JPH11246938A - High strength steel excellent in hydrogen embrittlement resistance - Google Patents

High strength steel excellent in hydrogen embrittlement resistance

Info

Publication number
JPH11246938A
JPH11246938A JP5228198A JP5228198A JPH11246938A JP H11246938 A JPH11246938 A JP H11246938A JP 5228198 A JP5228198 A JP 5228198A JP 5228198 A JP5228198 A JP 5228198A JP H11246938 A JPH11246938 A JP H11246938A
Authority
JP
Japan
Prior art keywords
less
steel
strength steel
hardness
hydrogen embrittlement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5228198A
Other languages
Japanese (ja)
Other versions
JP3999333B2 (en
Inventor
Yuuichi Namimura
裕一 並村
Toyofumi Hasegawa
豊文 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP05228198A priority Critical patent/JP3999333B2/en
Publication of JPH11246938A publication Critical patent/JPH11246938A/en
Application granted granted Critical
Publication of JP3999333B2 publication Critical patent/JP3999333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength steel exhibiting excellent hydrogen embrittlement resistance with certainty by determining a fine compound effective for the improvement of hydrogen embrittlement resistance. SOLUTION: In the high strength steel, the amount of increase of hardness by precipitation hardening is regulated to >=10 Hv. It is desirable that a metallic compound, containing one or more elements selected from the group consisting of Mo, Ti and V, or a complex compound is precipitated in a base phase. Further, as the composition of the high strength steel satisfying the above required condition, it is recommended that one or more kinds selected from the group consisting of <=2.00% (not including 0%) Mo, <=0.20% (not including 0%) Ti, and <=0.20% (not including 0%) V are contained in the steel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐水素脆化特性が
優れることによって耐遅れ破壊特性が改善された高強度
鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength steel having improved resistance to delayed fracture due to excellent hydrogen embrittlement resistance.

【0002】[0002]

【従来の技術】鉄鋼材料に応力がかかってからある時間
を経過した後に発生する遅れ破壊は、種々の要因が複雑
に絡み合って発生していると考えられるので、その原因
を特定することは難しいが、一般に水素脆化現象が関与
しているという点では共通の認識が持たれている。上記
水素脆化現象を左右する因子としては、焼もどし温度,
組織,材料硬さ,結晶粒度,各種合金元素の影響等が一
応認められており、特に耐水素脆化特性の向上には微細
な化合物を析出させて、これを拡散性水素のトラップサ
イトとすれば良いことが知られている。
2. Description of the Related Art It is difficult to identify the cause of delayed fracture that occurs after a certain period of time has passed since a stress was applied to a steel material, because various factors are considered to occur in a complicated manner. However, there is a common understanding that hydrogen embrittlement is generally involved. Factors affecting the hydrogen embrittlement phenomenon include tempering temperature,
The effects of microstructure, material hardness, crystal grain size, various alloying elements, etc. have been recognized for some time. Particularly, in order to improve the hydrogen embrittlement resistance, a fine compound is precipitated and this is used as a trap site for diffusible hydrogen. It is known that it is good.

【0003】しかしながら、微細化合物の析出量は成分
組成や焼戻し温度など種々の要因によって変化するもの
であり、しかも微細化合物を定量することは困難である
こともあって、水素脆化の防止手段が確立されている訳
ではなく、種々の方法が試行錯誤的に提案されているに
過ぎないのが実状である。
[0003] However, the precipitation amount of the fine compound varies depending on various factors such as the composition of the component and the tempering temperature, and it is difficult to quantify the fine compound. The fact is that various methods have not been established but are merely proposed by trial and error.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、耐水素脆化特性の向上に
有効な微細化合物を定量することにより優れた耐水素脆
化特性を確実に発揮する高強度鋼を提供しようとするも
のである。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, and provides excellent hydrogen embrittlement resistance by quantifying fine compounds effective for improving hydrogen embrittlement resistance. It is intended to provide a high-strength steel that reliably exerts its performance.

【0005】[0005]

【課題を解決するための手段】上記課題を達成した本発
明の耐水素脆化特性に優れた高強度鋼とは、析出硬化に
よる硬さ上昇量が10Hv以上であることを要旨とする
ものであり、Mo,Ti,Vよりなる群から選択される
1種以上の元素を含む金属化合物若しくは複合化合物が
母相内に析出したものであることが望ましい。
The high-strength steel excellent in hydrogen embrittlement resistance according to the present invention, which has achieved the above-mentioned objects, is characterized in that the increase in hardness due to precipitation hardening is 10 Hv or more. In addition, it is preferable that a metal compound or a composite compound containing at least one element selected from the group consisting of Mo, Ti, and V is precipitated in the parent phase.

【0006】上記の要件を満たす本発明の高強度鋼の成
分としては、鋼中に、 Mo:2.00%以下(0%を含まない) Ti:0.20%以下(0%を含まない) V :0.20%以下(0%を含まない) よりなる群から選択される1種以上を含有するものであ
ることが推奨され、更に他の成分として、 Cr:2.00%以下(0%を含まない) Al:0.05%以下(0%を含まない) Nb:0.20%以下(0%を含まない) W :0.20%以下(0%を含まない) B :0.003%以下(0%を含まない) よりなる群から選択される1種以上を含有することが望
ましく、更に他の成分として、 C :0.10〜0.60% N :0.001〜0.010% O :0.005%以下(0%を含まない) S :0.025%以下(0%を含まない) よりなる群から選択される1種以上を含有するものであ
ることが推奨される。
As the components of the high-strength steel of the present invention satisfying the above requirements, Mo: 2.00% or less (not including 0%) Ti: 0.20% or less (not including 0%) ) V: 0.20% or less (not including 0%) It is recommended that the composition contains at least one selected from the group consisting of: Cr: 2.00% or less ( Al: 0.05% or less (excluding 0%) Nb: 0.20% or less (excluding 0%) W: 0.20% or less (excluding 0%) B: 0.003% or less (excluding 0%) It is desirable to contain at least one selected from the group consisting of: C: 0.10 to 0.60% N: 0.001 -0.010% O: 0.005% or less (excluding 0%) S: 0.025% or less (0% It is recommended from the group consisting included not) are those containing at least one selected.

【0007】また、鋼が、更に他の成分として、 P :0.025%以下(0%を含まない)及び/又は Mn:0.70%以下(0%を含まない) を含有するものであることが望ましい。Further, the steel further contains, as other components, P: 0.025% or less (excluding 0%) and / or Mn: 0.70% or less (excluding 0%). Desirably.

【0008】[0008]

【発明の実施の形態】前述の様に、遅れ破壊特性を劣化
させる原因の一つとして、鋼中を動き回る水素(拡散性
水素)が挙げられる。この拡散性水素を低減するために
は鋼中に微細な化合物を積極的に析出させて水素をトラ
ップすることが有効であり、特に高強度鋼の場合には、
析出硬化型の合金化元素を添加し、高温焼戻し処理など
により、母相内に微細な合金系化合物を析出させること
が遅れ破壊発生防止に非常に効果的である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, one of the causes of deterioration of delayed fracture characteristics is hydrogen (diffusible hydrogen) moving around in steel. In order to reduce this diffusible hydrogen, it is effective to actively precipitate fine compounds in the steel to trap hydrogen, especially in the case of high-strength steel,
Precipitation of a fine alloy-based compound in a matrix by adding a precipitation hardening type alloying element and performing high-temperature tempering treatment is very effective in preventing delayed fracture.

【0009】しかしながら、その析出した微細な合金系
化合物(以下、単に析出物ということがある)を定量す
ることは非常に困難であると考えられており、その析出
量と遅れ破壊特性との関係は明らかにされていなかっ
た。そこで本発明者らは遅れ破壊防止に有効な析出物の
定量方法について鋭意研究を重ねた。その結果、(a)鋼
材の実際の硬さから、後述する方法により求めた焼戻し
前の母相硬さを差し引くことによって、析出物による硬
さ上昇量を求めることができること、及び(b)得られた
硬さ上昇量と遅れ破壊特性の間には非常に高い相関が見
られ、その硬さ上昇量をある値以上と定めることにより
遅れ破壊の発生を確実に防止できることを見出し、本発
明に想到した。即ち、本発明は析出物量自体から遅れ破
壊の防止効果を把握するのではなく、析出物による硬さ
上昇量から析出物量を間接的に推定して遅れ破壊防止効
果を把握するという技術を完成したのである。尚、母相
硬さ及び硬さ上昇量は以下の〜の手順で求めれば良
い。
However, it is considered very difficult to quantify the precipitated fine alloy-based compound (hereinafter, sometimes simply referred to as a precipitate), and the relationship between the amount of precipitation and the delayed fracture characteristics is considered. Was not disclosed. Therefore, the present inventors have conducted intensive studies on a method for quantifying precipitates that is effective in preventing delayed fracture. As a result, (a) by subtracting the matrix hardness before tempering determined by the method described later from the actual hardness of the steel material, it is possible to determine the increase in hardness due to precipitates, and (b) obtained A very high correlation is found between the increased hardness and the delayed fracture property, and it has been found that the occurrence of delayed fracture can be reliably prevented by setting the hardness increase to a certain value or more. I arrived. That is, the present invention has completed the technique of grasping the delayed fracture prevention effect by indirectly estimating the precipitate amount from the increase in hardness due to the precipitate, rather than grasping the delayed fracture prevention effect from the precipitate amount itself. It is. The matrix hardness and the amount of increase in hardness may be determined by the following procedures.

【0010】 まず鋼材を焼入れ後、300〜700
℃の範囲で温度を変化させて焼戻し処理を行い、種々の
温度で処理された鋼材の硬さを測定することにより、図
1に示す様な焼戻し性能曲線を作成する。通常の炭素鋼
では、焼戻し温度の上昇と共に、硬さは徐々に低下して
いく傾向にあるが、析出硬化型の合金元素を含んだ鋼材
の場合、図1に示す様に、析出硬化によりある温度域で
硬さ低下の傾向が鈍化する現象が認められる。つまり、
実際の材料硬さは、母相硬さに析出硬化分の硬さが加わ
った硬さである。
First, after quenching the steel material, 300 to 700
Tempering is performed by changing the temperature in the range of ° C., and the hardness of the steel material treated at various temperatures is measured to create a tempering performance curve as shown in FIG. In ordinary carbon steel, the hardness tends to gradually decrease as the tempering temperature rises, but in the case of a steel material containing a precipitation hardening type alloy element, as shown in FIG. A phenomenon in which the tendency of the hardness decrease slows down in the temperature range is observed. That is,
The actual material hardness is the hardness obtained by adding the hardness of the precipitation hardening to the matrix hardness.

【0011】 また析出硬化が認められない焼戻し温
度域は母相硬さを示していることとなる。図1の焼戻し
性能曲線では300℃と700℃の結果が析出硬化のな
い母相硬さを表しているものであり、300℃と700
℃の2点を直線で結ぶことにより母相硬さを示す母相硬
さ線を得ることができ、母相硬さはこの母相硬さ線をも
とに夫々の焼戻し温度でその硬さの値を読み取ることに
より求めることができる。
[0011] A tempering temperature range in which precipitation hardening is not recognized indicates matrix hardness. In the tempering performance curve of FIG. 1, the results at 300 ° C. and 700 ° C. show the matrix hardness without precipitation hardening.
A matrix hardness line indicating the matrix hardness can be obtained by connecting two points of ℃ with a straight line, and the matrix hardness is determined at each tempering temperature based on the matrix hardness line. Can be obtained by reading the value of

【0012】 従って各焼戻し温度において、実際の
材料硬さ(焼戻し性能曲線の値)から上記の方法によ
り求めた母相硬さ(母相硬さ線の値)を差し引いた値
が、析出物による硬さ上昇量である。
Therefore, at each tempering temperature, the value obtained by subtracting the matrix hardness (value of the matrix hardness line) obtained by the above method from the actual material hardness (value of the tempering performance curve) is determined by the precipitate. This is the amount of increase in hardness.

【0013】この析出物による硬さ上昇量は微細な析出
物の数が多いほど高い値を示すものであり、特に硬さ上
昇量が10Hv以上となると、遅れ破壊発生防止効果が
顕著である。上記硬さ上昇量は20Hv以上であると好
ましく、30Hv以上であればより好ましい。
The amount of increase in hardness due to the precipitates increases as the number of fine precipitates increases, and particularly when the amount of increase in hardness is 10 Hv or more, the effect of preventing delayed fracture occurrence is remarkable. The increase in hardness is preferably 20 Hv or more, and more preferably 30 Hv or more.

【0014】尚、鋼中において微細に効率良く析出し、
且つ高い水素トラップ能力を発揮する化合物としては合
金系化合物が挙げられ、特に上記合金系化合物がMo,
Ti,Vよりなる群から選択される1種以上の元素を含
む金属化合物若しくは複合化合物等である場合には、耐
水素脆化特性の改善に非常に優れた効果を発揮する。し
かもこれらの化合物は、オーステナイト結晶粒の粗大化
防止に有効であり、鋼の強度及び靱性を改善する上で有
効である。次に、本発明における化学成分の限定理由を
説明する。
In addition, it is finely and efficiently precipitated in steel,
Compounds exhibiting high hydrogen trapping ability include alloy-based compounds. In particular, the above-mentioned alloy-based compounds are Mo,
In the case of a metal compound or a composite compound containing at least one element selected from the group consisting of Ti and V, a very excellent effect on improvement of hydrogen embrittlement resistance is exhibited. Moreover, these compounds are effective in preventing austenite crystal grains from being coarsened, and are effective in improving the strength and toughness of steel. Next, the reasons for limiting the chemical components in the present invention will be described.

【0015】(a) Mo:2.00%以下,Ti:0.
20%以下,V:0.20%以下 これらの元素は、鋼中に微細な化合物を効率良く析出さ
せるために有効な元素であり、Mo,Ti,Vよりなる
群から選択される1種以上の元素を含む金属化合物若し
くは複合化合物等を析出させるのに必要な元素である。
更にこれらの元素は、焼入性の向上に有効な元素で、鋼
材の強度・靱性改善にも効果を発揮する。従って、夫々
の元素は、Mo:0.3%以上,Ti:0.01%以
上,V:0.15%以上含有させることが望ましく、M
o:0.6%以上,Ti:0.02%以上,V:0.0
2%以上であるとより好ましい。
(A) Mo: 2.00% or less, Ti: 0.
20% or less, V: 0.20% or less These elements are effective elements for efficiently depositing fine compounds in steel, and are at least one element selected from the group consisting of Mo, Ti, and V. Is an element necessary for precipitating a metal compound or a composite compound containing the above element.
Further, these elements are effective elements for improving hardenability, and also exhibit effects for improving the strength and toughness of the steel material. Therefore, it is preferable that each element contains Mo: 0.3% or more, Ti: 0.01% or more, and V: 0.15% or more.
o: 0.6% or more, Ti: 0.02% or more, V: 0.0
More preferably, it is 2% or more.

【0016】但し、Moの添加効果は、約2.00%で
飽和すると共に、多過ぎると変形抵抗の増大により圧造
工具寿命の低下をもたらす。またTiやVが0.20%
を超えて添加されると、巨大な窒化物や炭化物を生じ、
靱性が低下するので夫々Mo:2.00%以下,Ti:
0.20%以下,V:0.20%以下と定めた。尚、夫
々の元素の好ましい上限含有量は、Mo:1.5%,T
i:0.15%,V:0.15%であり、より好ましく
は、Mo:1.05%以下,Ti:0.1%以下,V:
0.1%以下である。
However, the effect of the addition of Mo saturates at about 2.00% and, if too large, the deformation resistance increases, thereby shortening the life of the forging tool. 0.20% of Ti and V
If it is added in excess of, it produces huge nitrides and carbides,
Mo: 2.00% or less, Ti:
0.20% or less, V: 0.20% or less. The preferred upper limit contents of each element are Mo: 1.5%, T
i: 0.15%, V: 0.15%, More preferably, Mo: 1.05% or less, Ti: 0.1% or less, V:
0.1% or less.

【0017】(b) Cr:2.00%以下,Al:0.
05%以下,Nb:0.20%以下,W:0.20%以
下,B:0.003%以下 これらの元素もまた、鋼中に微細な化合物を効率良く析
出させる上で有効であると共に、これらの元素を含む化
合物は、オーステナイト結晶粒の粗大化を防止して、鋼
の強度及び靱性を改善する効果を有するものである。特
にCrは、耐食性の向上にも寄与して耐水素脆性を高め
る作用も発揮し、またBは粒界に集散して鋼の焼入れ性
を高める効果も有する。従って、夫々の元素は、Cr:
0.3%以上,Al:0.01%以上,Nb:0.01
%以上,W:0.01%以上,B:0.0005%以上
含有させることが好ましく、Cr:0.5%以上,A
l:0.02%以上,Nb:0.02%以上,W:0.
02%以上,B:0.001%以上であるとより好まし
い。
(B) Cr: 2.00% or less, Al: 0.
05% or less, Nb: 0.20% or less, W: 0.20% or less
Lower, B: 0.003% or less These elements are also effective in precipitating fine compounds in steel efficiently, and the compounds containing these elements prevent austenite crystal grains from becoming coarse. Thus, it has the effect of improving the strength and toughness of steel. In particular, Cr also contributes to the improvement of corrosion resistance and also has the effect of increasing hydrogen embrittlement resistance, and B also has the effect of scattering at the grain boundaries to increase the hardenability of steel. Thus, each element is Cr:
0.3% or more, Al: 0.01% or more, Nb: 0.01
%, W: 0.01% or more, B: 0.0005% or more, Cr: 0.5% or more, A
l: 0.02% or more, Nb: 0.02% or more, W: 0.
More preferably, it is 02% or more and B: 0.001% or more.

【0018】但し、Crの効果は約2.0%で飽和し、
またAl,Nb,W,Bを、多量に添加すると巨大な窒
化物や炭化物を生じ、靱性が低下するので、夫々Cr:
2.00%以下,Al:0.05%以下,Nb:0.2
0%以下,W:0.20%以下,B:0.003%以下
と定めた。尚、夫々の好ましい上限含有量は、Cr:
1.5%,Al:0.045%,Nb:0.15%,
W:0.15%,B:0.0025%であり、より好ま
しくは、Cr:1.05%以下,Al:0.04%以
下,Nb:0.1%以下,W:0.1%以下,B:0.
0020%以下である。
However, the effect of Cr saturates at about 2.0%,
When Al, Nb, W, and B are added in large amounts, huge nitrides and carbides are generated, and the toughness is reduced.
2.00% or less, Al: 0.05% or less, Nb: 0.2
0% or less, W: 0.20% or less, B: 0.003% or less. In addition, each preferable upper limit content is Cr:
1.5%, Al: 0.045%, Nb: 0.15%,
W: 0.15%, B: 0.0025%, more preferably Cr: 1.05% or less, Al: 0.04% or less, Nb: 0.1% or less, W: 0.1% Hereinafter, B: 0.
0020% or less.

【0019】(c) C:0.10〜0.60%,N:
0.001〜0.010%,O:0.005%以下,
S:0.025%以下 C,N,O,Sは鋼中に化合物を析出させるのに有効な
元素であり、夫々炭化物,窒化物,酸化物,硫化物を生
成させる。
(C) C: 0.10 to 0.60%, N:
0.001 to 0.010%, O: 0.005% or less,
S: 0.025% or less C, N, O, and S are effective elements for precipitating compounds in steel, and form carbides, nitrides, oxides, and sulfides, respectively.

【0020】Cは、炭化物を形成するとともに、高強度
鋼として必要な引張強さを確保する上で欠くことのでき
ない元素であり、0.10%以上含有させる必要があ
る。一方C含有量が0.60%を超えると、炭化物の粗
大化を招くとともに、靱性低下を招いて耐遅れ破壊性を
劣化させる。よってCの含有量は0.10〜0.60%
と定めた。尚、C量の好ましい下限値は、0.20%で
あり、0.30%以上であるとより望ましい。一方好ま
しい上限値は0.45%であり、0.40%以下である
とより好ましい。
C is an element that forms carbides and is indispensable for securing the required tensile strength as a high-strength steel, and must be contained in an amount of 0.10% or more. On the other hand, when the C content exceeds 0.60%, coarsening of carbides is caused, and toughness is reduced, thereby deteriorating delayed fracture resistance. Therefore, the content of C is 0.10 to 0.60%.
It was decided. The preferred lower limit of the C content is 0.20%, and more preferably 0.30% or more. On the other hand, a preferred upper limit is 0.45%, and more preferably 0.40% or less.

【0021】Nは、窒化物を形成することにより、結晶
粒の微細化ひいては耐遅れ破壊性の向上に好影響を与え
る元素であり、これらの効果を得るには0.001%以
上の添加が必要である。但し、N量が0.010%を超
えると固溶N量が増大し、耐遅れ破壊性に有害となる。
従ってNの含有量は、0.001〜0.010%と定め
た。尚、N量の好ましい下限値は0.002%であり、
0.004%以上であるとより望ましい。一方、好まし
い上限値は0.007%であり、0.006%以下であ
るとより望ましい。
N is an element that has a favorable effect on the refinement of crystal grains and the improvement in delayed fracture resistance by forming nitrides. To obtain these effects, addition of 0.001% or more is required. is necessary. However, if the amount of N exceeds 0.010%, the amount of solute N increases, which is detrimental to delayed fracture resistance.
Therefore, the content of N is determined to be 0.001 to 0.010%. The preferred lower limit of the amount of N is 0.002%,
More preferably, it is 0.004% or more. On the other hand, a preferable upper limit is 0.007%, and more preferably 0.006% or less.

【0022】Oは、酸化物を形成し、鋼中に微細分散さ
せる。但し、O量が0.005%を超えると粗大な酸化
物が析出し、靱性低下を招いて耐遅れ破壊性を劣化させ
るので、Oの含有量は0.005%以下と定めた。尚、
好ましいO量は、0.003%以下であり、0.001
%以下であるとより望ましい。
O forms oxides and is finely dispersed in steel. However, if the O content exceeds 0.005%, a coarse oxide precipitates, causing a decrease in toughness and deteriorating delayed fracture resistance. Therefore, the O content is set to 0.005% or less. still,
The preferred O amount is 0.003% or less, and 0.001%.
% Is more desirable.

【0023】Sは、硫化物を形成し、鋼中に微細分散さ
せる。但し、S量が0.025%を超えると粗大なMn
Sなどを形成して応力集中箇所となり、耐遅れ破壊性を
劣化させるので、Sの含有量は0.025%以下と定め
た。尚、好ましいS量は、0.010%以下であり、
0.005%以下であるとより望ましい。
S forms sulfide and is finely dispersed in steel. However, if the S content exceeds 0.025%, coarse Mn
Since S and the like are formed to be stress concentration points and deteriorate delayed fracture resistance, the S content is determined to be 0.025% or less. Incidentally, a preferable S amount is 0.010% or less,
More preferably, it is 0.005% or less.

【0024】(d) P:0.025%以下,Mn:0.
70%以下 Pは粒界に偏析し、粒界強度を低下させる元素であり、
できるだけ低減することが好ましく、0.025%以下
にすることが必要である。尚、好ましいP量は0.01
0%以下であり、0.005%以下であるとより望まし
い。
(D) P: 0.025% or less, Mn: 0.
70% or less P is an element that segregates at the grain boundary and lowers the grain boundary strength,
It is preferable to reduce as much as possible, and it is necessary to make it 0.025% or less. The preferred P content is 0.01
0% or less, and more preferably 0.005% or less.

【0025】Mnは粒界偏析を助長する元素であり、粒
界強度を低下させる恐れがあることから、できるだけ低
減することが好ましく、0.70%以下に制限すること
が必要であり、0.50%以下であると好ましく、0.
30%以下であるとより望ましい。
Mn is an element that promotes grain boundary segregation, and may reduce the grain boundary strength. Therefore, Mn is preferably reduced as much as possible, and must be limited to 0.70% or less. It is preferably 50% or less.
More preferably, it is 30% or less.

【0026】なお、本発明鋼には製造上、不可避的不純
物が含まれ得るが、それらは本発明の効果を損なわない
限度で許容される。
The steel of the present invention may contain unavoidable impurities in production, but these are permissible as long as the effects of the present invention are not impaired.

【0027】また本発明鋼を製造するにあたり、化合物
を効率良く微細に析出させるには、鋼材を製造する際の
凝固過程における冷却速度を制御することが望ましい。
具体的には、凝固過程(1500℃から1300℃への
冷却中)において、10℃/分以上の速さで冷却するこ
とにより、微細な化合物を多く析出させることができ、
耐水素脆化特性が向上する。好ましい冷却速度は20℃
/分以上であり、更に好ましい冷却速度は30℃/分以
上である。
Further, in producing the steel of the present invention, it is desirable to control the cooling rate in the solidification process in producing the steel material in order to efficiently and finely precipitate the compound.
Specifically, in the solidification process (during cooling from 1500 ° C. to 1300 ° C.), by cooling at a rate of 10 ° C./min or more, many fine compounds can be precipitated,
Hydrogen embrittlement resistance is improved. Preferred cooling rate is 20 ° C
/ Min or more, and a more preferable cooling rate is 30 ° C / min or more.

【0028】以下、本発明を実施例によって更に詳細に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の主旨に徴して設計変更することは
いずれも本発明の技術的範囲に含まれるものである。
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following Examples are not intended to limit the present invention. It is included in the technical range of.

【0029】[0029]

【実施例】真空溶解炉において表1に示す成分組成の鋼
材を150kgずつ溶製し、インゴットに鋳造して冷却
した。尚、凝固過程の冷却速度を変化させることを目的
として、インゴットは50〜150kgの範囲で大きさ
を変えて鋳造し、一部保温しながら冷却した。
EXAMPLE In a vacuum melting furnace, 150 kg of a steel material having the composition shown in Table 1 was melted, cast into an ingot, and cooled. For the purpose of changing the cooling rate during the solidification process, the ingot was cast in various sizes in the range of 50 to 150 kg, and was cooled while keeping a part of the temperature.

【0030】[0030]

【表1】 [Table 1]

【0031】上記インゴットを25mmφに鍛造し、1
200℃×30分の溶体化処理を施した後、焼ならし処
理を行った。そして所定の温度で焼入れした後、引張強
度が約1000〜2000N/mm2 になるように30
0〜700℃の範囲で温度を変化させて焼戻しを行い、
図1に示す様な焼戻し性能曲線を作成した。尚、図1は
供試鋼aの焼戻し性能曲線である。
The above ingot was forged to a diameter of 25 mm,
After performing a solution treatment at 200 ° C. for 30 minutes, a normalizing treatment was performed. After quenching at a predetermined temperature, the tensile strength is adjusted to about 1000 to 2000 N / mm 2.
Tempering by changing the temperature in the range of 0 to 700 ° C,
A tempering performance curve as shown in FIG. 1 was created. FIG. 1 shows a tempering performance curve of the test steel a.

【0032】得られた鋼材について、前述の〜の方
法で母相硬さ及び硬さ上昇量を算出すると共に、引張強
さ及び遅れ破壊強度を測定した。尚、遅れ破壊強度は、
ループ型定歪み遅れ破壊試験機を用いて、図2に示す遅
れ破壊試験片を水中で応力負荷し100時間後の遅れ破
壊強さを測定したものである。結果は表2に示す。
With respect to the obtained steel material, the matrix hardness and the increase in hardness were calculated by the above-mentioned methods (1) to (4), and the tensile strength and the delayed fracture strength were measured. The delayed fracture strength is
The delayed fracture test specimen shown in FIG. 2 was subjected to stress loading in water and the delayed fracture strength after 100 hours was measured using a loop-type constant strain delayed fracture tester. The results are shown in Table 2.

【0033】[0033]

【表2】 [Table 2]

【0034】硬さ上昇量が10Hv以上である本発明鋼
No.1〜9は、いずれも高い遅れ破壊強度を示してい
るが、硬さ上昇量が10Hv未満である比較鋼No.1
0〜13はいずれも遅れ破壊強度が低いことが分かる。
尚、材料硬さが360Hv以下の鋼材ではいずれも高い
遅れ破壊強さを示した。
The steel No. of the present invention having a hardness increase of 10 Hv or more. Comparative steel Nos. 1 to 9 all show high delayed fracture strength, but the hardness increase is less than 10 Hv. 1
It can be seen that all the samples Nos. 0 to 13 have low delayed fracture strength.
In addition, all the steel materials with a material hardness of 360 Hv or less showed high delayed fracture strength.

【0035】[0035]

【発明の効果】本発明は以上の様に構成されているの
で、耐水素脆化特性の向上に有効な微細化合物を定量す
ることにより確実に優れた耐水素脆化特性を発揮する高
強度鋼が提供できることとなった。
Since the present invention is constituted as described above, a high-strength steel which reliably exhibits excellent hydrogen embrittlement resistance by quantifying fine compounds effective for improving hydrogen embrittlement resistance. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例における供試鋼aの焼戻し性能曲線を示
すグラフである。
FIG. 1 is a graph showing a tempering performance curve of test steel a in an example.

【図2】遅れ破壊強度測定に用いた試験片の寸法及び形
状を示す説明図である。
FIG. 2 is an explanatory diagram showing dimensions and shapes of test pieces used for delayed fracture strength measurement.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 析出硬化による硬さ上昇量が10Hv以
上であることを特徴とする耐水素脆化特性に優れた高強
度鋼。
1. A high-strength steel excellent in hydrogen embrittlement resistance, characterized in that an increase in hardness due to precipitation hardening is 10 Hv or more.
【請求項2】 Mo,Ti,Vよりなる群から選択され
る1種以上の元素を含む金属化合物若しくは複合化合物
が母相内に析出したものである請求項1に記載の高強度
鋼。
2. The high-strength steel according to claim 1, wherein a metal compound or a compound compound containing at least one element selected from the group consisting of Mo, Ti, and V is precipitated in a matrix.
【請求項3】 鋼が、 Mo:2.00%(質量%、以下同じ)以下(0%を含
まない) Ti:0.20%以下(0%を含まない) V :0.20%以下(0%を含まない) よりなる群から選択される1種以上を含有するものであ
る請求項1または2に記載の高強度鋼。
3. Steel: Mo: 2.00% (mass%, the same applies hereinafter) or less (excluding 0%) Ti: 0.20% or less (excluding 0%) V: 0.20% or less The high-strength steel according to claim 1, comprising one or more selected from the group consisting of (not including 0%).
【請求項4】 鋼が、更に他の成分として、 Cr:2.00%以下(0%を含まない) Al:0.05%以下(0%を含まない) Nb:0.20%以下(0%を含まない) W :0.20%以下(0%を含まない) B :0.003%以下(0%を含まない) よりなる群から選択される1種以上を含有するものであ
る請求項3に記載の高強度鋼。
4. The steel further contains Cr: 2.00% or less (not including 0%) Al: 0.05% or less (not including 0%) Nb: 0.20% or less (not including 0%) W: 0.20% or less (excluding 0%) B: 0.003% or less (excluding 0%) Contains one or more selected from the group consisting of: The high-strength steel according to claim 3.
【請求項5】 鋼が、更に他の成分として、 C :0.10〜0.60% N :0.001〜0.010% O :0.005%以下(0%を含まない) S :0.025%以下(0%を含まない) よりなる群から選択される1種以上を含有するものであ
る請求項3または4に記載の高強度鋼。
5. The steel further contains, as another component, C: 0.10 to 0.60% N: 0.001 to 0.010% O: 0.005% or less (excluding 0%) S: The high-strength steel according to claim 3 or 4, comprising at least one selected from the group consisting of 0.025% or less (excluding 0%).
【請求項6】 鋼が、更に他の成分として、 P :0.025%以下(0%を含まない)及び/又は Mn:0.70%以下(0%を含まない) を含有するものである請求項3〜5のいずれかに記載の
高強度鋼。
6. The steel according to claim 1, wherein the steel further contains P: 0.025% or less (excluding 0%) and / or Mn: 0.70% or less (excluding 0%). The high-strength steel according to any one of claims 3 to 5.
JP05228198A 1998-03-04 1998-03-04 Method for preventing delayed fracture of high strength steel Expired - Fee Related JP3999333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05228198A JP3999333B2 (en) 1998-03-04 1998-03-04 Method for preventing delayed fracture of high strength steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05228198A JP3999333B2 (en) 1998-03-04 1998-03-04 Method for preventing delayed fracture of high strength steel

Publications (2)

Publication Number Publication Date
JPH11246938A true JPH11246938A (en) 1999-09-14
JP3999333B2 JP3999333B2 (en) 2007-10-31

Family

ID=12910423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05228198A Expired - Fee Related JP3999333B2 (en) 1998-03-04 1998-03-04 Method for preventing delayed fracture of high strength steel

Country Status (1)

Country Link
JP (1) JP3999333B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022553264A (en) * 2019-11-11 2022-12-22 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング A slow transformation steel alloy, a method of producing a slow transformation steel alloy, and a hydrogen reservoir having components made of the slow transformation steel alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022553264A (en) * 2019-11-11 2022-12-22 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング A slow transformation steel alloy, a method of producing a slow transformation steel alloy, and a hydrogen reservoir having components made of the slow transformation steel alloy

Also Published As

Publication number Publication date
JP3999333B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
US20070125456A1 (en) High strength spring steel wire with excellent coiling properties and hydrogen embrittlement resistance
EP0639691A1 (en) Rotor for steam turbine and manufacturing method thereof
US20180066344A1 (en) Wire rod for use in bolts that has excellent acid pickling properties and resistance to delayed fracture after quenching and tempering, and bolt
KR20040083545A (en) Steel wire for hard-drawn spring excellent in fatique strength and sag resistance, and hard-drawn spring
JP2007031736A (en) Method for manufacturing high strength bolt excellent in delayed fracture resistance
JP2005029870A (en) High strength steel having excellent hydrogen embrittlement resistance, and its production method
EP3315626B1 (en) Bolt
JP2003113434A (en) Superalloy excellent in high-temperature sulfur corrosion resistance and manufacturing method therefor
JPH05320827A (en) Steel for spring excellent in fatigue property and steel wire for spring as well as spring
TWI535864B (en) High-strength bolt steel and bolts excellent in delayed fracture resistance and bolt formability
JP3485805B2 (en) Hot forged non-heat treated steel having high fatigue limit ratio and method for producing the same
CN109790602B (en) Steel
JP4031068B2 (en) High strength steel for bolts with excellent hydrogen embrittlement resistance
JPH09279315A (en) Austenitic stainless steel for metal gasket and its production
JP2002327246A (en) Hot work tool steel superior in erosion resistance and high temperature strength, and member made thereof for high temperature use
JP3251648B2 (en) Precipitation hardening type martensitic stainless steel and method for producing the same
JP7457234B2 (en) Bolts and bolt manufacturing methods
JP3999333B2 (en) Method for preventing delayed fracture of high strength steel
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP3510445B2 (en) Fe-Ni alloy thin plate for electronic parts with excellent softening and annealing properties
JPH09310145A (en) Spring steel excellent in fatigue characteristic
JP3999334B2 (en) Method for preventing delayed fracture of high strength steel
JP4332446B2 (en) High strength steel with excellent cold workability and delayed fracture resistance, and high strength steel parts with excellent delayed fracture resistance
JPWO2018221561A1 (en) Ni-based alloy, fuel injection component using the same, method of producing Ni-based alloy
JP3875605B2 (en) High strength steel with excellent cold workability and delayed fracture resistance

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060825

A131 Notification of reasons for refusal

Effective date: 20060926

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20061127

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20070807

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20070809

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees