JPH11248554A - Acoustic type gaseous body temperature measuring device - Google Patents

Acoustic type gaseous body temperature measuring device

Info

Publication number
JPH11248554A
JPH11248554A JP4790498A JP4790498A JPH11248554A JP H11248554 A JPH11248554 A JP H11248554A JP 4790498 A JP4790498 A JP 4790498A JP 4790498 A JP4790498 A JP 4790498A JP H11248554 A JPH11248554 A JP H11248554A
Authority
JP
Japan
Prior art keywords
sound wave
waveguide
horn
acoustic
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4790498A
Other languages
Japanese (ja)
Other versions
JP3640054B2 (en
Inventor
Noriyuki Imada
典幸 今田
Hidehisa Yoshizako
秀久 吉廻
Katsumi Shimodaira
克己 下平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP04790498A priority Critical patent/JP3640054B2/en
Publication of JPH11248554A publication Critical patent/JPH11248554A/en
Application granted granted Critical
Publication of JP3640054B2 publication Critical patent/JP3640054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an acoustic type gaseous body temperature measuring device capable of measuring a gaseous body temperature without lowering measuring accuracy without opening a large hole at all the places to be installed of acoustic sensors. SOLUTION: This acoustic type gaseous body temperature measuring device is provided with a first acoustic sensor provided with a horn 20 whose large diameter end is opened in contact with a gaseous body, a sound wave transmitter 3 connected to the small diameter end of the horn 20 for transmitting sound waves to the horn 20, a waveguide 21 inserted to the horn 20 whose one end is opened at the large diameter end of the horn 20 and a sound wave receiver 30 connected to the other end of the waveguide 21 for receiving the sound waves inside the waveguide 21 and a second acoustic sensor provided with the waveguide 21A arranged by opening one end at a position where the sound waves transmitted from the horn 20 to the gaseous body reach through the gaseous body, the sound wave receiver 30 mounted at the other end of the waveguide 21A for receiving the sound waves inside the waveguide 21A and an auxiliary sound wave transmitter 4 mounted at the same other end of the waveguide 21A for transmitting the sound waves to the waveguide 21A.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、音響式ガス体の温
度測定装置に係り、特に高温ガス中の音速を測定し、該
ガス体の温度を求める音響式ガス体温度測定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acoustic gas body temperature measuring apparatus, and more particularly to an acoustic gas body temperature measuring apparatus that measures the speed of sound in a high-temperature gas and determines the temperature of the gas body.

【0002】[0002]

【従来の技術】ダクト内を流れる流体の温度を計測する
方法の一つとして、流体中の音速が流体の温度によって
変化することを利用する方法がある。流体の音速C(m
/s)は、αをガス組成によって決まる定数、Tをガス
温度(K)として、次式のように表される。
2. Description of the Related Art As one method of measuring the temperature of a fluid flowing in a duct, there is a method utilizing the fact that the speed of sound in the fluid changes with the temperature of the fluid. Fluid sound speed C (m
/ S) is represented by the following equation, where α is a constant determined by the gas composition, and T is the gas temperature (K).

【0003】[0003]

【数1】 (Equation 1)

【0004】この方法の具体的な装置構成を図3に示
す。一般に流体の温度を測定する場合、図3に示すよう
に被測定流体を挟んで音波発信器3と音波受信器4を設
置し、その間の伝播時間tを測定する。このとき伝播時
間tは、音波発信器と音波音波受信器間の距離をLとし
て、以下の式で表すことができる。Lはあらかじめ測定
しておく必要がある。
FIG. 3 shows a specific apparatus configuration of this method. In general, when measuring the temperature of a fluid, as shown in FIG. 3, a sound wave transmitter 3 and a sound wave receiver 4 are installed with a fluid to be measured interposed therebetween, and a propagation time t therebetween is measured. At this time, the propagation time t can be expressed by the following equation, where L is the distance between the sound wave transmitter and the sound wave sound receiver. L needs to be measured in advance.

【0005】[0005]

【数2】 (Equation 2)

【0006】この伝播時間tよりガス温度Tが算出でき
る。この方法を応用して、図4に示すように複数の音響
センサ(音波発信器と受信器の機能を兼ね備えたセン
サ)をガス体が流れるダクトの周囲に配置すれば、CT
(Computed Tomography)の手法を用いて温度分布を
測定できる(特開昭63−231682号公報参照)。
The gas temperature T can be calculated from the propagation time t. By applying this method and arranging a plurality of acoustic sensors (sensors having both functions of a sound wave transmitter and a receiver) around a duct through which a gas flows, as shown in FIG.
The temperature distribution can be measured using the method of (Computed Tomography) (see Japanese Patent Application Laid-Open No. 63-231682).

【0007】このような音波を用いたガス温度計測装置
を大規模なかつ高温ガスが流れるダクトに適用する場
合、図5のような構成となる。
When such a gas temperature measuring device using sound waves is applied to a large-scale duct through which a high-temperature gas flows, a configuration as shown in FIG. 5 is obtained.

【0008】まず、大規模なダクトの一方の側壁に取り
付けた音波受信器から反対側の側壁に取り付けた音波受
信器まで音波を届かせるためには、大きなエネルギーの
音波を音波発信器から放出する必要がある。そのために
は図に示すようなラッパ状のホーン20を、大径端がガ
ス体側になるように側壁5に取り付け、その反対側の端
に音波発信器3を取り付ける必要がある。
First, in order to make the sound wave reach from the sound wave receiver attached to one side wall of the large-scale duct to the sound wave receiver attached to the other side wall, a sound wave having a large energy is emitted from the sound wave transmitter. There is a need. For this purpose, it is necessary to attach a trumpet-shaped horn 20 as shown in the figure to the side wall 5 such that the large-diameter end is on the gas body side, and attach the sound wave transmitter 3 to the opposite end.

【0009】ラッパ状のホーンの効果を図6に示す。ホ
ーンの口径を大きくすることで、大きな音をダクト内に
送出できることがわかる。
FIG. 6 shows the effect of the trumpet-shaped horn. It can be seen that a loud sound can be transmitted into the duct by increasing the diameter of the horn.

【0010】また、ダクト内を流れる高温ガスから音波
発信器及び音波受信器を守るために側壁5にあけた穴よ
り離して音波発信器や音波受信器を取り付ける必要があ
る。そのために導波管21,22が使われる。通常、音
波発信器や音波受信器の耐熱温度は60℃程度であるの
で、冷却空気等の使用により、音響センサ部は50℃以
下に保たれる。そのために、ホーン20及び導波管2
1,22内は側壁側が高温(例えば1000℃)でセン
サ側が常温という温度勾配を持つことになる。
Further, in order to protect the sound wave transmitter and the sound wave receiver from the high-temperature gas flowing in the duct, it is necessary to mount the sound wave transmitter and the sound wave receiver away from the hole formed in the side wall 5. For this purpose, waveguides 21 and 22 are used. Normally, the heat-resistant temperature of the sound wave transmitter and the sound wave receiver is about 60 ° C., and the temperature of the acoustic sensor section is kept at 50 ° C. or less by using cooling air or the like. Therefore, the horn 20 and the waveguide 2
The inside and outside of the sensors 1 and 22 have a temperature gradient of a high temperature (for example, 1000 ° C.) and a normal temperature on the sensor side.

【0011】このとき、音波がホーン部及び導波管部を
伝わる時間が温度計側の誤差の要因となる。例えば、ダ
クト内のガス温度を1000℃、ダクト内の伝播距離を
2m、導波管内の平均ガス温度を100℃、導波管内の
伝播距離を1mとしたとき、測定値は355℃と低くな
ってしまう。
At this time, the time when the sound wave propagates through the horn and the waveguide is a factor of an error on the thermometer side. For example, when the gas temperature in the duct is 1000 ° C., the propagation distance in the duct is 2 m, the average gas temperature in the waveguide is 100 ° C., and the propagation distance in the waveguide is 1 m, the measured value is as low as 355 ° C. Would.

【0012】この問題を解決するために、ホーン内部に
マイク用の導波管を挿入し、ホーン及び導波管部を伝播
する時間を直接測定し、補正する方法が考案されてい
る。(特開平07−325745号公報参照)図5の場
合、音波発信器3−1から送出された音波は導波管22
−1、ホーン20−1を介してダクト内に送出され、、
ダクト内のガス中を伝播し、導波管21−2を伝って音
波受信器4−2で受信される。この送信信号より、音波
発信器3−1から音波受信器4−2間の伝播時間t12
が求まる。また、音波発信器3−1から送信した音波は
ホーン20−1からダクト内に送出されると同時に、導
波管21−1を伝って音波受信器4−1で受信される。
この信号を処理することで、この音波発信器3−1から
音波受信器4−1間の伝播時間tm1を測定できる。
In order to solve this problem, a method has been devised in which a waveguide for a microphone is inserted inside the horn, and the time of propagation through the horn and the waveguide section is directly measured and corrected. (See JP-A-07-325745) In the case of FIG. 5, the sound wave transmitted from the sound wave
-1, is delivered into the duct through the horn 20-1,
The light propagates through the gas in the duct, travels through the waveguide 21-2, and is received by the sound wave receiver 4-2. From this transmission signal, a propagation time t12 between the sound wave transmitter 3-1 and the sound wave receiver 4-2 is obtained.
Is found. The sound wave transmitted from the sound wave transmitter 3-1 is transmitted from the horn 20-1 into the duct, and at the same time, transmitted through the waveguide 21-1 and received by the sound wave receiver 4-1.
By processing this signal, the propagation time tm1 between the sound wave transmitter 3-1 and the sound wave receiver 4-1 can be measured.

【0013】同様に、音波発信器3−2から音波を発信
し、音波受信器4−1、音波受信器4−2で受信するこ
とで伝播時間t21及び、tm2を測定すれば、以下の
式により、ダクト内だけを伝播する時間tを求めること
ができる。
Similarly, if a sound wave is transmitted from the sound wave transmitter 3-2 and received by the sound wave receiver 4-1 and the sound wave receiver 4-2 to measure the propagation times t21 and tm2, the following equation is obtained. Thus, the time t for propagating only in the duct can be obtained.

【0014】[0014]

【数3】 (Equation 3)

【0015】[0015]

【発明が解決しようとする課題】上記の音響式温度計で
は、音響センサを設置する全ての位置に大口径(直径2
00mm程度)の穴が必要となる。ボイラの火炉やバン
ク部などは側壁が水壁でできているために、上記のよう
な穴をあけるためには、水壁を数本曲げる必要がある。
例として、水壁に直径200mmの穴をあける場合の水
管の様子を図7の(a)に示す。このため、センサの設
置にかかるコストが高く、また、工事期間が長くなると
いう問題がある。また、水管を曲げる必要があるため
に、既設のボイラに音響センサを設置することができな
いという問題がある。
In the above-mentioned acoustic thermometer, a large-diameter (diameter of 2) is provided at all positions where acoustic sensors are installed.
(About 00 mm). Since the boiler furnace and the bank are made of water walls, it is necessary to bend several water walls in order to make the above holes.
As an example, FIG. 7A shows a state of a water pipe when a hole having a diameter of 200 mm is made in a water wall. For this reason, there is a problem that the cost for installing the sensor is high and the construction period is long. In addition, there is a problem that an acoustic sensor cannot be installed in an existing boiler because the water pipe needs to be bent.

【0016】さらに、測定個所の構造上大きな穴が空け
られないといった場合もある。また、水管を曲げずに小
口径の穴をあけ、導波管を及び音波受信器を設置した場
合、音波が導波管部を伝播する時間を補正できず、測定
精度が低下するという問題が生ずる。
Further, there may be a case where a large hole cannot be formed due to the structure of the measuring point. In addition, if a small-diameter hole is drilled without bending the water pipe, and a waveguide and a sound wave receiver are installed, the time for sound waves to propagate through the waveguide cannot be corrected, and the measurement accuracy decreases. Occurs.

【0017】本発明の課題は、水管を曲げることなく、
また、構造上大きな穴を空けられない場合でも、測定精
度を低下することなく、音響センサを設置することがで
き、取り付けコストを大幅に低減することができる音響
式ガス体温度測定装置を提供するにある。
An object of the present invention is to provide a water pipe without bending it.
Further, even when a large hole cannot be formed due to its structure, an acoustic gas temperature measuring device can be provided in which an acoustic sensor can be installed without lowering measurement accuracy, and mounting cost can be significantly reduced. It is in.

【0018】[0018]

【課題を解決するための手段】上記課題を解決するため
の本発明の第1の手段は、ガス体を通過する音波の伝播
時間を計測し、該伝播時間に基づいて前記ガス体の温度
を算出する音響式ガス体温度測定装置において、前記ガ
ス体に接して大径端を開口させたホーン、該ホーンの小
径端に結合され該ホーンに音波を送出する音波発信器、
前記ホーン内に挿入され一端を該ホーンの大径端で開口
させた第1の導波管、及び該第1の導波管の他端に結合
されて該第1の導波管内の音波を受信する音波受信器と
を含んで構成された第1の音響センサと、前記ホーンか
ら前記ガス体に送出された音波が該ガス体を経由して到
達する位置に一端を開口させて配置された第2の導波
管、該第2の導波管の他端に装着され該第2の導波管内
の音波を受信する音波受信器、及び前記第2の導波管の
同じく他端に装着され該第2の導波管に音波を送出する
補助用音波発信器とを含んで構成された第2の音響セン
サと、を有してなることを特徴とする。
A first means of the present invention for solving the above-mentioned problem is to measure a propagation time of a sound wave passing through a gas body, and to measure a temperature of the gas body based on the propagation time. In the acoustic gas body temperature measuring device to be calculated, a horn having a large diameter end opened in contact with the gas body, a sound wave transmitter coupled to the small diameter end of the horn and transmitting a sound wave to the horn,
A first waveguide inserted into the horn, one end of which is opened at the large-diameter end of the horn; and a sound wave coupled to the other end of the first waveguide, the sound wave in the first waveguide being transmitted. A first acoustic sensor configured to include a sound wave receiver for receiving, and a sound wave sent from the horn to the gas body is disposed with one end opened at a position where the sound wave reaches via the gas body. A second waveguide, a sound wave receiver mounted on the other end of the second waveguide for receiving sound waves in the second waveguide, and a sound wave receiver mounted on the same other end of the second waveguide And a second acoustic sensor configured to include an auxiliary sound wave transmitter for transmitting sound waves to the second waveguide.

【0019】上記課題を解決するための本発明の第2の
手段は、上記第1の手段において、前記第1の音響セン
サは、前記第1の導波管の他端に装着され該第1の導波
管に音波を送出する補助用音波発信器とを含んで構成さ
れていることを特徴とする。
According to a second aspect of the present invention for solving the above-mentioned problems, in the first aspect, the first acoustic sensor is mounted on the other end of the first waveguide. And an auxiliary sound wave transmitter for transmitting a sound wave to the waveguide.

【0020】補助用音波発信器の出力音圧は、音波発信
器の出力音圧の1/20を超えない値に設定することが
望ましい。
The output sound pressure of the auxiliary sound wave transmitter is desirably set to a value not exceeding 1/20 of the output sound pressure of the sound wave transmitter.

【0021】補助用音波発信器及び音波受信器付きの導
波管を受信専用の音響センサとすることで、ガス体を囲
む壁面に小さな開口部を設けるだけで設置が可能な音響
センサが得られる。ダクト内の音を受信するだけであれ
ば受信器の感度に応じた音を受信できる開口面積があれ
ばよく、一般に使われる電磁式マイクロフォンの場合、
その開口面は直径10mm以上あればよい。例として水
壁に直径10mmの穴をあけた場合を図7の(b)に示
す。図示のように、水管を曲げる必要がなく、簡易、低
コストでセンサの取り付けができる。また、補助用の音
波発信器を受信用の導波管に設置することで音波が導波
管部を通過する正確な時間が測定できるようになるので
計測精度が低下することがない。
By using a waveguide with an auxiliary sound wave transmitter and a sound wave receiver as an acoustic sensor exclusively for reception, an acoustic sensor which can be installed only by providing a small opening in the wall surrounding the gas body can be obtained. . If you only want to receive the sound inside the duct, it is sufficient if there is an opening area that can receive the sound according to the sensitivity of the receiver, in the case of a commonly used electromagnetic microphone,
The opening surface may have a diameter of 10 mm or more. As an example, FIG. 7B shows a case where a hole having a diameter of 10 mm is formed in the water wall. As shown, there is no need to bend the water pipe, and the sensor can be mounted simply and at low cost. In addition, by installing the auxiliary sound wave transmitter in the waveguide for reception, it is possible to measure an accurate time for the sound wave to pass through the waveguide, so that the measurement accuracy does not decrease.

【0022】さらに、ホーン付きの音響センサに設置す
る音波受信器付き導波管に補助用音波発信器を付けるこ
とで、ホーン部の伝播時間を補正することができるよう
になる。
Furthermore, by attaching an auxiliary sound wave transmitter to a waveguide with a sound wave receiver installed in an acoustic sensor with a horn, the propagation time of the horn can be corrected.

【0023】[0023]

【発明の実施の形態】本発明の実施例を図1に示す。図
1は、本発明の実施例である炉幅約20mの石炭焚事業
用ボイラの火炉出口ガス温度を測定するために作製し
た、本発明の実施例である音響式ガス体温度計測装置を
示す。図示の音響式ガス体温度計測装置は、火炉側壁5
に装着されたホーン付きの第1の音響センサ(音響セン
サ1)と、缶前後壁に装着された受信器だけの第2の音
響センサ(音響センサ2)と、音響センサ1,2の出力
信号に基づいて所要の演算を行いガス体温度を出力する
演算部(図示せず)と、音響センサ1,2を駆動すると
ともに前記演算部を制御する制御部(図示せず)と、演
算部の出力を表示する表示部(図示せず)と、を含んで
構成されている。
FIG. 1 shows an embodiment of the present invention. FIG. 1 shows an acoustic gas body temperature measuring apparatus according to an embodiment of the present invention, which is manufactured to measure a furnace outlet gas temperature of a coal-fired boiler having a furnace width of about 20 m according to an embodiment of the present invention. . The illustrated acoustic gas temperature measuring device includes a furnace side wall 5.
The first acoustic sensor with a horn (acoustic sensor 1) attached to the can, the second acoustic sensor only with the receiver attached to the front and rear walls of the can (acoustic sensor 2), and the output signals of the acoustic sensors 1 and 2 A calculation unit (not shown) for performing a required calculation based on the data and outputting a gas body temperature, a control unit (not shown) for driving the acoustic sensors 1 and 2 and controlling the calculation unit, And a display unit (not shown) for displaying an output.

【0024】事業用ボイラでは、火炉の燃焼状態や火炉
壁の汚れ具合を調べる方法として、火炉出口ガス温度
(FETG)の計測が必要となる。一般にFETGを計
る際には、熱電対を磁製管で覆ったサクションパイロメ
ータが使用されるが、耐久性がないことと、取扱が困難
なために常時計測はできない。一方、音響式温度計測装
置は非接触式であり、常時計測が可能な計測法である。
しかし、火炉側壁は水壁で覆われており、図7の(a)
に示すような直径200mmといった大口径の穴を多数
空けることは困難である。
In a commercial boiler, as a method of examining the combustion state of the furnace and the degree of contamination of the furnace wall, it is necessary to measure the furnace outlet gas temperature (FETG). Generally, when measuring FETG, a suction pyrometer in which a thermocouple is covered with a porcelain tube is used. However, due to lack of durability and difficulty in handling, measurement cannot always be performed. On the other hand, the acoustic temperature measuring device is a non-contact type, and is a measurement method capable of constantly measuring.
However, the furnace side wall is covered with a water wall, and FIG.
It is difficult to make a large number of holes having a large diameter such as 200 mm as shown in FIG.

【0025】そこで本実施例では、ボイラの缶左右の側
壁に内径200mmの穴を空けて、ホーン付の第1の音
響センサ(以下、音響センサ1という)を設置し、缶
前、缶後には、それぞれ3ヵ所に受信器だけの第2の音
響センサ(以下、音響センサ2という)を設置した。
Therefore, in this embodiment, a first acoustic sensor with a horn (hereinafter referred to as acoustic sensor 1) is installed by making holes with an inner diameter of 200 mm in the left and right side walls of the boiler can. A second acoustic sensor having only a receiver (hereinafter, acoustic sensor 2) was installed at each of three locations.

【0026】図1に、音響センサ1の構造と、音響セン
サ2の構造を示す。音響センサ1は、側壁5の開口に大
径端をガス体側にして取り付けたラッパ形のホーン20
と、ホーン20の小径端に導波管22を介して接続さ
れ、導波管22、ホーン20を経てガス体に音波を送出
する音波発信器3と、ホーン20に挿入して配置され一
端をホーン20の大径端で開口させるとともにホーン2
0の外部で他端を開口させた第1の導波管21と、該導
波管21の他端開口に接続して配置され導波管21内の
音波を受信する音波受信器30と、導波管21の他端に
近接した位置に分岐管を介して接続され該導波管21に
音波を送信する補助用音波発信器4と、を含んで構成さ
れている。
FIG. 1 shows the structure of the acoustic sensor 1 and the structure of the acoustic sensor 2. The acoustic sensor 1 has a trumpet-shaped horn 20 attached to the opening of the side wall 5 with the large-diameter end facing the gas body.
And a sonic wave transmitter 3 that is connected to the small-diameter end of the horn 20 via a waveguide 22 and sends out a sound wave to the gas body through the waveguide 22 and the horn 20; Open at the large diameter end of horn 20 and horn 2
0, a first waveguide 21 having the other end opened outside, a sound wave receiver 30 arranged to be connected to the other end opening of the waveguide 21 and receiving a sound wave in the waveguide 21, An auxiliary sound wave transmitter 4 connected to a position close to the other end of the waveguide 21 via a branch pipe and transmitting a sound wave to the waveguide 21.

【0027】音響センサ2は、前記ホーン20から送り
出されガス体を経由して伝播した音波が到達する缶前、
缶後の水壁面の水管の間に、缶内に向かって一端を開口
させて配置され缶外に他端を位置させた第2の導波管2
1Aと、該第2の導波管21Aの他端開口に接続して配
置され導波管21A内の音波を受信する音波受信器30
と、導波管21Aの他端に近接した位置に分岐管を介し
て接続され該導波管21Aに音波を送信する補助用音波
発信器4と、を含んで構成されている。
The acoustic sensor 2 is located in front of the can where the sound wave transmitted from the horn 20 and propagated via the gas arrives.
A second waveguide 2 disposed between the water pipes on the water wall surface after the can with one end opened toward the inside of the can and the other end positioned outside the can;
1A and a sound wave receiver 30 arranged to be connected to the other end opening of the second waveguide 21A to receive sound waves in the waveguide 21A.
And an auxiliary sound wave transmitter 4 connected to a position close to the other end of the waveguide 21A via a branch tube and transmitting a sound wave to the waveguide 21A.

【0028】受信器だけの機能をもつ音響センサ2は、
水壁の間に空けた15mmの穴に設置した第2の導波管
21Aの缶外の端部に音波受信器30と補助用の音波発
信器4とが設置してある。
The acoustic sensor 2 having only the function of the receiver is
A sound wave receiver 30 and an auxiliary sound wave transmitter 4 are installed at an end outside the can of the second waveguide 21A installed in a 15 mm hole opened between water walls.

【0029】本装置のガス温度測定手順を以下に示す。
まず、音響センサ2の補助用音波発信器4から音波を発
信し、その音を音響センサ2の音波受信器30で受信
し、その伝播時間t22を求める。
The procedure for measuring the gas temperature of the present apparatus will be described below.
First, a sound wave is transmitted from the auxiliary sound wave transmitter 4 of the acoustic sensor 2, the sound is received by the sound wave receiver 30 of the acoustic sensor 2, and the propagation time t22 is obtained.

【0030】次に音響センサ1の補助用音波発信器4か
ら音波を発信し、その音を音響センサ1の音波受信器3
0で受信し、その伝播時間t11を求める。
Next, a sound wave is transmitted from the auxiliary sound wave transmitter 4 of the acoustic sensor 1, and the sound is transmitted to the sound wave receiver 3 of the acoustic sensor 1.
0 and the propagation time t11 is obtained.

【0031】次に、音響センサ1の音波発信器3から音
波を発信し、その音を音響センサ1の音波受信器30で
受信し、その伝播時間t11sを求める。
Next, a sound wave is transmitted from the sound wave transmitter 3 of the acoustic sensor 1, the sound is received by the sound wave receiver 30 of the acoustic sensor 1, and its propagation time t11s is obtained.

【0032】ここで、t22/2が音波が音響センサ2
の導波管中を伝わるのに要する時間である。
Here, t22 / 2 is the time when the sound wave is
Is the time required to travel through the waveguide.

【0033】また、t11s−t11/2は音波が音響
センサ1のホーン部(導波管22とホーン20)を伝わ
るのに要する時間である。
T11s-t11 / 2 is the time required for the sound wave to travel through the horn portion (waveguide 22 and horn 20) of the acoustic sensor 1.

【0034】最後に音響センサ2の音波発信器3から音
波を発信し、その音を音響センサ2の音波受信器で受信
し、伝播時間t12を求める。そして、以下の式で音波
が炉内だけを伝播する時間を求めることができる。
Finally, a sound wave is transmitted from the sound wave transmitter 3 of the acoustic sensor 2, the sound is received by the sound wave receiver of the acoustic sensor 2, and a propagation time t12 is obtained. Then, the time required for the sound wave to propagate only inside the furnace can be obtained by the following equation.

【0035】[0035]

【数4】 (Equation 4)

【0036】実際には、本実施例の音響式ガス体温度計
測装置は、図2に示すように、缶の両側の側壁にそれぞ
れ1個づつ装着された計2個のホーン付き音響センサ1
と、缶前壁と缶後壁にそれぞれ3個づつ装着された計6
個のホーンなしの音響センサ2で構成されている。した
がって、まず、各音響センサの導波管部分の伝播時間を
測定した後、ホーン付きの音響センサ1から音波を発信
し、他の7つの音響センサが同時に受信し、各経路の伝
播時間を求めることとなる。
Actually, as shown in FIG. 2, the acoustic gas temperature measuring apparatus of the present embodiment comprises a total of two acoustic sensors 1 with horns, one on each side wall of the can.
And 3 on each of the can front wall and can rear wall, total 6
The hornless acoustic sensor 2 is provided. Therefore, first, after measuring the propagation time of the waveguide portion of each acoustic sensor, a sound wave is transmitted from the acoustic sensor 1 with the horn, and the other seven acoustic sensors simultaneously receive the sound, and determine the propagation time of each path. It will be.

【0037】従来の技術ではすべての音響センサにホー
ンを設置する必要があり、そのために8ヵ所全てに直径
200mmの穴を開ける必要があった。それには水管を
曲げる必要があるために多大の手間と費用が必要であっ
た。しかしながら、本実施例の構造を採用することで直
径200mmの穴をあける場所は2ヵ所だけで、従来と
同等の測定経路と測定精度とを得ることができた。
In the prior art, it was necessary to install horns in all acoustic sensors, and for this purpose, it was necessary to make holes of 200 mm in diameter at all eight locations. This required a great deal of labor and expense due to the need to bend the water pipe. However, by adopting the structure of this embodiment, a hole having a diameter of 200 mm was drilled in only two places, and the same measurement path and measurement accuracy as those of the related art could be obtained.

【0038】上記のような多数経路の伝播時間を温度に
換算することで、測定断面全体のガス温度を知る事がで
き、平均温度を正確に把握することができる。また、缶
左右、前後のガス温度を知ることができるので、燃焼あ
るいは伝熱のアンバランスを把握することができる。
By converting the propagation times of the multiple paths as described above into temperatures, the gas temperature of the entire measurement section can be known, and the average temperature can be accurately grasped. Further, since the gas temperatures of the left, right, front and rear of the can can be known, the imbalance of combustion or heat transfer can be grasped.

【0039】なお、補助用音波発信器は、音波受信器に
過大な音圧がかかり、破損することを防止するために、
測定用音波発信器の1/20以下の出力音圧となるよう
に出力を設定してある。
The auxiliary sound wave transmitter is used to prevent the sound wave receiver from being damaged due to excessive sound pressure applied to the sound wave receiver.
The output is set so that the output sound pressure is not more than 1/20 that of the measuring sound wave transmitter.

【0040】図8はホーンなしの音響センサ2だけに補
助用音波発信器を取り付けた例である。この場合、補正
式は以下のようになる。
FIG. 8 shows an example in which an auxiliary sound wave transmitter is attached only to the acoustic sensor 2 without a horn. In this case, the correction formula is as follows.

【0041】[0041]

【数5】 (Equation 5)

【0042】ただし、ホーン内のガス温度と導波管内の
ガス温度が異なる場合は、測定精度が低下する原因とな
る。
However, if the gas temperature in the horn is different from the gas temperature in the waveguide, the measurement accuracy is reduced.

【0043】[0043]

【発明の効果】本発明によれば、水管を曲げることな
く、また、構造上大きな穴を空けられない場合でも、測
定精度を低下することなく、音響センサを設置すること
ができ、取り付けコストを大幅に低減することができ
る。
According to the present invention, the acoustic sensor can be installed without bending the water pipe and without lowering the measurement accuracy even when a large hole cannot be formed due to the structure, and the mounting cost can be reduced. It can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】図1に示す音響センサの配置状態を示す斜視図
である。
FIG. 2 is a perspective view showing an arrangement state of the acoustic sensor shown in FIG.

【図3】音響式ガス体温度計測の原理を示す概念図であ
る。
FIG. 3 is a conceptual view showing the principle of acoustic gas body temperature measurement.

【図4】従来技術の音響センサ配置例を示す斜視図であ
る。
FIG. 4 is a perspective view showing an example of a conventional acoustic sensor arrangement.

【図5】従来技術を示す断面図である。FIG. 5 is a sectional view showing a conventional technique.

【図6】ホーンの効果を示すグラフである。FIG. 6 is a graph showing the effect of a horn.

【図7】ホーン及び導波管を設置する場合の水壁の構造
を示す正面図である。
FIG. 7 is a front view showing a structure of a water wall when a horn and a waveguide are installed.

【図8】本発明の他の実施例を示す断面図である。FIG. 8 is a sectional view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 ホーン付の音響センサ 2 ホーンなしの音響センサ 3,3−1,3−2 音波発信器 4 補助用音波発信器 4−1,4−2 音波受信器 5,5’ 側壁 18 音響センサ用開口 19 ダクト 20 ホーン 21−1,21−2 導波管 21,21A 導波管 22,22−1,22−2 導波管 30 音波受信器 20 Reference Signs List 1 acoustic sensor with horn 2 acoustic sensor without horn 3,3-1,3-2 sound wave transmitter 4 auxiliary sound wave transmitter 4-1,4-2 sound wave receiver 5,5 'side wall 18 opening for sound sensor Reference Signs List 19 duct 20 horn 21-1, 21-2 waveguide 21, 21A waveguide 22, 22, 22-1, 22-2 waveguide 30 sound wave receiver 20

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガス体を通過する音波の伝播時間を計測
し、該伝播時間に基づいて前記ガス体の温度を算出する
音響式ガス体温度測定装置において、前記ガス体に接し
て大径端を開口させたホーン、該ホーンの小径端に結合
され該ホーンに音波を送出する音波発信器、前記ホーン
内に挿入され一端を該ホーンの大径端で開口させた第1
の導波管、及び該第1の導波管の他端に結合されて該第
1の導波管内の音波を受信する音波受信器とを含んで構
成された第1の音響センサと、前記ホーンから前記ガス
体に送出された音波が該ガス体を経由して到達する位置
に一端を開口させて配置された第2の導波管、該第2の
導波管の他端に装着され該第2の導波管内の音波を受信
する音波受信器、及び前記第2の導波管の同じく他端に
装着され該第2の導波管に音波を送出する補助用音波発
信器とを含んで構成された第2の音響センサと、を有し
てなることを特徴とする音響式ガス体温度計測装置。
1. An acoustic gas temperature measuring device for measuring a propagation time of a sound wave passing through a gas body and calculating a temperature of the gas body based on the propagation time. A horn coupled to a small-diameter end of the horn and transmitting a sound wave to the horn; a first horn inserted into the horn and having one end opened at the large-diameter end of the horn;
A first acoustic sensor comprising: a waveguide, and a sound wave receiver coupled to the other end of the first waveguide to receive a sound wave in the first waveguide; and A second waveguide having one end opened at a position where a sound wave transmitted from the horn to the gas body reaches via the gas body, and mounted on the other end of the second waveguide; A sound wave receiver for receiving sound waves in the second waveguide, and an auxiliary sound wave transmitter mounted on the other end of the second waveguide and transmitting sound waves to the second waveguide. And a second acoustic sensor configured to include the acoustic gas body temperature measuring device.
【請求項2】 請求項1記載の音響式ガス体温度計測装
置において、前記第1の音響センサは、前記第1の導波
管の他端に装着され該第1の導波管に音波を送出する補
助用音波発信器とを含んで構成されていることを特徴と
する音響式ガス体温度計測装置。
2. The acoustic gas temperature measuring device according to claim 1, wherein the first acoustic sensor is attached to the other end of the first waveguide, and applies a sound wave to the first waveguide. An acoustic gas body temperature measuring device comprising an auxiliary sound wave transmitter for sending out.
【請求項3】 請求項1または2記載の音響式ガス体温
度計測装置において、補助用音波発信器の出力音圧を音
波発信器の出力音圧の1/20を超えない値に設定して
あることを特徴とする音響式ガス体温度計測装置。
3. The acoustic gas temperature measuring device according to claim 1, wherein the output sound pressure of the auxiliary sound wave transmitter is set to a value not exceeding 1/20 of the output sound pressure of the sound wave transmitter. An acoustic gas body temperature measuring device, comprising:
JP04790498A 1998-02-27 1998-02-27 Acoustic gas body temperature measuring device Expired - Fee Related JP3640054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04790498A JP3640054B2 (en) 1998-02-27 1998-02-27 Acoustic gas body temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04790498A JP3640054B2 (en) 1998-02-27 1998-02-27 Acoustic gas body temperature measuring device

Publications (2)

Publication Number Publication Date
JPH11248554A true JPH11248554A (en) 1999-09-17
JP3640054B2 JP3640054B2 (en) 2005-04-20

Family

ID=12788385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04790498A Expired - Fee Related JP3640054B2 (en) 1998-02-27 1998-02-27 Acoustic gas body temperature measuring device

Country Status (1)

Country Link
JP (1) JP3640054B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102818654A (en) * 2012-08-15 2012-12-12 华北电力大学 Continuous temperature-measuring device and method of aluminum electrolytic cell based on acoustic technique
CN102818652A (en) * 2012-08-15 2012-12-12 华北电力大学 Temperature online monitoring system for liquid aluminum in aluminum ladle based on acoustic temperature detection and method
DE102016107113B3 (en) * 2016-04-18 2017-06-01 Z & J Technologies Gmbh Apparatus for acoustic temperature measurement, sealing device for such a device and system for acoustic temperature measurement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102818654A (en) * 2012-08-15 2012-12-12 华北电力大学 Continuous temperature-measuring device and method of aluminum electrolytic cell based on acoustic technique
CN102818652A (en) * 2012-08-15 2012-12-12 华北电力大学 Temperature online monitoring system for liquid aluminum in aluminum ladle based on acoustic temperature detection and method
DE102016107113B3 (en) * 2016-04-18 2017-06-01 Z & J Technologies Gmbh Apparatus for acoustic temperature measurement, sealing device for such a device and system for acoustic temperature measurement
DE102016107113C5 (en) 2016-04-18 2023-05-04 Z & J Technologies Gmbh Acoustic temperature measurement device, sealing arrangement for such device and system for acoustic temperature measurement

Also Published As

Publication number Publication date
JP3640054B2 (en) 2005-04-20

Similar Documents

Publication Publication Date Title
JP4879179B2 (en) Non-intrusive test for materials between spaced walls
EP2673598B1 (en) Determining delay times for ultrasonic flow meters
CN105102949B (en) Device and method for temperature
JPH0713583B2 (en) Acoustic pyrometer and method
JP2004271496A (en) Ultrasonic flow measuring method
WO2007078905A1 (en) Non-invasive sensing technique for measuring gas flow and temperature
JPH10508111A (en) Volume flow measurement device
US5583301A (en) Ultrasound air velocity detector for HVAC ducts and method therefor
EP3404371B1 (en) Gas meter
MX2008002567A (en) Driver configuration for an ultrasonic flow meter.
US20120191382A1 (en) Ultrasonic flow meter device
CZ239093A3 (en) Flow meter
JPH11248554A (en) Acoustic type gaseous body temperature measuring device
JP2003247985A (en) Acoustic gas meter
JP5287513B2 (en) Ultrasonic flow meter
JPH1048009A (en) Ultrasound temperature current meter
JP2007110371A (en) Ultrasonic sensor for high temperature
JP2653855B2 (en) Acoustic fluid temperature measurement method
KR100321074B1 (en) Measuring method of distance between sensors of ultrasonic flowmeter
JP2686298B2 (en) Gas temperature measuring device and gas analyzer using the same
JP2005180988A (en) Ultrasonic flowmeter
JP2003329518A (en) Method and apparatus for measurement of temperature on inner surface of structure
JPH07318436A (en) Temperature distribution measuring method for high temperature object and ultrasonic wave sensor therefor
JP2675334B2 (en) High temperature fluid temperature measuring device
JP4165240B2 (en) Ultrasonic flow meter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Effective date: 20050107

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110128

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120128

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130128

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees