periodic potential measurement, with respect to the relative moving distance between the workpiece and the processing electrode. Extrapolating the change, the calculated value of the potential corresponding to the measurement position, and the difference between the measured value is determined to be a contact if the difference exceeds a set threshold, the contact position when the contact determination was performed It is characterized in that it is performed by setting the zero contact reference position.

【0007】また、請求項3記載の電解加工装置は、電
解質溶液中で被加工物を保持する被加工物保持手段と、
前記被加工物の被加工面に電解反応により加工を施す加
工電極と、前記被加工物および前記加工電極の電位・電
流を制御する電位・電流制御手段と、前記被加工物保持
手段に保持された被加工物の被加工面と前記加工電極の
先端部との間の離間距離を変更させる離間距離変更手段
とを備えた電解加工装置において、前記被加工物または
前記加工電極の電位を測定する電位測定手段と、前記電
位測定手段により測定される電位の情報を記憶する電位
情報記憶手段と、前記電位情報記憶手段に記憶された電
位情報を解析する電位情報解析手段と、前記電位情報解
析手段により電位情報を解析した結果から、前記被加工
物と前記加工電極とが相互に接触した際に接触判定を行
う接触判定手段と、前記接触判定手段によって接触が判
定された時の接触位置を、前記被加工物と前記加工電極
の離間距離が零となる零接触基準位置として記憶する零
接触基準位置記憶手段と、前記零接触基準位置を基準と
して、前記被加工物と前記加工電極の相対移動距離を基
に前記被加工物の被加工面と前記加工電極の先端部との
離間距離を算出する離間距離演算手段と、離間距離の目
標値を記憶する目標離間距離記憶手段と、前記離間距離
演算手段による算出に基づき、前記被加工物の被加工面
と前記加工電極の先端部との離間距離が前記目標離間距
離と一致するように、前記離間距離変更手段に離間距離
の調整を行わせる離間距離制御手段とを備えたことを特
徴としている。
Further, the electrolytic processing apparatus according to the third aspect of the present invention includes a workpiece holding means for holding the workpiece in an electrolyte solution;
A processing electrode for processing the surface to be processed of the workpiece by an electrolytic reaction, potential / current control means for controlling the potential / current of the workpiece and the processing electrode, and a processing electrode held by the workpiece holding means. And measuring a potential of the workpiece or the processing electrode in an electrolytic processing apparatus including a separation distance changing unit configured to change a separation distance between a processed surface of the processed workpiece and a tip end of the processing electrode. Potential measuring means, potential information storing means for storing information on potential measured by the potential measuring means, potential information analyzing means for analyzing potential information stored in the potential information storing means, and potential information analyzing means From the result of analyzing the potential information according to, contact determination means for performing a contact determination when the workpiece and the processing electrode contact each other, contact when the contact is determined by the contact determination means Zero contact reference position storage means for storing the position as a zero contact reference position at which the separation distance between the workpiece and the processing electrode becomes zero, and the workpiece and the processing electrode with reference to the zero contact reference position. Separation distance calculating means for calculating a separation distance between the processing surface of the workpiece and the tip of the processing electrode based on the relative movement distance, and a target separation distance storage means for storing a target value of the separation distance, The separation distance adjusting means adjusts the separation distance based on the calculation by the separation distance calculation means so that the separation distance between the processing surface of the workpiece and the tip of the processing electrode coincides with the target separation distance. And a separation distance control means for performing the following.

【0008】以上の課題を解決する手段にあって離間距
離変更手段には、被加工物側のみ移動させる場合、加工
電極側のみ移動させる場合、被加工物側と加工電極側の
両方を移動させる場合のいずれも含まれる。また、被加
工物の被加工面と加工電極の先端が接触するとは、両者
が物理的に完全接触するのみならず、加工電極の先端が
加工物の被加工面に電気的に接触したとみなされる場合
も含まれる。
[0008] In the means for solving the above problems, the separation distance changing means moves only the workpiece side, moves only the processing electrode side, and moves both the workpiece side and the processing electrode side. Both cases are included. In addition, the fact that the processed surface of the workpiece and the tip of the processing electrode are in contact with each other means that not only the two are physically in complete contact, but also that the distal end of the processing electrode is in electrical contact with the processed surface of the workpiece. Is included.

【0009】以下、本発明の原理について説明する。図
1(a)に示すように、2種類の金属板A101、B1
02を非接触状態で溶液中に浸漬した場合、次のような
反応が起こり、金属板A101の方が金属板B102よ
りもイオン化しやすいとする。このとき、金属板A10
1上で起こる反応としては、 M1→M1n++ne- (1) M1n++ne-→M1 (2) 金属板B102上で起こる反応としては、 M2→M2n++ne- (3) M2n++ne-→M2 (4) であり、金属板A101の平衡電位は(1)式と(2)
式の反応が平衡状態になるときの電位であり、金属板B
102の平衡電位は(3)式と(4)式の反応が平衡状
態になるときの電位である。
Hereinafter, the principle of the present invention will be described. As shown in FIG. 1A, two types of metal plates A101 and B1
When 02 is immersed in a solution in a non-contact state, the following reaction occurs, and it is assumed that the metal plate A101 is more easily ionized than the metal plate B102. At this time, the metal plate A10
M1 → M1n ++ ne− (1) M1n ++ ne− → M1 (2) M2 → M2n ++ ne− (3) M2n ++ ne− → M2 (4), and the equilibrium potential of the metal plate A101 is given by the equation (1) and the equation (2).
The potential when the reaction of the formula is in an equilibrium state.
The equilibrium potential of 102 is the potential at which the reactions of equations (3) and (4) enter an equilibrium state.

【0010】ここで、金属板A101を被加工物とし、
金属板B102を加工電極とし、参照電極305を基準
として電位差計104を用いて被加工物の電位を測定し
た場合、被加工物の電位は、(1)式と(2)式の反応
が平衡になるときの電位を測定することになる。一方、
図1(b)に示すように、金属板B102が金属板A1
01に接触すると、金属板A101は金属板B102よ
りもイオン化しやすいので、(1)式の反応は(3)式
の反応より起こりやすく、(4)式の反応は(2)式の
反応より起こりやすくなる。即ち、(1)式及び(4)
式の反応の平衡状態が主体となる電位が測定されると推
察される。
Here, the metal plate A101 is used as a workpiece,
When the potential of the workpiece is measured using the potentiometer 104 with the metal plate B102 as the processing electrode and the reference electrode 305 as a reference, the potential of the workpiece is balanced by the reaction of the equations (1) and (2). Will be measured when the potential becomes. on the other hand,
As shown in FIG. 1B, the metal plate B102 is a metal plate A1.
When the metal plate A101 comes into contact with the metal plate A1, the metal plate A101 is more easily ionized than the metal plate B102. Therefore, the reaction of the formula (1) is more likely to occur than the reaction of the formula (3), and the reaction of the formula (4) is more easily performed than the reaction of the formula (2). More likely to happen. That is, equation (1) and equation (4)
It is presumed that the potential mainly measured by the equilibrium state of the reaction of the formula is measured.

【0011】以上より、金属板同士が接触することで化
学反応の平衡状態に変化が生じるので、例えば、被加工
物と加工電極を接近させながら参照電極に対する被加工
物の電位を定期的に測定すれば、電位が変化する位置で
被加工物と加工電極が接触したと判断することができ
る。そして、接触位置を基準として被加工物と加工電極
との相対移動距離を制御すれば、所望の離間距離を得る
事が可能となる。
As described above, since the equilibrium state of the chemical reaction changes when the metal plates come into contact with each other, for example, the potential of the workpiece with respect to the reference electrode is periodically measured while bringing the workpiece and the working electrode close to each other. Then, it can be determined that the workpiece and the processing electrode are in contact at the position where the potential changes. Then, if the relative movement distance between the workpiece and the processing electrode is controlled based on the contact position, a desired separation distance can be obtained.

【0012】ここで、電位変化を検出する際に、単純に
測定した電位の値を比較するだけでは接触点の検出は困
難である。その理由としては次の点が挙げられる。 1.加工電極の先端部のつぶれを防止するために被加工
物と加工電極を接近させる際の電位の測定間隔を小さく
すると、接触時の電位の変化は非常に緩やか起き、各測
定点における電位変化は小さくなる。
Here, when detecting a potential change, it is difficult to detect a contact point simply by comparing the measured potential values. The reasons are as follows. 1. If the potential measurement interval when bringing the workpiece and the processing electrode close together is reduced to prevent the tip of the processing electrode from collapsing, the potential change at the time of contact occurs very slowly, and the potential change at each measurement point Become smaller.

【0013】2.化学平衡に達するまでに時間がかかる
ため、被加工物と加工電極の相対距離に変化がなくても
電位は緩やかに変化する。 3.各測定点における電位の変化は比較的小さいため、
ノイズ等の影響による測定電位の変化によって誤って接
触を判定してしまう可能性がある。そこで、上記の問題
を解決するために、本発明でははじめに被加工物と加工
電極を接近させながら被加工物または加工電極の電位を
定期的に測定・蓄積し、蓄積された電位情報の一部を用
いて被加工物と加工電極の相対移動距離に対する電位変
化を外挿し、測定位置に対応する電位を算出した値と、
測定値との差が、設定したしきい値を越える場合に接触
と判定している。
2. Since it takes time to reach chemical equilibrium, the potential gradually changes even if there is no change in the relative distance between the workpiece and the processing electrode. 3. Since the change in potential at each measurement point is relatively small,
Contact may be erroneously determined due to a change in the measured potential due to the influence of noise or the like. Therefore, in order to solve the above problem, the present invention first measures and accumulates the potential of the workpiece or the processing electrode periodically while bringing the workpiece and the processing electrode close to each other, and a part of the accumulated potential information. Extrapolating the potential change with respect to the relative movement distance between the workpiece and the processing electrode using a calculated value of the potential corresponding to the measurement position,
If the difference from the measured value exceeds the set threshold value, it is determined that a contact has occurred.

【0014】例えば、図2(a)に示したように電位が
変化している場合、点kの前後で明らかに電位の変化が
起きているが、各位置における電位変化はわずかである
ため、単純に電位の値を比較しただけでは電位変化を検
出して接触を判定することは困難であることがわかる。
これに対して、図2(a)の中に矢印で示した部分の電
位情報を用いて被加工物と加工電極の相対移動距離に対
する電位変化を外挿し、点kに対応する電位値を算出し
た値と、測定値との差を計算すると、点kの前後で前記
の差の値が次第に大きくなり、設定したしきい値を越え
た場合に接触を判定すれば接触判定が容易にできる。
For example, when the potential changes as shown in FIG. 2 (a), the potential changes clearly occur before and after the point k, but the potential change at each position is slight. It can be seen that it is difficult to determine a contact by detecting a potential change by simply comparing potential values.
On the other hand, the potential change with respect to the relative movement distance between the workpiece and the processing electrode is extrapolated using the potential information of the portion indicated by the arrow in FIG. 2A to calculate the potential value corresponding to the point k. When the difference between the measured value and the measured value is calculated, the value of the difference gradually increases before and after the point k. If the contact is determined when the difference exceeds the set threshold value, the contact can be easily determined.

【0015】ここで、測定位置の直前部分の電位情報を
用いずに外挿を行っているのは、接触時の電位変化が非
常に緩やかに起きているため、直前の電位情報を用いて
外挿を行うと接触判定が困難となるためである。例え
ば、図2(b)のように、直前部分の電位情報を用いて
外挿を行った場合は、外挿により算出した値と測定値と
の差が小さくなり、検出が困難となることがわかる。
Here, the reason why the extrapolation is performed without using the potential information of the portion immediately before the measurement position is that the potential change at the time of contact occurs very slowly. This is because the insertion makes it difficult to determine the contact. For example, as shown in FIG. 2B, when extrapolation is performed using the potential information of the immediately preceding portion, the difference between the value calculated by the extrapolation and the measured value becomes small, which makes detection difficult. Recognize.

【0016】このように、電位変化を外挿する際に、電
位測定位置の直前部分の電位情報を用いずに、一定の間
隔より以前の電位情報を利用することによって、接触時
の電位変化が緩やかで各点における電位変化が小さい場
合でも接触位置を検出することが可能となる。また、電
位測定時のノイズの影響を受けることもない。さらに、
ミクロ的観点では、金属と溶液の界面には、溶液中とは
イオン密度の異なる電気2重層が存在し、この層厚は、
ナノメートルオーダーである。従って、物理的接触以前
に電位差に変化が生じると考えられるので、これを検出
すれば非接触で基準位置の設定が可能である。
As described above, when the potential change is extrapolated, the potential change at the time of contact can be reduced by using the potential information before a certain interval without using the potential information immediately before the potential measurement position. It is possible to detect the contact position even when the potential change at each point is gradual and small. Further, there is no influence of noise at the time of measuring the potential. further,
From a microscopic point of view, an electric double layer having a different ion density from that in the solution exists at the interface between the metal and the solution.
It is on the order of nanometers. Therefore, since it is considered that a change occurs in the potential difference before the physical contact, if this is detected, the reference position can be set without contact.

【0017】[0017]

【発明の実施の形態】◎実施の形態1 図3は、本発明を電解加工装置に適用した実施の形態1
を示すものである。本実施の形態は、加工溶液容器30
1内で加工溶液302に浸漬された被加工物303と、
被加工物303に対向配置されて被加工物303に電解
加工を行う加工電極304と、電極電位の基準となる参
照電極305と、被加工物303および加工電極304
の電位、電流を制御する電位・電流制御装置306と、
加工溶液容器301の下側に設置され、被加工物303
をZ軸方向(垂直方向)に移動させることが可能なZ軸
ステージ307と、Z軸ステージ307の下側に設置さ
れ、被加工物303をX軸およびY軸方向(水平方向)
に移動させることが可能なXY軸ステージ308と、Z
軸ステージ307の移動制御を行うZ軸ステージ制御装
置309と、XY軸ステージ308の移動制御を行うX
Y軸ステージ制御装置310と、被加工物303と加工
電極304が接触して離間距離が零となる零接触基準位
置を検出する零接触基準位置検出装置311と、零接触
基準位置を基準として、被加工物303の被加工面と加
工電極304の先端部との離間距離を制御する離間距離
制御装置312と、加工実行時にXY方向の移動位置を
制御する移動位置制御装置313より構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment FIG. 3 shows a first embodiment in which the present invention is applied to an electrolytic processing apparatus.
It shows. In the present embodiment, the processing solution container 30
1, a workpiece 303 immersed in a processing solution 302,
A processing electrode 304 disposed opposite to the workpiece 303 to perform electrolytic processing on the workpiece 303, a reference electrode 305 serving as a reference for the electrode potential, the workpiece 303 and the processing electrode 304
Potential / current control device 306 for controlling the potential and current of
The work piece 303 is installed below the processing solution container 301.
And a Z-axis stage 307 that can move the workpiece 303 in the Z-axis direction (vertical direction), and the work piece 303 is set below the Z-axis stage 307 (horizontal direction).
XY axis stage 308 that can be moved to
A Z-axis stage control device 309 for controlling the movement of the axis stage 307 and an X-axis for controlling the movement of the XY axis stage 308
A Y-axis stage control device 310, a zero-contact reference position detection device 311 for detecting a zero-contact reference position at which the workpiece 303 and the processing electrode 304 come into contact with each other and the separation distance becomes zero, and a zero-contact reference position as a reference. A separation distance control device 312 for controlling the separation distance between the processing surface of the workpiece 303 and the tip of the processing electrode 304, and a movement position control device 313 for controlling the movement position in the X and Y directions when processing is performed. .

【0018】Z軸ステージ307、XY軸ステージ30
8は、それぞれ、Z軸ステージ制御装置309、XY軸
ステージ制御装置310による制御の下で、電気的駆動
手段により、Z軸方向、XY軸方向へ移動され、その移
動量や移動位置が電気的に計測されるようになってい
る。零接触基準位置検出装置311は、電位・電流制御
装置306、Z軸ステージ制御装置309、および離間
距離制御装置312に接続され、電位・電流制御装置3
06より送られる被加工物303の電位情報を受け取っ
て記憶する電位情報記憶手段と、前記電位情報記憶手段
によって記憶された電位情報を解析する電位情報解析手
段と、電位情報を解析した結果から被加工物303の被
加工面と加工電極304の先端部が接触した際に接触判
定を行う接触判定手段と、接触判定手段によって接触が
判定された際のZ軸ステージの移動位置を零接触基準位
置として記憶する零接触基準位置記憶手段を備えてお
り、前記零接触基準位置を示す信号を離間距離制御装置
312に送り、接触が判定された際にZ軸ステージ制御
装置309に停止信号を送ることが可能となっている。
Z-axis stage 307, XY-axis stage 30
8 is moved in the Z-axis direction and the XY-axis direction by the electric driving means under the control of the Z-axis stage control device 309 and the XY-axis stage control device 310, respectively. Is to be measured. The zero contact reference position detecting device 311 is connected to the potential / current control device 306, the Z-axis stage control device 309, and the separation distance control device 312, and
06, a potential information storage means for receiving and storing the potential information of the workpiece 303 sent from the control unit 06, a potential information analyzing means for analyzing the potential information stored by the potential information storage means, and a potential information analyzing means for analyzing the potential information. Contact determination means for performing a contact determination when the processing surface of the workpiece 303 and the tip of the processing electrode 304 come into contact with each other, and the movement position of the Z-axis stage when the contact determination means determines the contact as a zero contact reference position. And sends a signal indicating the zero contact reference position to the separation distance control device 312, and sends a stop signal to the Z-axis stage control device 309 when contact is determined. Is possible.

【0019】離間距離制御装置312は、零接触基準位
置検出装置311とZ軸ステージ制御装置309に接続
され、離間距離の目標値を記憶する目標離間距離記憶手
段と、零接触基準位置とZ軸ステージ307の移動量を
基に、被加工物303の被加工面と加工電極304の先
端部との離間距離を算出する離間距離演算手段と、離間
距離の算出値が前記目標離間距離記憶手段に記憶された
離間距離の目標値と一致するように、Z軸ステージ30
7の移動量を調節する離間距離制御手段を備えている。
The separation distance control device 312 is connected to the zero contact reference position detection device 311 and the Z axis stage control device 309, and stores target separation distance storage means for storing a target value of the separation distance; A separation distance calculating means for calculating a separation distance between the processing surface of the workpiece 303 and the tip of the processing electrode 304 based on the movement amount of the stage 307, and a calculated value of the separation distance is stored in the target separation distance storage means. The Z-axis stage 30 is set so that it matches the stored target value of the separation distance.
7 is provided with a separation distance control means for adjusting the amount of movement.

【0020】電位・電流制御装置306は、例えば、ポ
テンショ・ガルバノスタットと呼ばれる加工電極回路3
06A、該加工電極回路306Aの加工電極304の電
位や加工電極304と被加工物303との間に流れる電
流等を制御するマイクロコンピュータ、並びに操作用の
各種操作キーなどを備える。加工電極回路306Aは、
例えば、図4に示すように、定電圧電源401のプラス
側に接続された可変抵抗402、可変抵抗402に接続
されたオペアンプ403、オペアンプ403の出力部に
接続された対向電極(加工電極)304、該対向電極
(加工電極)304と対向配置され定電圧電源401の
マイナス側に接続された作用極(被加工物)303、及
び作用極303の電位測定の基準となる参照電極305
などから構成されている。
The potential / current control device 306 includes, for example, a machining electrode circuit 3 called a potentio galvanostat.
06A, a microcomputer for controlling the potential of the processing electrode 304 of the processing electrode circuit 306A, a current flowing between the processing electrode 304 and the workpiece 303, and various operation keys for operation. The processing electrode circuit 306A is
For example, as shown in FIG. 4, a variable resistor 402 connected to the plus side of a constant voltage power supply 401, an operational amplifier 403 connected to the variable resistor 402, and a counter electrode (working electrode) 304 connected to the output of the operational amplifier 403. A working electrode (workpiece) 303 disposed opposite to the counter electrode (working electrode) 304 and connected to the negative side of the constant voltage power supply 401; and a reference electrode 305 serving as a reference for measuring the potential of the working electrode 303.
It is composed of

【0021】加工電極304は、棒状体であり、その被
加工面と対向する先端は尖鋭化され、かつ、最先端部の
一部のみが露出し、その他の部分は絶縁体で被覆されて
いる。また、棒状体の材質は、例えば、カーボン、タン
グステン、白金等が用いられる。また、参照電極305
は、例えば、ガラスの筒状体であり、加工溶液に浸漬す
る側の先端には液絡が備えられ、筒状体の中心には銀よ
りなる細線がガラス膜部に達するように設けられ、前記
細線を浸漬するように塩化銀溶液が満たされている。
The processing electrode 304 is a rod-shaped body, and the tip facing the surface to be processed is sharpened, only a part of the tip is exposed, and the other part is covered with an insulator. . Further, as the material of the rod-shaped body, for example, carbon, tungsten, platinum or the like is used. Also, the reference electrode 305
Is, for example, a glass cylindrical body, a liquid junction is provided at the tip of the side immersed in the processing solution, provided in the center of the cylindrical body so that a thin line of silver reaches the glass film portion, A silver chloride solution is filled so as to immerse the fine wires.

【0022】この加工電極回路306Aによれば、可変
抵抗402の抵抗値を変化させることで、対向電極(加
工電極)304と作用極(被加工物)303の間に流れ
る電流をほぼ零にしたり電解加工に必要な所要電流とす
ることが可能である。本実施の形態では図5(a)の概
念図に示すように、零接触基準位置を検出するときに被
加工物(金属板A)101と加工電極(金属板B)10
2との間に電流が流れないようにする検出時用の定電流
電源105を備え、参照電極305を基準に被加工物
(金属板A)101の電位を測定する構成となってお
り、零接触基準位置検出時に被加工物と加工電極の間に
電流が流れ、電解反応が起きて加工が進行してしてしま
うのを防ぐことが出来る。しかし(b)に示すように、
被加工物(金属板A)101が加工溶液中で安定なら
ば、被加工物(金属板A)101と加工電極(金属板
B)102との間に電流が流れないようにする検出時用
の定電流電源が組み込まれない構成としてもよい。
According to the machining electrode circuit 306A, the current flowing between the counter electrode (machining electrode) 304 and the working electrode (workpiece) 303 can be made substantially zero by changing the resistance value of the variable resistor 402. The required current required for the electrolytic processing can be set. In the present embodiment, as shown in the conceptual diagram of FIG. 5A, when detecting the zero contact reference position, the workpiece (metal plate A) 101 and the processing electrode (metal plate B) 10
A constant current power supply 105 for detection to prevent a current from flowing between the workpiece and the workpiece 2 (metal plate A) 101 with reference to the reference electrode 305. When the contact reference position is detected, a current flows between the workpiece and the processing electrode, and it is possible to prevent the electrolytic reaction from occurring and the processing from proceeding. However, as shown in (b),
If the workpiece (metal plate A) 101 is stable in the processing solution, the current is prevented from flowing between the workpiece (metal plate A) 101 and the processing electrode (metal plate B) 102. May not be incorporated.

【0023】なお、電位・電流制御装置306には、電
位差計104、定電流電源105、電流計106の機能
は含まれている。以下、図6に基づいて、本実施の形態
に係わる電解加工装置の使用方法について説明する。は
じめに、電位・電流制御装置306の加工電極回路30
6Aの可変抵抗402を無限大近くに大きくして、被加
工物303と加工電極304間に流れる電流がほぼ零と
なるようにする。この状態では被加工物303を加工電
極304に近づけても被加工物303と加工電極304
との間に加工現象につながる電気化学反応は生じない。
The potential / current control device 306 includes the functions of the potentiometer 104, the constant current power supply 105, and the ammeter 106. Hereinafter, a method of using the electrolytic processing apparatus according to the present embodiment will be described with reference to FIG. First, the machining electrode circuit 30 of the potential / current control device 306
The 6A variable resistor 402 is increased to near infinity so that the current flowing between the workpiece 303 and the processing electrode 304 becomes almost zero. In this state, even if the workpiece 303 is brought close to the processing electrode 304, the workpiece 303 and the processing electrode 304
There is no electrochemical reaction that leads to a processing phenomenon between the two.

【0024】つぎに、Z軸ステージ307をゆっくり上
昇させることにより被加工物303と加工電極304を
接近させながら、電位・電流制御装置306により被加
工物303の電位を定期的に測定し、零接触基準位置検
出装置311の電位情報解析手段によって電位情報を解
析する。そして、電位情報解析手段による解析結果をも
とに、接触判定手段によって接触が判定された時点でZ
軸ステージ307を停止させ、この時のZ軸ステージ3
07の移動位置を、零接触基準位置として零接触基準位
置記憶手段に記憶させる。
Next, the potential / current control device 306 periodically measures the potential of the workpiece 303 while slowly moving the Z-axis stage 307 to bring the workpiece 303 and the processing electrode 304 close to each other. The potential information is analyzed by the potential information analyzing means of the contact reference position detecting device 311. Then, based on the analysis result by the potential information analyzing means, when the contact is determined by the contact determining means, Z
The axis stage 307 is stopped, and the Z-axis stage 3 at this time is stopped.
The movement position of 07 is stored in the zero contact reference position storage means as the zero contact reference position.

【0025】つぎに、離間距離制御装置312によっ
て、検出された零接触基準位置を基準として被加工物3
03の被加工面と加工電極304の先端部との離間距離
を算出しながらZ軸ステージ307を下降させ、離間距
離が目標値と一致するようにZ軸ステージ307の移動
距離を制御する。そして、所望の離間距離を保った状態
で、電位・電流制御装置306により被加工物303と
加工電極304の間に所定の電圧を印加して一定の電流
が流れるように制御するとともに、加工形状に沿ってX
Y軸ステージを動作して電解加工を実行する。
Next, the workpiece 3 is controlled by the separation distance control device 312 with reference to the zero contact reference position detected.
The Z-axis stage 307 is lowered while calculating the distance between the surface to be processed 03 and the tip of the processing electrode 304, and the moving distance of the Z-axis stage 307 is controlled so that the distance matches the target value. Then, while maintaining a desired separation distance, a predetermined voltage is applied between the workpiece 303 and the processing electrode 304 by the potential / current control device 306 so that a constant current flows, and the processing shape is controlled. X along
The Y axis stage is operated to perform the electrolytic processing.

【0026】つぎに、図7および図8を用いて、零接触
基準位置検出方法について説明する。零接触基準位置検
出時には、被加工物303と加工電極304が離れてい
る状態から、Z軸ステージ307を動作させて被加工物
303の被加工面と加工電極304の先端部とを近づけ
ながら定期的に被加工物303の電位を測定し蓄積す
る。この過程において被加工物303と加工電極304
を一定間隔近づけるごとに、まず、蓄積された電位情報
の一部を用いてZ軸ステージ307の移動距離に対する
電位の変化を外挿し、測定位置に対応する電位を算出す
る。つぎに、電位を測定し前記算出値との差を計算す
る。例えば図8では、測定位置をkとすると、k−5〜
k−1までの電位情報を用いて電位変化を外挿し、kに
対応する電位値を算出した値と測定値との差を求めてい
る。そして、この時の差が設定したしきい値よりも大き
い場合には接触と判定し、小さい場合には再びZ軸ステ
ージ307を動作させて被加工物303と加工電極30
4とを一定間隔だけ接近させ、最終的に接触を判定する
まで繰り返す。
Next, a method for detecting a zero contact reference position will be described with reference to FIGS. At the time of detecting the zero contact reference position, the Z-axis stage 307 is operated from the state where the workpiece 303 and the processing electrode 304 are separated from each other, and the processing surface of the workpiece 303 and the tip end of the processing electrode 304 are periodically brought close to each other. The potential of the work 303 is measured and accumulated. In this process, the workpiece 303 and the processing electrode 304
Each time is brought closer to the fixed interval, first, a change in potential with respect to the moving distance of the Z-axis stage 307 is extrapolated using a part of the stored potential information, and a potential corresponding to the measurement position is calculated. Next, the potential is measured and the difference from the calculated value is calculated. For example, in FIG. 8, if the measurement position is k, k−5
The potential change is extrapolated using the potential information up to k−1, and the difference between the calculated value of the potential value corresponding to k and the measured value is obtained. If the difference at this time is larger than the set threshold value, it is determined that the contact is made. If the difference is smaller, the Z-axis stage 307 is operated again to process the workpiece 303 and the processing electrode 30.
And 4 are brought close to each other by a fixed interval, and this is repeated until contact is finally determined.

【0027】図9は、本実施の形態を適用した電解加工
装置を用いて、実際に零接触基準位置の検出を行った例
を示す。横軸はZ軸ステージ307の機械的原点からの
移動距離を示しており、縦軸は、左側の軸が参照電極3
05を基準とした被加工物303の電位を、右側の軸が
外挿による計算値と測定値との差を算出した値をそれぞ
れ示している。
FIG. 9 shows an example in which the zero contact reference position is actually detected using the electrolytic processing apparatus to which the present embodiment is applied. The horizontal axis indicates the movement distance of the Z-axis stage 307 from the mechanical origin, and the vertical axis indicates the reference electrode 3 on the left side.
The right axis indicates the potential of the workpiece 303 with reference to 05, and the value obtained by calculating the difference between the calculated value and the measured value by extrapolation.

【0028】本実施例では、加工電極304として白金
−イリジウム合金線の先端を電解エッチングにより先端
径1μmにまで尖鋭化し、さらに先端部分以外を樹脂に
より被覆したものを用い、被加工物303としてクロム
板を用いた。また、参照電極305として銀/塩化銀電
極を使用した。零接触基準位置の検出は、加工電極30
4と被加工物303に流れる電流を零とながらZ軸ステ
ージを駆動して被加工物303と加工電極304を近づ
け、0.1μm移動するごとに参照電極305を基準と
して被加工物303の電位を測定し、電位情報を解析し
て接触判定をおこなった。その際、図10に示すよう
に、測定位置をkとして、k−50〜k−26までの電
位情報を用いて電位変化を直線近似して外挿し、kに対
応する電位値を算出した値と測定値との差を計算し、し
きい値を3mVと設定して差が3mVを越えた場合に接
触したと判定している。この時、直前に測定したk−1
〜k−25までの電位情報を用いずに外挿を行う事によ
って、緩やかな電位変化も検出することが可能となる。
In the present embodiment, the tip of a platinum-iridium alloy wire is sharpened to a tip diameter of 1 μm by electrolytic etching, and a portion other than the tip is coated with a resin. A plate was used. A silver / silver chloride electrode was used as the reference electrode 305. The detection of the zero contact reference position is performed by the machining electrode 30.
4 and the current flowing through the workpiece 303 is reduced to zero, the Z-axis stage is driven to bring the workpiece 303 and the processing electrode 304 close to each other, and the potential of the workpiece 303 is referenced with respect to the reference electrode 305 every 0.1 μm. Was measured, and potential information was analyzed to determine contact. At this time, as shown in FIG. 10, assuming that the measurement position is k, the potential change is extrapolated by linear approximation using the potential information from k-50 to k-26, and the potential value corresponding to k is calculated. Is calculated, and the threshold value is set to 3 mV. When the difference exceeds 3 mV, it is determined that the contact is made. At this time, k-1 measured immediately before
By performing extrapolation without using the potential information from k to 25, a gradual change in potential can be detected.

【0029】本実施例の結果から、電位が変化しはじめ
た位置より1μm以内に接触の判定がされており、加工
電極の先端がほとんどつぶれることなく接触位置の検出
が可能であることが確認された。さらに、本実施の形態
では、被加工物303と加工電極304の接触位置を電
気的に検出し、その検出時のZ軸ステージ307の移動
位置を零接触基準位置とし、その零接触基準位置からの
Z軸テーブル307の下方への移動距離を被加工物30
3と加工電極304との離間距離とし、所望の離間距離
に制御した状態で被加工物303に電解加工を行ってい
るため、零接触基準位置を特定する際に加工電極304
の先端が被加工物303に物理的に接触して加工電極3
04先端や被加工物303が変形することにより零接触
基準位置がずれて所望の離間距離が不正確になるのを防
止することができる。また、溶液の液種やノイズの影響
を受けることもなく、トンネル電流を検知する必要もな
い。
From the results of the present embodiment, it was confirmed that the contact was determined within 1 μm from the position where the potential started to change, and it was confirmed that the contact position could be detected without almost crushing the tip of the machining electrode. Was. Further, in the present embodiment, the contact position between the workpiece 303 and the processing electrode 304 is electrically detected, and the movement position of the Z-axis stage 307 at the time of the detection is defined as a zero contact reference position. Of the downward movement of the Z-axis table 307 to the workpiece 30
Since the workpiece 303 is subjected to electrolytic machining while controlling the distance between the electrode 3 and the processing electrode 304 to a desired distance, the processing electrode 304 is used to specify the zero contact reference position.
The tip of the electrode 3 physically contacts the workpiece 303 and
It is possible to prevent a situation where the zero contact reference position shifts due to the deformation of the tip end 04 or the workpiece 303, and the desired separation distance becomes inaccurate. Also, there is no need to detect the tunnel current without being affected by the type of solution or noise.

【0030】◎変形の形態 図11、12は、変形の形態に係わる概念図を示すもの
である。本変形の形態における第1の態様は、実施の形
態1とほぼ同様の構成であるが、図11(a)に示すよ
うに、加工電極(金属板B)102の電位を測定して接
触位置を検出する点に特徴を有する。これによっても、
同様な手順により接触位置が検出される。
Modification FIGS. 11 and 12 are conceptual diagrams relating to a modification. The first mode of the present modification has substantially the same configuration as that of the first embodiment. However, as shown in FIG. 11A, the potential of the processing electrode (metal plate B) 102 is measured and the contact position is measured. Is characterized in that is detected. This also
The contact position is detected by a similar procedure.

【0031】また、図11(b)に示すように、被加工
物(金属板A)101が加工溶液中で安定ならば、接触
位置検出時に被加工物(金属板A)101と加工電極
(金属板B)102の間に電流が流れないようにする接
触位置検出時用の定電流電源を用いない構成でもよい。
本変形の形態における第2の態様は、実施の形態とほぼ
同様の構成であるが、図12(a)に示すように、被加
工物(金属板A)101と加工電極(金属板B)102
の電位差を測定し接触位置を検出する点に特徴を有す
る。これによれば、被加工物(金属板A)101と加工
電極(金属板B)102の接触位置で電位差が零となる
ことを利用して接触を検出することができる。また、同
様に、図12(b)に示すように、定電流電源を用いな
い構成でも接触位置が検出される。
As shown in FIG. 11B, if the workpiece (metal plate A) 101 is stable in the processing solution, the workpiece (metal plate A) 101 and the processing electrode (metal plate A) are detected when the contact position is detected. A configuration that does not use a constant current power supply for detecting a contact position for preventing a current from flowing between the metal plates B) 102 may be used.
The second mode in the present modification has substantially the same configuration as that of the embodiment. However, as shown in FIG. 12A, a workpiece (metal plate A) 101 and a processing electrode (metal plate B) 102
The feature is that the potential difference is measured to detect the contact position. According to this, the contact can be detected by utilizing the fact that the potential difference becomes zero at the contact position between the workpiece (metal plate A) 101 and the processing electrode (metal plate B) 102. Similarly, as shown in FIG. 12B, the contact position is detected even in a configuration that does not use a constant current power supply.

【0032】◎実施の形態2 本実施の形態は、図13に示すように、実施の形態1と
ほぼ同様の構成であるが、Z軸ステージ制御装置309
により制御されるZ軸ステージ307に加工電極取付け
アーム314を介して加工電極304が取付けられた点
に特徴を有する。
Embodiment 2 As shown in FIG. 13, this embodiment has substantially the same configuration as that of Embodiment 1, but has a Z-axis stage controller 309.
Is characterized in that the machining electrode 304 is attached to the Z-axis stage 307 controlled by the above through the machining electrode attachment arm 314.

【0033】この装置の動作としては、加工電極取付け
アーム314がZ軸方向に上下運動することにより、加
工電極304は加工電極取付けアーム314に従動さ
れ、被加工物23の被加工面との離間距離が設定され
る。これによっても、実施の形態1と同様の効果が得ら
れる。
The operation of this apparatus is as follows. When the machining electrode mounting arm 314 moves up and down in the Z-axis direction, the machining electrode 304 is driven by the machining electrode mounting arm 314, and separates from the workpiece surface of the workpiece 23. The distance is set. This also provides the same effect as in the first embodiment.

【0034】[0034]

【発明の効果】本発明によれば、上記のように、被加工
物と加工電極の接触位置(接触点)を電気的に検出しそ
の検出時の位置を零接触基準位置とし、その零接触基準
位置からの移動によってできる被加工物と加工電極との
間隔を離間距離とし、その離間距離を所望の離間距離に
して被加工物に電解加工を行うこととしたので、零接触
基準位置を特定する際に加工電極の先端が被加工物に物
理的に接触して加工電極の先端や被加工物が変形するこ
とにより零接触基準位置がずれて所望の離間距離が不正
確になるのを防止することができる。さらに、零接触基
準位置検出時において被加工物と加工電極との相対移動
距離に対する電位変化を外挿する際に、電位測定位置の
直前部分の電位情報を用いずに一定の間隔より以前の電
位情報を利用することによって、接触時の電位変化が緩
やかで各点における電位変化が小さい場合でも接触位置
検出することが可能となる。
According to the present invention, as described above, the contact position (contact point) between the workpiece and the machining electrode is electrically detected, and the position at the time of the detection is defined as the zero contact reference position. The distance between the workpiece and the processing electrode formed by movement from the reference position is defined as the separation distance, and the separation distance is set to the desired separation distance to perform electrolytic processing on the workpiece. Prevents the end of the machining electrode from physically touching the workpiece and causing the tip of the machining electrode and the workpiece to deform, causing the zero contact reference position to shift and the desired separation distance to become inaccurate. can do. Furthermore, when extrapolating the potential change with respect to the relative movement distance between the workpiece and the processing electrode at the time of detecting the zero contact reference position, the potential before a certain interval is not used without using the potential information of the portion immediately before the potential measurement position. By using the information, it is possible to detect the contact position even when the potential change at the time of contact is gentle and the potential change at each point is small.

【0035】また、被加工物と加工電極との接触位置を
零接触基準位置と定める際の加工電極の先端のつぶれが
防止され、溶液の液種、ノイズの影響を受けることもな
く、また、トンネル電流を検知する必要もない。
Further, when the contact position between the workpiece and the machining electrode is determined as the zero contact reference position, the tip of the machining electrode is prevented from being crushed, and is not affected by the type of solution or noise. There is no need to detect tunnel current.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理を示す模式図である。FIG. 1 is a schematic diagram showing the principle of the present invention.

【図2】本発明の効果を示す説明図である。FIG. 2 is an explanatory diagram showing an effect of the present invention.

【図3】本発明の電解加工装置の第1の実施の形態を示
す模式図である。
FIG. 3 is a schematic view showing a first embodiment of the electrolytic processing apparatus of the present invention.

【図4】本発明で使用する定電流回路の例を示す回路図
である。
FIG. 4 is a circuit diagram showing an example of a constant current circuit used in the present invention.

【図5】(a)(b)は、図3に係わる回路の概念を示
す模式図である。
FIGS. 5A and 5B are schematic diagrams illustrating the concept of the circuit according to FIG. 3;

【図6】本発明による電解加工方法を示すフローチャー
トである。
FIG. 6 is a flowchart showing an electrolytic processing method according to the present invention.

【図7】零接触基準位置検出の手順を示すフローチャー
トである。
FIG. 7 is a flowchart showing a procedure for detecting a zero contact reference position.

【図8】本発明の零接触基準位置検出の方法を示す説明
図である。
FIG. 8 is an explanatory diagram showing a method of detecting a zero contact reference position according to the present invention.

【図9】本発明の電解加工装置を用いて、零接触基準位
置を検出した実験例を示す説明図である。
FIG. 9 is an explanatory diagram showing an experimental example in which a zero contact reference position is detected using the electrolytic processing apparatus of the present invention.

【図10】(a)(b)は、本発明の電解加工装置を用
いて零接触基準位置を検出した実験例における実験条件
を示す説明図である。
FIGS. 10A and 10B are explanatory diagrams showing experimental conditions in an experimental example in which a zero contact reference position is detected using the electrolytic processing apparatus of the present invention.

【図11】(a)(b)は、本発明の電解加工装置の変
形の形態を示す模式図である。
FIGS. 11A and 11B are schematic views showing a modification of the electrolytic processing apparatus of the present invention.

【図12】(a)(b)は、本発明の電解加工装置の変
形の形態を示す模式図である。
FIGS. 12A and 12B are schematic diagrams showing a modification of the electrolytic processing apparatus of the present invention.

【図13】本発明の部品製作装置の第2の実施の形態を
示す模式図である。
FIG. 13 is a schematic view showing a second embodiment of the component manufacturing apparatus according to the present invention.

【符号の説明】 301 加工溶液容器 302 加工溶液 303 被加工物 304 加工電極 305 参照電極 306 電位・電流制御装置 307 Z軸ステージ 308 XY軸ステージ 309 Z軸ステージ制御装置 310 XY軸ステージ制御装置 311 零接触基準位置検出装置 312 離間距離制御装置 313 移動位置制御装置[Description of Signs] 301 Processing solution container 302 Processing solution 303 Workpiece 304 Processing electrode 305 Reference electrode 306 Potential / current control device 307 Z-axis stage 308 XY-axis stage 309 Z-axis stage control device 310 XY-axis stage control device 311 Zero Contact reference position detection device 312 Separation distance control device 313 Moving position control device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 作原 寿彦 千葉県千葉市美浜区中瀬1丁目8番地 セ イコーインスツルメンツ株式会社内 (72)発明者 安宅 龍明 千葉県千葉市美浜区中瀬1丁目8番地 セ イコーインスツルメンツ株式会社内 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Toshihiko Sakuhara 1-8-1, Nakase, Mihama-ku, Chiba-shi, Chiba Inside Seiko Instruments Inc. (72) Inventor Tatsuaki Ataka 1-8-8 Nakase, Mihama-ku, Chiba-shi Address Seiko Instruments Inc.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電解質溶液中で被加工物と加工電極とを
対向させ、前記被加工物の被加工面と前記加工電極の先
端部との間を所望の離間距離に制御した状態で、前記被
加工物の被加工面と前記加工電極の先端部との間に電解
反応を起こさせて加工を施す電解加工方法において、 はじめに前記被加工物と前記加工電極を接近させながら
前記被加工物または前記加工電極の電位を定期的に測定
・蓄積し、これを解析することにより、前記被加工物の
被加工面と前記加工電極の先端部とが接触して離間距離
が零となる零接触基準位置を検出し、つぎに前記零接触
基準位置を基準として前記被加工物の被加工面と前記加
工電極の先端部との離間距離を算出し、前記、離間距離
の算出値が所望の離間距離と一致するように前記被加工
物と前記加工電極の相対位置を調整する過程により離間
距離の制御を行う事を特徴とする電解加工方法。
In a state where a workpiece and a processing electrode are opposed to each other in an electrolyte solution, and a distance between a processing surface of the workpiece and a tip end of the processing electrode is controlled to a desired separation distance, In an electrolytic processing method for performing processing by causing an electrolytic reaction between a processing surface of a processing object and a tip portion of the processing electrode, the processing object or the processing electrode is first brought close to the processing object or the processing electrode. By periodically measuring and accumulating the potential of the processing electrode, and analyzing the potential, a zero contact reference at which the processing surface of the workpiece contacts the tip of the processing electrode and the separation distance becomes zero Position, and then calculates a separation distance between the processing surface of the workpiece and the tip of the processing electrode with reference to the zero contact reference position, and the calculated separation distance is a desired separation distance. Of the workpiece and the processing electrode so as to match Electrochemical machining method characterized in that for controlling the distance by a process for adjusting the relative position.
【請求項2】 前記、定期的な電位測定の際に、前記、
蓄積された電位情報の一部を用いて前記被加工物と前記
加工電極の相対移動距離に対する電位変化を外挿し測定
位置に対応する電位を算出した値と、測定値との差が、
設定したしきい値を越える場合に接触と判定し、前記接
触判定が行われた際の接触位置を零接触基準位置とする
事により前記零接触基準位置の検出を行うことを特徴と
する請求項1記載の電解加工方法。
2. The method according to claim 1, wherein, during the periodic potential measurement,
The difference between the value obtained by extrapolating the potential change with respect to the relative movement distance of the workpiece and the processing electrode using a part of the accumulated potential information and calculating the potential corresponding to the measurement position, and the measured value,
The method according to claim 1, wherein a contact is determined when the set threshold value is exceeded, and the zero contact reference position is detected by setting a contact position when the contact determination is performed as a zero contact reference position. 2. The electrolytic processing method according to 1.
【請求項3】 電解質溶液中で被加工物を保持する被加
工物保持手段と、前記被加工物の被加工面に電解反応に
より加工を施す加工電極と、前記被加工物および前記加
工電極の電位・電流を制御する電位・電流制御手段と、
前記被加工物保持手段に保持された被加工物の被加工面
と前記加工電極の先端部との間の離間距離を変更させる
離間距離変更手段とを備えた電解加工装置において、 前記被加工物または前記加工電極の電位を測定する電位
測定手段と、前記電位測定手段により測定される電位の
情報を記憶する電位情報記憶手段と、前記電位情報記憶
手段に記憶された電位情報を解析する電位情報解析手段
と、前記電位情報解析手段により電位情報を解析した結
果を用いて、前記被加工物と前記加工電極とが相互に接
触した際に接触判定を行う接触判定手段と、前記接触判
定手段によって接触が判定された時の接触位置を、前記
被加工物と前記加工電極の離間距離が零となる零接触基
準位置として記憶する零接触基準位置記憶手段と、前記
零接触基準位置を基準として、前記被加工物と前記加工
電極の相対移動距離を基に前記被加工物の被加工面と前
記加工電極の先端部との離間距離を算出する離間距離演
算手段と、離間距離の目標値を記憶する目標離間距離記
憶手段と、前記離間距離演算手段による算出に基づき、
前記被加工物の被加工面と前記加工電極の先端部との離
間距離が前記目標離間距離と一致するように、前記離間
距離変更手段に離間距離の調整を行わせる離間距離制御
手段とを備えたことを特徴とする電解加工装置。
3. A workpiece holding means for holding a workpiece in an electrolyte solution, a processing electrode for processing a processing surface of the workpiece by an electrolytic reaction, and a processing electrode for the processing electrode and the processing electrode. Potential / current control means for controlling potential / current;
An electrolytic processing apparatus comprising: a separation distance changing unit configured to change a separation distance between a processing surface of a workpiece held by the workpiece holding unit and a tip end of the processing electrode; Alternatively, potential measuring means for measuring the potential of the processing electrode, potential information storing means for storing information of potential measured by the potential measuring means, and potential information for analyzing potential information stored in the potential information storing means Analysis means, using a result of analyzing the potential information by the potential information analysis means, contact determination means for performing a contact determination when the workpiece and the processing electrode contact each other, by the contact determination means Zero contact reference position storage means for storing a contact position when contact is determined as a zero contact reference position at which the separation distance between the workpiece and the machining electrode becomes zero; and As a reference, separation distance calculating means for calculating a separation distance between a processing surface of the processing object and a tip portion of the processing electrode based on a relative movement distance between the processing object and the processing electrode, and a target separation distance. Target separation distance storage means for storing a value, based on the calculation by the separation distance calculation means,
A separation distance control unit that causes the separation distance changing unit to adjust the separation distance so that the separation distance between the processing surface of the workpiece and the tip end of the processing electrode matches the target separation distance. An electrolytic processing apparatus characterized in that:
JP05390998A 1998-03-05 1998-03-05 Electrolytic processing method and electrolytic processing apparatus Expired - Fee Related JP3267922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05390998A JP3267922B2 (en) 1998-03-05 1998-03-05 Electrolytic processing method and electrolytic processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05390998A JP3267922B2 (en) 1998-03-05 1998-03-05 Electrolytic processing method and electrolytic processing apparatus

Publications (2)

Publication Number Publication Date
JPH11254238A true JPH11254238A (en) 1999-09-21
JP3267922B2 JP3267922B2 (en) 2002-03-25

Family

ID=12955854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05390998A Expired - Fee Related JP3267922B2 (en) 1998-03-05 1998-03-05 Electrolytic processing method and electrolytic processing apparatus

Country Status (1)

Country Link
JP (1) JP3267922B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110039140A (en) * 2019-04-09 2019-07-23 清华大学 The device and method of the alignment of insulating materials workpiece surface and the regulation of immersion liquid depth
CN110744152A (en) * 2019-11-06 2020-02-04 南京工程学院 Micro electrochemical machining fuzzy on-line control system based on short-circuit time

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110039140A (en) * 2019-04-09 2019-07-23 清华大学 The device and method of the alignment of insulating materials workpiece surface and the regulation of immersion liquid depth
CN110744152A (en) * 2019-11-06 2020-02-04 南京工程学院 Micro electrochemical machining fuzzy on-line control system based on short-circuit time

Also Published As

Publication number Publication date
JP3267922B2 (en) 2002-03-25

Similar Documents

Publication Publication Date Title
EP0318289B1 (en) Apparatus and method for detecting tunnel current and electro-chemical reaction
US8327460B2 (en) Probe microscope and measurement method using the same
JP2010276488A (en) Probe microscope
WO1997018052A1 (en) Method and instrument for determining position where wire electrode is in contact with workpiece
JP3267922B2 (en) Electrolytic processing method and electrolytic processing apparatus
JP3062732B2 (en) Electrolytic processing method and electrolytic processing apparatus
CN112262011B (en) Wire electric discharge machine and straightness calculation method
US8142640B2 (en) Chloride analysis in acid copper plating baths
US5885434A (en) Method and apparatus for performing fine working
US6798222B2 (en) Migration measuring method and measuring apparatus
JP3354890B2 (en) Processing method and processing device
US3947329A (en) Method of measuring accelerated corrosion rate
US4060461A (en) Method and apparatus for correcting error in corrosion rate measurements
JP3270416B2 (en) Processing electrode manufacturing method and processing electrode manufacturing apparatus
JP2000084744A (en) Machining method and machining device
JPS6249220A (en) Apparatus and method for measuring liquid level of molten metal of melting furnace
US3156631A (en) Method of measuring corrosion of electronic conductors by non-gaseous ionic conductors
Kun et al. Basic research of wire electrochemical micro-machining
JPH02237703A (en) Diamond tool and cutting device using this tool
JP3292834B2 (en) Electrolytic processing method and electrolytic processing apparatus
Tafraouti et al. Manufacturing of Tungsten Micro-tools by Electrochemical Etching: Study of the Electrical Parameters
JPH10328974A (en) Printed board machining method and device
Prytherch et al. A velocity magnitude transducer for use with saline containing dissolved oxygen
SU1500911A1 (en) Method of determining energy of ionization of the surface condition
KR950004671B1 (en) Apparatus for moving or positioning electrode

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees