JP2675334B2 - High temperature fluid temperature measuring device - Google Patents

High temperature fluid temperature measuring device

Info

Publication number
JP2675334B2
JP2675334B2 JP63134680A JP13468088A JP2675334B2 JP 2675334 B2 JP2675334 B2 JP 2675334B2 JP 63134680 A JP63134680 A JP 63134680A JP 13468088 A JP13468088 A JP 13468088A JP 2675334 B2 JP2675334 B2 JP 2675334B2
Authority
JP
Japan
Prior art keywords
sound wave
high temperature
furnace
temperature fluid
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63134680A
Other languages
Japanese (ja)
Other versions
JPH01304334A (en
Inventor
典幸 今田
秀久 吉廻
Original Assignee
バブコツク日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコツク日立株式会社 filed Critical バブコツク日立株式会社
Priority to JP63134680A priority Critical patent/JP2675334B2/en
Publication of JPH01304334A publication Critical patent/JPH01304334A/en
Application granted granted Critical
Publication of JP2675334B2 publication Critical patent/JP2675334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高温流体の温度計測装置に係り、特にボイラ
炉内の高温ガス流体などのように、壁で囲まれた高温流
体の温度を、音波の伝播時間に基づいて計測する高温流
体の温度計測装置に関する。
Description: TECHNICAL FIELD The present invention relates to a temperature measuring device for a high temperature fluid, and particularly to a temperature of a high temperature fluid surrounded by a wall, such as a high temperature gas fluid in a boiler furnace. The present invention relates to a temperature measuring device for a high temperature fluid, which measures based on a propagation time of a sound wave.

〔従来の技術〕[Conventional technology]

炉内の温度を測定する方法の1つに、音波を用いたも
のがある。その例を第5図に示す。第5図において、音
波は送信機7から送信され、炉内ガス10中を伝わって受
信機8で検出される。そして、コントロール装置9によ
り送信から検出までの伝播時間が算出される。伝播時間
t(sec)と炉内ガス温度T(k)には次の関係があ
る。
One of the methods for measuring the temperature inside the furnace is to use a sound wave. An example is shown in FIG. In FIG. 5, the sound wave is transmitted from the transmitter 7, transmitted through the gas 10 in the furnace, and detected by the receiver 8. Then, the control device 9 calculates the propagation time from transmission to detection. The propagation time t (sec) and the in-furnace gas temperature T (k) have the following relationship.

α:ガス性状で決まる定数 l :送信機から受信機までの距離(m) この関係式(1)を用いて、伝播時間から炉内ガスの
平均温度Tが計算される。
α: constant determined by gas properties l: distance from transmitter to receiver (m) Using this relational expression (1), the average temperature T of the gas in the furnace is calculated from the propagation time.

第5図の応用として、第6図に示す方法がある。第6
図において、音波送信機もしくは音波受信機、もしくは
これらの両方の機能を兼ね備えたもの(以下、これら3
つをまとめて音波センサと呼ぶことにする)3が、炉壁
5の周囲に複数配置されている。そして、これらによっ
て炉内の多数の径路の伝播時間を測定することで、断面
の温度分布が算出される。
As an application of FIG. 5, there is a method shown in FIG. Sixth
In the figure, a sound wave transmitter, a sound wave receiver, or those having both functions (hereinafter, these 3
A plurality of them will be collectively referred to as sound wave sensors) 3 are arranged around the furnace wall 5. Then, the temperature distribution of the cross section is calculated by measuring the propagation times of many paths in the furnace by these.

以上のような音波を用いた炉内の温度計測装置には、
炉壁に取付ける音波センサを炉内の熱から守るための冷
却機能が必要である。
The temperature measuring device in the furnace using the above sound waves,
A cooling function is required to protect the acoustic wave sensor attached to the furnace wall from heat inside the furnace.

従来の装置は、第7図もしくは第8図に示すようにな
っていた。
The conventional device is as shown in FIG. 7 or FIG.

第7図では、炉壁5に取付けられたホーン4に、曲が
った導波管6が取付けられ、その後に音波センサ3が付
けられている。そして、導波管6に冷却空気噴出口2が
設けられていて、導波管内に空気を流すことで音波セン
サを炉内の熱から守っている。
In FIG. 7, a bent waveguide 6 is attached to a horn 4 attached to a furnace wall 5, and then a sound wave sensor 3 is attached. The waveguide 6 is provided with the cooling air ejection port 2 to protect the acoustic wave sensor from the heat inside the furnace by flowing air into the waveguide.

第8図では、音波センサ3の後方に冷却空気噴出口2
が設けられ、そこから冷却空気を流すことで音波センサ
の冷却がされている。
In FIG. 8, the cooling air jet port 2 is provided behind the sound wave sensor 3.
Is provided, and the acoustic wave sensor is cooled by flowing cooling air from there.

以上の方法が従来用いられてきたが、より耐熱性のあ
る装置が、そしてより正確な測定ができる装置が要求さ
れる。
Although the above method has been conventionally used, a device having higher heat resistance and a device capable of more accurate measurement are required.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

第7図のものでは、音波送信機から音波受信機に伝達
される音波は、炉内の気体中を伝達するだけでなく、導
波管内の冷却空気中をも伝達することになる。そのた
め、炉内の気体中だけの音波伝達時間を正確に測定する
ためには、導波管内の冷却空気中を伝わる音波伝達時間
を考慮した補正が必要である。この補正のために、導波
管内の空気の温度を知る必要があるが、導波管内の空気
の温度は炉内側で高温であり、音波センサ側で低温であ
るという導波管の長さにわたる急勾配を持つために、そ
の正確な測定は困難である。さらに、音波センサを炉壁
から離れて配置することによって、受信された音波は導
波管内で減衰した後、火炉内に送信され、そして伝播さ
れた音波は受信側で導波管内で減衰した後、検出され
る。つまり、音波センサの機能が低下してしまう。
In FIG. 7, the sound wave transmitted from the sound wave transmitter to the sound wave receiver is not only transmitted in the gas in the furnace but also in the cooling air in the waveguide. Therefore, in order to accurately measure the sound wave propagation time only in the gas in the furnace, it is necessary to make a correction in consideration of the sound wave propagation time propagating in the cooling air in the waveguide. For this correction, it is necessary to know the temperature of the air in the waveguide, but the temperature of the air in the waveguide is high inside the furnace and low on the acoustic sensor side over the length of the waveguide. Due to the steep slope, its accurate measurement is difficult. Furthermore, by placing the acoustic wave sensor away from the furnace wall, the received sound waves are attenuated in the waveguide and then transmitted into the furnace, and the propagated sound waves are attenuated in the waveguide at the receiving side. , Detected. That is, the function of the sound wave sensor is deteriorated.

第8図のものでは、火炉内からの輻射熱により、音波
センサの炉内側の面が高温になる。第8図中に矢印で示
すように、冷却空気の流れは音波センサの炉内側の表面
に充分には届いていない。つまり、炉内が高温になるに
つれて、充分な冷却ができなくなる。
In the case of FIG. 8, the surface inside the furnace of the acoustic wave sensor becomes high in temperature due to the radiant heat from the inside of the furnace. As shown by the arrow in FIG. 8, the flow of cooling air does not reach the surface of the acoustic sensor inside the furnace sufficiently. That is, as the temperature inside the furnace becomes higher, sufficient cooling cannot be achieved.

本発明の目的は、音波センサの機能を損なうことな
く、炉内の熱から音波センサを充分に保護することであ
る。
It is an object of the present invention to adequately protect the acoustic wave sensor from heat in the furnace without compromising the function of the acoustic wave sensor.

〔課題を解決するための手段〕[Means for solving the problem]

上記従来技術の問題点は、高温流体を包囲する壁の対
向する位置に設けた音波送信装置および音波受信装置
と、音波送信装置から音波受信装置への音波の伝播時間
を算出する装置とを備え、上記音波の伝播時間により高
温流体の温度を求める高温流体の温度計測装置におい
て、壁に設けた音波送信装置および音波受信装置には高
温流体との間に空間を介して熱遮へい物を設けたことを
特徴とする高温流体の温度計測装置により解決される。
The above-mentioned problems of the conventional technology include a sound wave transmitting device and a sound wave receiving device which are provided at opposite positions of a wall surrounding a high temperature fluid, and a device which calculates a propagation time of a sound wave from the sound wave transmitting device to the sound wave receiving device. In the temperature measuring device of the high temperature fluid for obtaining the temperature of the high temperature fluid from the propagation time of the sound wave, the sound wave transmitting device and the sound wave receiving device provided on the wall are provided with a heat shield between the high temperature fluid and the space. This is solved by a high temperature fluid temperature measuring device characterized by the above.

本発明において、熱遮へい物とは、例えば複数枚の耐
熱性多孔板からなり、一の多孔板の孔の位置に他の多孔
板の孔でない部分が来るように各多孔板の孔の位置をず
らして取り付けた熱遮へい板である。
In the present invention, the heat shield is composed of, for example, a plurality of heat-resistant porous plates, and the positions of the holes of each porous plate are arranged so that the positions of the holes of one porous plate are not the holes of the other porous plate. It is a heat shield that is installed by shifting.

〔実施例〕〔Example〕

第1図に、本発明による音波送受信装置の一実施例を
示す。本実施例では、この装置が内部のガス温度約1300
℃の2m×2mのガスボイラに取付けられた。まず、熱の遮
へい物12が音波センサの炉内側に置かれる。この熱の遮
へい物12は、炉内からの輻射熱を遮断し、かつ音波を通
過させるという機能が要求される。そのため、熱の遮へ
い物12は第2図に示すように、3枚のセラミック製の多
孔板により構成されている。穴13の大きさは5mm、穴と
穴の間隔は8mmである。そして、第2図に示すように、
1枚目の板の穴の位置に2枚目、3枚目の穴でない部分
14が来るように、各多孔板の取付け間隔を5mmずつにな
るように取付けられる。輻射熱は1〜100μmの電磁波
であり、熱の遮へい物の隙間に対して非常に短い波長で
あるため、回折現象による通過はほとんどなく、熱の遮
へい物12によりそのほとんどが遮断される。一方、音の
波長は輻射熱に較べてずいぶん長い。本実施例では20kH
zの周波数を用いており、その波長は500℃のとき2.47cm
である。そのため、回折現象により音波は3枚の板の穴
を通過できる。
FIG. 1 shows an embodiment of a sound wave transmitting / receiving apparatus according to the present invention. In this embodiment, this device has an internal gas temperature of about 1300
It was installed in a 2m x 2m gas boiler at ℃. First, the heat shield 12 is placed inside the furnace of the sonic sensor. The heat shield 12 is required to have a function of blocking radiant heat from the inside of the furnace and passing a sound wave. Therefore, the heat shield 12 is composed of three ceramic perforated plates, as shown in FIG. The size of the holes 13 is 5 mm, and the distance between the holes is 8 mm. Then, as shown in FIG.
The part that is not the second or third hole at the hole position of the first plate
14 can be installed so that the spacing between the perforated plates is 5 mm. The radiant heat is an electromagnetic wave of 1 to 100 μm and has a very short wavelength with respect to the gap of the heat shield, so that it hardly passes by the diffraction phenomenon, and most of it is blocked by the heat shield 12. On the other hand, the wavelength of sound is much longer than that of radiant heat. 20kH in this embodiment
The z frequency is used, and its wavelength is 2.47 cm at 500 ° C.
It is. Therefore, the sound wave can pass through the holes of the three plates due to the diffraction phenomenon.

次に熱の遮へい物12を冷却するために、第2図(第1
図A部拡大図)に示すように空気噴出口11が設けられて
いる。これは遮へい物が高温になったとき、遮へい物か
らの輻射熱により音波センサが過熱されるのを防ぐため
である。本実施例では、遮へい物が400〜500℃にまで冷
却された。
Next, in order to cool the heat shield 12, FIG.
An air jet 11 is provided as shown in FIG. This is to prevent the sound wave sensor from being overheated by radiant heat from the shield when the shield reaches a high temperature. In this example, the shield was cooled to 400-500 ° C.

さらに音波センサ3を直接冷却するために、第3図
(第1図B部拡大図)に示すように音波センサ3と遮へ
い物12の間に、音波センサを取巻いて空気噴出口を配置
する。本実施例では、炉内ガス温度が1300±200℃のボ
イラの炉壁に、本発明による装置が取付けられ、遮へい
物の温度は400〜500℃に保たれ、そして音波センサは80
℃に保たれた。以上の構成により、音波センサは炉内の
熱から守られる。
Further, in order to directly cool the sound wave sensor 3, as shown in FIG. 3 (enlarged view of part B in FIG. 1), the sound wave sensor is wound and the air ejection port is arranged between the sound wave sensor 3 and the shield 12. . In the present embodiment, the apparatus according to the present invention is attached to the furnace wall of the boiler whose furnace gas temperature is 1300 ± 200 ° C., the temperature of the shield is kept at 400 to 500 ° C., and the sound wave sensor is 80
° C. With the above configuration, the acoustic wave sensor is protected from the heat inside the furnace.

本実施例においても、音波は音波センサと遮へい物と
の間の冷却空気中を伝達するが、これは送信と受信を兼
ね備えた音波センサを用いるか、もしくは装置に送信機
と受信機の両方を取付けることで、次のように簡単に補
正される。本実施例では、装置に送信機と受信機の両方
が取付けられた。一方の送信機から他方の受信機への炉
内の音波伝播時間を計測する際、まず送信側の送信機で
音波が送信され、そのごく一部は遮へい物により反射さ
れる。この反射波が、同じ装置内に取付けられている受
信機で受信され、その送信から受信までの伝播時間tAが
測定される。次に、受信側で同様の操作が行なわれ、tB
が測定される。その後、送信側から音波が送信され、受
信側で受信されることでその間の伝播時間tが測定され
る。以上の操作から、炉内の伝播時間は、 として簡単に、かつ正確に補正される。
Also in this embodiment, the sound wave is transmitted through the cooling air between the sound wave sensor and the shield, but this uses a sound wave sensor having both transmission and reception, or the apparatus has both a transmitter and a receiver. By installing, it can be easily corrected as follows. In this example, the device was equipped with both a transmitter and a receiver. When measuring the acoustic wave propagation time in the furnace from one transmitter to the other receiver, first the acoustic wave is transmitted by the transmitter on the transmitting side, and a small part of it is reflected by the shield. This reflected wave is received by a receiver mounted in the same device, and the propagation time tA from its transmission to reception is measured. Next, the same operation is performed on the receiving side, and tB
Is measured. After that, a sound wave is transmitted from the transmitting side and is received by the receiving side, so that the propagation time t during that time is measured. From the above operation, the propagation time in the furnace is As easily and accurately corrected.

さらに、本実施例では、冷却空気の噴出音波が音波を
受信する際に雑音となるのを防止するために、第1図に
示すように空気配管1に電磁弁15が取付けられる。この
電磁弁15は、第4図に示すように一方から音波を送信
し、他方でその音波が受信されるその間だけ弁が閉じ、
空気噴出音を止めるようにコントロール装置9で制御さ
れる。本実施例では、遮へい物としてセラミック板を用
いたが、耐熱性のものであれば機能は同じである。
Further, in this embodiment, the electromagnetic valve 15 is attached to the air pipe 1 as shown in FIG. 1 in order to prevent the jetted sound wave of the cooling air from becoming noise when receiving the sound wave. This solenoid valve 15 transmits a sound wave from one side as shown in FIG. 4, and the valve is closed only while the sound wave is received on the other side,
The control device 9 controls so as to stop the air jet noise. In this embodiment, a ceramic plate is used as the shield, but if it is heat resistant, it has the same function.

本実施例において、熱遮へい物12をホーン4の先端に
設置したものについて説明したが、ホーン4の中間に熱
遮へい物12を設置してもその効果は同等である。
Although the heat shield 12 is installed at the tip of the horn 4 in the present embodiment, the effect is the same even if the heat shield 12 is installed in the middle of the horn 4.

〔発明の効果〕〔The invention's effect〕

本発明によれば、壁内の高温流体からの輻射による音
波送受信用センサの過熱を完全に防ぐことができ、かつ
導波管を使って音波センサを壁から離すことなく設置す
ることができるので、より正確な測定ができる。
According to the present invention, it is possible to completely prevent the sound wave transmitting / receiving sensor from being overheated due to radiation from the high temperature fluid in the wall, and to install the sound wave sensor without separating from the wall by using a waveguide. , More accurate measurement is possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例を示す説明図、第2図は、
熱遮へい装置の冷却部詳細図、第3図は音波送受信セン
サの冷却部詳細図、第4図は、本発明の実施例における
冷却用空気回路説明図、第5図、第6図は、従来技術に
なる音波を用いた炉内ガスの音計測装置説明図、第7
図、第8図は、従来技術になる音波センサ説明図であ
る。 1…空気配管、2……空気噴出口、3…(送受信)音波
センサ、5…炉壁、9…コントロール装置(伝播時間算
出装置)、10…炉内高温ガス、12…熱の遮へい物。
FIG. 1 is an explanatory view showing an embodiment of the present invention, and FIG.
FIG. 3 is a detailed view of the cooling part of the heat shield device, FIG. 3 is a detailed view of the cooling part of the sound wave transmission / reception sensor, FIG. 4 is an explanatory view of a cooling air circuit in the embodiment of the present invention, and FIGS. Explanatory diagram of sound measurement device for in-furnace gas using sound waves, which will become a technology
FIGS. 8A and 8B are explanatory diagrams of a sound wave sensor according to a conventional technique. DESCRIPTION OF SYMBOLS 1 ... Air piping, 2 ... Air ejection port, 3 ... (Transmission / reception) sound wave sensor, 5 ... Furnace wall, 9 ... Control device (transmission time calculation device), 10 ... High temperature gas in the furnace, 12 ... Heat shield.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高温流体を包囲する壁の対向する位置に設
けた音波送信装置および音波受信装置と、音波送信装置
から音波受信装置への音波の伝播時間を算出する装置と
を備え、上記音波の伝播時間により高温流体の温度を求
める高温流体の温度計測装置において、壁に設けた音波
送信装置および音波受信装置には高温流体との間に空間
を介して熱遮へい物を設けたことを特徴とする高温流体
の温度計測装置。
1. A sound wave transmitting device and a sound wave receiving device which are provided at opposite positions of a wall surrounding a high temperature fluid, and a device which calculates a propagation time of a sound wave from the sound wave transmitting device to the sound wave receiving device. In a temperature measuring device for a high temperature fluid that obtains the temperature of the high temperature fluid by the propagation time of the heat wave, the sound wave transmitting device and the sound wave receiving device provided on the wall are provided with a heat shield between the high temperature fluid and a space. Measuring device for high temperature fluid.
【請求項2】前記熱遮へい物が、複数枚の耐熱性多孔板
からなり、一の多孔板の孔の位置に他の多孔板の孔でな
い部分が来るように各多孔板の孔の位置をずらして取り
付けた熱遮へい板であることを特徴とする請求項1記載
の高温流体の温度計測装置。
2. The heat shield comprises a plurality of heat-resistant porous plates, and the positions of the holes of each porous plate are adjusted so that the positions of the holes of one porous plate are not the holes of the other porous plate. The temperature measuring device for a high-temperature fluid according to claim 1, wherein the heat-shielding plates are attached in a shifted manner.
JP63134680A 1988-06-01 1988-06-01 High temperature fluid temperature measuring device Expired - Fee Related JP2675334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63134680A JP2675334B2 (en) 1988-06-01 1988-06-01 High temperature fluid temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63134680A JP2675334B2 (en) 1988-06-01 1988-06-01 High temperature fluid temperature measuring device

Publications (2)

Publication Number Publication Date
JPH01304334A JPH01304334A (en) 1989-12-07
JP2675334B2 true JP2675334B2 (en) 1997-11-12

Family

ID=15134060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63134680A Expired - Fee Related JP2675334B2 (en) 1988-06-01 1988-06-01 High temperature fluid temperature measuring device

Country Status (1)

Country Link
JP (1) JP2675334B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114755308B (en) * 2022-04-08 2023-07-18 新疆维吾尔自治区特种设备检验研究院 Directional detection device for high-temperature equipment based on waveguide rod heat insulation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265540A (en) * 1985-05-20 1986-11-25 Tokyo Electric Power Co Inc:The Method for measuring temperature of gas
JPS62237332A (en) * 1986-04-08 1987-10-17 Chugai Ro Kogyo Kaisha Ltd Ultrasonic thermometer probe
JPS6383625A (en) * 1986-09-27 1988-04-14 Nippon Steel Corp Method for measuring temperature of high temperature object

Also Published As

Publication number Publication date
JPH01304334A (en) 1989-12-07

Similar Documents

Publication Publication Date Title
CA1315386C (en) Acoustic pyrometer
US5349859A (en) Method and apparatus for measuring acoustic wave velocity using impulse response
US11579098B2 (en) Method and apparatus for detecting deposits in a pipe system of an apparatus
US12061155B2 (en) Method and apparatus for evaluation of a status of a material in metallurgical vessels
JPH10508111A (en) Volume flow measurement device
JP2675334B2 (en) High temperature fluid temperature measuring device
KR101862248B1 (en) Multipoint temperature sensing device using ultra sonic waves and multipoint temperature sensing system having the same
US3534609A (en) Temperature measuring devices
US6669636B2 (en) Ultrasound transmitter and/or receiver system
US4980674A (en) Acoustic ash deposition monitor apparatus and method
JPH07229865A (en) Device for detecting pipe inside deposit
JPH07280666A (en) Measurement device for gas temperature in furnace
JPS6013009A (en) Method and device for measuring blast furnace charge
JP2003329518A (en) Method and apparatus for measurement of temperature on inner surface of structure
US12078471B2 (en) Device and method for detecting an object
CN105181171B (en) A kind of warm-air pipe temperature checking method based on distribution type fiber-optic
JPH07318436A (en) Temperature distribution measuring method for high temperature object and ultrasonic wave sensor therefor
JP2653855B2 (en) Acoustic fluid temperature measurement method
JPS5890129A (en) Ultrasonic level meter
JPH05302934A (en) Sound-wave measuring instrument
JP2000337849A (en) Method and apparatus for measurement of thickness of refractories in furnace
CA2271502C (en) Apparatus for measuring the temperature of a fluid flow
JP2005010139A (en) Residual thickness measuring method and device for furnace refractory using elastic wave
JPH11222673A (en) Sputtering apparatus
JP2004361088A (en) Acoustic gas flowmeter and acoustic gas flow rate measurement method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees