JPH11245190A - Tactile sensor and palpation detecting system - Google Patents

Tactile sensor and palpation detecting system

Info

Publication number
JPH11245190A
JPH11245190A JP10051587A JP5158798A JPH11245190A JP H11245190 A JPH11245190 A JP H11245190A JP 10051587 A JP10051587 A JP 10051587A JP 5158798 A JP5158798 A JP 5158798A JP H11245190 A JPH11245190 A JP H11245190A
Authority
JP
Japan
Prior art keywords
sensor
artificial skin
frequency
skin member
tactile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10051587A
Other languages
Japanese (ja)
Other versions
JP3739927B2 (en
Inventor
Hiroyuki Shinoda
裕之 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP05158798A priority Critical patent/JP3739927B2/en
Publication of JPH11245190A publication Critical patent/JPH11245190A/en
Application granted granted Critical
Publication of JP3739927B2 publication Critical patent/JP3739927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable the mounting of sensor at a high density by embedding multiple sensor elements respectively having a means for electromagnetically supplying and receiving the power without a contact and a means for sensing deformation and temperature of a solid and for converting it to the electric signal so as to electromagnetically transmit it outside without a contact in an artificial skin member. SOLUTION: Multiple sensor elements 2 are embedded in the artificial skin member 1, and transmits the high frequency signal having a frequency to be changed in response to the degree of mechanical deformation and temperature change to be generated in the artificial skin member 1 when the other article contacts with a surface of the artificial skin member 1. A signal receiving coil 3 is provided like a loop antenna so as to surround the whole of a back surface of the artificial skin member 1, and receives the high frequency detecting signal transmitted from each sensor element 2. A power transmission coil 4 is provided like a loop antenna so as to surround the whole of the back surface of the artificial skin member 1, and generates the high frequency electromagnetic field as a power driving source to each sensor element 2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ロボットのハンド
などに装着できる柔かな人工皮膚のような触覚センサ
と、そのような触覚センサを用いた触感検知システムに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tactile sensor such as a soft artificial skin that can be attached to a robot hand, and a tactile detection system using such a tactile sensor.

【0002】人間生活により身近に入り込むロボットを
実現するために自由曲面を有するロボット表面全体を、
触覚を有する軟らかい人工皮膚で覆いたいという要求が
ある。本発明は、そのための有効な1手段を提供する。
[0002] In order to realize a robot that gets closer to human life, the entire robot surface having a free-form surface is
There is a need to cover with soft tactile artificial skin. The present invention provides an effective means for that.

【0003】[0003]

【従来の技術】従来のロボットにおける触覚機能は、個
別部品として作られた圧力センサを必要な部位に任意個
数取り付けることにより実現されており、触覚機能が分
布している人工皮膚のような概念のものはこれまでに存
在しなかった。
2. Description of the Related Art The tactile function of a conventional robot is realized by attaching an arbitrary number of pressure sensors made as individual parts to necessary parts, and has a concept like an artificial skin in which the tactile functions are distributed. Things did not exist before.

【0004】[0004]

【発明が解決しようとする課題】柔かな人工皮膚の表面
に触覚機能を高密度で分布させるには、個別のセンサを
皮膚表面に多数配置するとともに各センサに対する電源
配線及び信号配線の接続を行わなければならず、センサ
の高密度実装は困難であった。
In order to distribute the tactile function at a high density on the surface of the soft artificial skin, a large number of individual sensors are arranged on the skin surface, and the power supply wiring and the signal wiring are connected to each sensor. Therefore, high-density mounting of sensors has been difficult.

【0005】[0005]

【課題を解決するための手段】本発明の触覚センサは、
シリコンゴムのような弾力性のある人工皮膚部材中に、
非接触で電磁的に電力を受給する手段と、固体の変形や
温度を感知して電気信号に変換し、これを外部に非接触
に電磁的に伝達する手段とを有するセンサ素子を多数埋
設して、この人工皮膚部材に加わる機械的な変形や温度
を感知するようにしたものである。
The tactile sensor of the present invention comprises:
In elastic artificial skin members such as silicone rubber,
A large number of sensor elements having means for non-contact electromagnetically receiving power and means for sensing the deformation and temperature of a solid to convert it into an electric signal and transmitting it electromagnetically to the outside in a non-contact manner are embedded. Thus, the mechanical deformation and the temperature applied to the artificial skin member are sensed.

【0006】図1は、本発明の原理的構成を示したもの
である。図1の(a)は本発明による触覚分布人工皮膚
の全体図、図1の(b)はセンサ素子の概要図である。
図1(a)において、1は人工皮膚部材であり、たとえ
ばシリコンゴムのような弾性材料をシート状に成型した
ものである。
FIG. 1 shows the principle configuration of the present invention. FIG. 1A is an overall view of a tactile distribution artificial skin according to the present invention, and FIG. 1B is a schematic view of a sensor element.
In FIG. 1A, reference numeral 1 denotes an artificial skin member, which is formed by molding an elastic material such as silicone rubber into a sheet.

【0007】2はセンサ素子であり、人工皮膚部材1中
に多数埋設されて、人工皮膚部材1の表面に他の物体が
接触したときに人工皮膚部材中に生じる機械的変形や温
度変化の程度に応じて周波数が変化する高周波信号を送
信する。各センサ素子が送信する高周波信号の周波数変
化範囲は、互いに重ならないようにずらされる。
Reference numeral 2 denotes a sensor element, which is buried in the artificial skin member 1 and has a degree of mechanical deformation or temperature change occurring in the artificial skin member when another object comes into contact with the surface of the artificial skin member 1. A high-frequency signal whose frequency changes according to is transmitted. The frequency change ranges of the high-frequency signals transmitted by the sensor elements are shifted so as not to overlap with each other.

【0008】3は信号受信コイルであり、人工皮膚部材
1の裏面全体を囲むようにループアンテナ状に設けら
れ、各センサ素子2が送信した高周波の検出信号を受信
する。4は電力送信コイルであり、信号受信コイル3と
同様に、人工皮膚部材1の裏面全体を囲むようにループ
アンテナ状に設けられ、各センサ素子2に対する電力駆
動源となる高周波電磁界を発生する。
Reference numeral 3 denotes a signal receiving coil, which is provided in the form of a loop antenna so as to surround the entire back surface of the artificial skin member 1, and receives a high-frequency detection signal transmitted by each sensor element 2. Reference numeral 4 denotes a power transmission coil, like the signal reception coil 3, provided in a loop antenna shape so as to surround the entire back surface of the artificial skin member 1, and generates a high-frequency electromagnetic field serving as a power drive source for each sensor element 2. .

【0009】図1(b)において、5はセンサ回路チッ
プであり、トランジスタ、ダイオード、抵抗、コンデン
サなどの要素からなるLC発振回路が組み込まれてい
る。LC発振回路の発振周波数は、センサ素子ごとに固
有の変化範囲をもつ。
In FIG. 1B, reference numeral 5 denotes a sensor circuit chip in which an LC oscillation circuit including elements such as a transistor, a diode, a resistor, and a capacitor is incorporated. The oscillation frequency of the LC oscillation circuit has a unique change range for each sensor element.

【0010】6は信号送信コイルであり、センサ回路チ
ップ5のLC発振回路を構成する発振コイルとしての機
能と、発振した信号を送信するループアンテナとしての
機能とを持つ。
Reference numeral 6 denotes a signal transmission coil, which has a function as an oscillation coil constituting an LC oscillation circuit of the sensor circuit chip 5 and a function as a loop antenna for transmitting an oscillated signal.

【0011】7は電力受給コイルであり、電力送信コイ
ル4により発生される高周波電磁界により高周波電圧が
誘起されて、センサ回路チップ5の電力供給源となる。
図1(b)に示されるセンサ素子2は、IC技術を用い
て微小なサイズに作ることができかつ外部の電源配線や
信号配線は不要なので、図1(a)に示される人工皮膚
部材1の厚さを薄くしても、多数の微小なセンサ素子2
を高密度に埋設することができ、精細な触覚分布をもつ
人工皮膚を実現することが可能となる。
Reference numeral 7 denotes a power receiving coil, and a high-frequency voltage is induced by a high-frequency electromagnetic field generated by the power transmitting coil 4 and serves as a power supply source for the sensor circuit chip 5.
The sensor element 2 shown in FIG. 1 (b) can be made to a very small size using IC technology and does not require external power supply wiring or signal wiring. Therefore, the artificial skin member 1 shown in FIG. Even if the thickness of the sensor element is reduced, a large number of minute sensor elements 2
Can be embedded at a high density, and an artificial skin having a fine tactile distribution can be realized.

【0012】センサ素子2にLC発振回路を用いる場合
の利点は、LC発振回路自体が人工皮膚部材1の機械的
変形や温度変化によるコイルの変形と誘電率の変化など
の影響を受けて発振周波数を変化させるため、専用の歪
みセンサや温度センサを別個に設ける必要がないことで
ある。
The advantage of using an LC oscillation circuit for the sensor element 2 is that the LC oscillation circuit itself is affected by mechanical deformation of the artificial skin member 1 and deformation of the coil due to temperature change and change in the dielectric constant. Therefore, it is not necessary to separately provide a dedicated strain sensor or temperature sensor.

【0013】[0013]

【発明の実施の形態】図2(a)は、センサ素子にコル
ピッツ型のLC発振回路を用いた場合の実施例を示す。
LC発振回路には他にハートレー型、トランス結合型な
どがあるが、コイルの構造はコルピッツ型がもっとも単
純であり、小型化には都合がよい。
FIG. 2A shows an embodiment in which a Colpitts type LC oscillation circuit is used as a sensor element.
There are other types of LC oscillation circuits, such as a Hartley type and a transformer coupling type. The Colpitts type is the simplest coil structure, which is convenient for miniaturization.

【0014】図2(a)において、6は発振用コイルを
兼用する信号送信コイルL1 、7は電力受給コイル
2 、8はトランジスタTr 、9は発振用コンデンサC
1 、10は発振用コンデンサC2 、11はソース抵抗R
s 、12は整流用ダイオードD、13は平滑用コンデン
サC3 である。
In FIG. 2A, reference numeral 6 denotes a signal transmitting coil L 1 , which also serves as an oscillation coil, 7 denotes a power receiving coil L 2 , 8 denotes a transistor Tr , and 9 denotes an oscillation capacitor C.
1 and 10 are oscillation capacitors C 2 and 11 are source resistors R
s, 12 is a rectifying diode D, 13 is a smoothing capacitor C 3.

【0015】コイルL2 には、図1(b)の電力送信コ
イル4から誘導される高周波電圧が発生する。この高周
波電圧は、ダイオードDにより整流され、コンデンサC
3 で平滑されて、発振回路に電源として供給される。
[0015] coil L 2 has a high frequency voltage is generated which is derived from the power transmission coil 4 in FIG. 1 (b). This high-frequency voltage is rectified by a diode D and a capacitor C
It is smoothed by 3 and supplied as power to the oscillation circuit.

【0016】図2(b)は、図2(a)における発振回
路部分の等価回路を示す。よく知られているように、こ
の回路のループ利得AHは次式で与えられる。
FIG. 2B shows an equivalent circuit of the oscillation circuit portion in FIG. 2A. As is well known, the loop gain AH of this circuit is given by:

【0017】[0017]

【数1】 (Equation 1)

【0018】なお、gm は相互コンダクタンス、rdは
ドレイン抵抗である。ここで、gmが10[mS]、L
1 が10-5[H]、C1 ,C2 が10-9[F]、Rs
10 2 [Ω]程度の大きさのとき、rdが104 [Ω]
以上あれば、発振条件は次のように近似することができ
る。○周波数条件
Note that gmIs the transconductance and rd is
This is the drain resistance. Where gmIs 10 [ms], L
1Is 10-Five[H], C1, CTwoIs 10-9[F], RsBut
10 TwoWhen the magnitude is about [Ω], rd is 10Four[Ω]
Given the above, the oscillation conditions can be approximated as follows:
You. ○ Frequency conditions

【0019】[0019]

【数2】 (Equation 2)

【0020】○電力条件○ Power conditions

【0021】[0021]

【数3】 (Equation 3)

【0022】電力条件により、gm は大きいほど発振し
やすくなる。センサ素子の大きさは1立方センチメート
ルよりも小さいことが望ましく、たとえば微小サイズの
1 として、実際に直径1mm、10巻のコイルを作成
したところ、7.2MHzで発振させることができた。こ
れにより、コイルを含むセンサ素子全体の大きさを1m
m程度のサイズのチップに微小化することが可能であ
り、このような微小なチップを多数シリコンゴムに混入
して任意の形状に成型することができる。図3は、その
製作過程を示したものである。
[0022] by the power conditions, g m is likely to oscillation larger. It is desirable magnitude of the sensor element is smaller than 1 cubic centimeter for example as L 1 of the small size, when I burn the coil diameter 1 mm, 10 vol, it could be oscillated at 7.2 MHz. Thereby, the size of the entire sensor element including the coil is reduced to 1 m.
The chip can be miniaturized into a chip having a size of about m, and a large number of such minute chips can be mixed into silicon rubber and formed into an arbitrary shape. FIG. 3 shows the manufacturing process.

【0023】図3において、(a)は発振周波数の異な
る多数のセンサ素子チップを液状のシリコンゴムに混入
する段階、(b)はセンサ素子チップが均一に分散する
よう攪拌する段階、(c)はシリコンゴムを型に注入し
て成型する段階であり、表面を触覚分布人工皮膚で覆っ
た任意の形状のプローブを得ることができる。(d)は
プローブの人工皮膚に分散配置されている個々のセンサ
素子を認識するための学習段階であり、プローブ表面の
各位置に順次接触するとともに接触圧の大きさを変化さ
せ、そのとき検出される発振周波数の変化を対応づけて
学習する。
In FIG. 3, (a) is a step of mixing a large number of sensor element chips having different oscillation frequencies into liquid silicone rubber, (b) is a step of stirring the sensor element chips so as to be uniformly dispersed, and (c). Is a step of injecting silicone rubber into a mold and molding, and it is possible to obtain a probe of an arbitrary shape whose surface is covered with tactile distribution artificial skin. (D) is a learning step for recognizing individual sensor elements dispersedly arranged on the artificial skin of the probe, which sequentially contacts each position on the probe surface and changes the magnitude of the contact pressure. The change of the oscillation frequency to be performed is associated with and learned.

【0024】図4は、本発明による触覚分布人工皮膚を
用いた触感検知システムの1実施例を示したものであ
る。図4において、1は人工皮膚部材、2−1〜2−n
はセンサ素子、3は信号受信コイル、4は電力送信コイ
ル、14は高周波信号源、15は周波数アナライザ、1
6は処理装置、17はニューロネットワーク、18は学
習処理部である。
FIG. 4 shows an embodiment of a tactile sense detection system using a tactile distribution artificial skin according to the present invention. In FIG. 4, 1 is an artificial skin member, 2-1 to 2-n
Is a sensor element, 3 is a signal receiving coil, 4 is a power transmitting coil, 14 is a high-frequency signal source, 15 is a frequency analyzer,
6 is a processing device, 17 is a neuro network, and 18 is a learning processing unit.

【0025】高周波信号源14は電力送信コイル4を駆
動し、人工皮膚部材1中に埋設されている全てのセンサ
素子2−1〜2−nに対して動作に必要な電力を供給す
る。動作状態にある各センサ素子2−1〜2−nは、そ
れぞれ異なる固有の周波数f 1 ,f2 ,・・・,fn
発振する。各センサ素子2−1〜2−nがそれぞれ周波
数f1 ,f2 ,・・・,fn で発振した信号s1
2 ,・・・,sn は、信号受信コイル3に受信され、
周波数アナライザ15に入力される。
The high-frequency signal source 14 drives the power transmission coil 4.
All sensors embedded in the artificial skin member 1
Supply power required for operation to elements 2-1 to 2-n
You. Each of the sensor elements 2-1 to 2-n in the operating state is
Different unique frequencies f 1, FTwo, ..., fnso
Oscillate. Each of the sensor elements 2-1 to 2-n has a frequency
Number f1, FTwo, ..., fnSignal s oscillated by1,
sTwo, ..., snIs received by the signal receiving coil 3,
It is input to the frequency analyzer 15.

【0026】周波数アナライザ15は、一定の周波数帯
域を繰り返し走査して、入力信号の周波数値と振幅値を
検出する。人工皮膚部材1に接触している物体が何もな
い基準状態では、周波数f1 ,f2 ,・・・,fn のn
個の信号s1 ,s2 ,・・・,sn が検出される。
The frequency analyzer 15 repeatedly scans a predetermined frequency band to detect a frequency value and an amplitude value of an input signal. The reference state is no object in contact with the artificial skin member 1, the frequency f 1, f 2, · · ·, the f n n
Number of signals s 1, s 2, ···, s n is detected.

【0027】処理装置16は、周波数アナライザ15が
検出した各信号s1 ,s2 ,・・・,sn の値を取り込
み、学習処理あるいは触感検知処理を行う。図示の例で
はニューロネットワークを用いて触感検知処理を行って
いるが、テーブルを用いる一般の処理方法を採用しても
よい。
The processor 16, the signal s 1 to the frequency analyzer 15 detects, s 2, · · ·, captures the value of s n, performs a learning process or tactile detection process. In the illustrated example, the tactile sensation detection processing is performed using a neuro network, but a general processing method using a table may be employed.

【0028】学習処理を行う場合は、学習処理部18が
起動される。次に適当な物体を人工皮膚部材1の表面に
接触させ、そのときの接触位置および接触圧と周波数ア
ナライザ15から出力される信号s1 ,s2 ,・・・,
n とを用いて、ニューロネットワーク17を条件づけ
る。
When performing the learning process, the learning processing unit 18 is started. Next, an appropriate object is brought into contact with the surface of the artificial skin member 1, and the contact position and contact pressure at that time and the signals s 1 , s 2 ,.
Using s n , condition the neural network 17.

【0029】人工皮膚部材1の表面に物体が接触してい
る状態では、信号s1 ,s2 ,・・・,sn の周波数は
1 ±Δf1 ,f2 ±Δf2 ,・・・,fn ±Δfn
ように変化しており、その変化量は、接触位置と接触圧
に依存している。種々の接触位置、接触圧についてニュ
ーロネットワーク17を学習させた後でニューロネット
ワーク17による認識処理を行うことにより、接触物体
についての任意の接触位置と接触圧を検知することがで
きる。なお接触圧を変化させる代わりに物体の温度を変
化させて学習すれば、温度の検知を行うことが可能とな
る。
[0029] In a state where the object to the surface of the artificial skin member 1 is in contact, the signal s 1, s 2, · · ·, the frequency of s n is f 1 ± Δf 1, f 2 ± Δf 2, ··· , F n ± Δf n , and the amount of the change depends on the contact position and the contact pressure. After the neural network 17 learns various contact positions and contact pressures, the neural network 17 performs a recognition process, whereby an arbitrary contact position and contact pressure of the contact object can be detected. If the learning is performed by changing the temperature of the object instead of changing the contact pressure, the temperature can be detected.

【0030】[0030]

【発明の効果】本発明により、多数のセンサ素子チップ
を分散埋設した人工皮膚を、個々のセンサ素子チップに
対する配線を行う必要なしに簡単に実現することがで
き、より自然な形の触感を得ることができる。
According to the present invention, an artificial skin in which a large number of sensor element chips are dispersed and embedded can be easily realized without having to perform wiring for each sensor element chip, and a more natural tactile sensation is obtained. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理的構成の説明図である。FIG. 1 is an explanatory diagram of a basic configuration of the present invention.

【図2】コルピッツ型LC発振回路を用いたセンサ素子
の1実施例の説明図である。
FIG. 2 is an explanatory diagram of one embodiment of a sensor element using a Colpitts type LC oscillation circuit.

【図3】触覚分布人工皮膚の製作過程の説明図である。FIG. 3 is an explanatory diagram of a manufacturing process of a tactile distribution artificial skin.

【図4】触感検知システムの1実施例の説明図である。FIG. 4 is an explanatory diagram of one embodiment of a tactile sense detection system.

【符号の説明】[Explanation of symbols]

1:人工皮膚部材 2:センサ素子 3:信号受信コイル 4:電力送信コイル 14:高周波信号源 15:周波数アナライザ 16:処理装置 1: artificial skin member 2: sensor element 3: signal receiving coil 4: power transmitting coil 14: high-frequency signal source 15: frequency analyzer 16: processing device

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 団体状部材中に埋設されたセンサ素子か
らなり、 上記センサ素子は、外部から非接触で電磁的に電力を受
給する手段と、 外部へ非接触で電磁的に信号を伝達する手段とを備えて
いることを特徴とする触覚センサ。
1. A sensor element buried in a group member, said sensor element electromagnetically receiving electric power from the outside in a non-contact manner, and transmitting a signal to the outside electromagnetically in a non-contact manner. And a tactile sensor.
【請求項2】 ゴム状弾性材料で任意の形状に成型され
ている人工皮膚部材と、該人工皮膚部材中に埋設されて
いる複数個のセンサ素子とからなり、 上記センサ素子は、外部より電気的に非接触で電力を受
給する電源手段と、外部へ電気的に非接触でセンサ信号
を伝達する信号伝達手段とを備えていることを特徴とす
る触覚センサ。
2. An artificial skin member formed of a rubber-like elastic material into an arbitrary shape, and a plurality of sensor elements embedded in the artificial skin member. A tactile sensor comprising: a power supply unit for receiving electric power in a non-contact manner; and a signal transmission unit for transmitting a sensor signal to the outside electrically in a non-contact manner.
【請求項3】 請求項2において、センサ素子は、人工
皮膚部材に加えられる変形や温度変化に応じて発振周波
数を変化させるように構成されたLC発振器であること
を特徴とする触覚センサ。
3. The tactile sensor according to claim 2, wherein the sensor element is an LC oscillator configured to change an oscillation frequency in accordance with a deformation or a temperature change applied to the artificial skin member.
【請求項4】 請求項2において、センサ素子に備えら
れている電源手段は、高周波電力を受信するコイルと、
該コイルに接続された整流回路とで構成されていること
を特徴とする触覚センサ。
4. A power supply means provided in the sensor element according to claim 2, wherein the power supply means includes a coil for receiving high-frequency power,
A tactile sensor comprising a rectifier circuit connected to the coil.
【請求項5】 請求項2において、センサ素子に備えら
れている信号伝達手段は、外部のコイルと結合可能に構
成された高周波コイルであることを特徴とする触覚セン
サ。
5. The tactile sensor according to claim 2, wherein the signal transmission means provided in the sensor element is a high-frequency coil configured to be connectable to an external coil.
【請求項6】 それぞれが外部より高周波電力を受給す
るためのループアンテナとそれぞれが異なる周波数で外
部へセンサ信号を伝達するための高周波コイルとを備え
た複数個のセンサ素子を人工皮膚部材中に埋設して構成
された触覚センサと、 上記触覚センサに近接して設けられた高周波電力供給用
ループアンテナと、 上記高周波電力供給用ループアンテナに接続された高周
波信号発生器と、 上記触覚センサに近接して設けられたセンサ信号受信用
ループアンテナと、 上記センサ信号受信用ループアンテナに接続されて触覚
センサの複数個のセンサ素子からそれぞれ出力される異
なる周波数のセンサ信号を検出する周波数アナライザ
と、を有することを特徴とする触感検知システム。
6. A plurality of sensor elements each having a loop antenna for receiving high-frequency power from the outside and a high-frequency coil for transmitting a sensor signal to the outside at a different frequency are provided in the artificial skin member. A tactile sensor configured to be embedded, a high-frequency power supply loop antenna provided in proximity to the tactile sensor, a high-frequency signal generator connected to the high-frequency power supply loop antenna, and a proximity to the tactile sensor And a frequency analyzer connected to the sensor signal receiving loop antenna and detecting sensor signals of different frequencies respectively output from the plurality of sensor elements of the tactile sensor. A tactile sense detection system characterized by having.
JP05158798A 1998-03-04 1998-03-04 Tactile sensor and tactile detection system Expired - Fee Related JP3739927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05158798A JP3739927B2 (en) 1998-03-04 1998-03-04 Tactile sensor and tactile detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05158798A JP3739927B2 (en) 1998-03-04 1998-03-04 Tactile sensor and tactile detection system

Publications (2)

Publication Number Publication Date
JPH11245190A true JPH11245190A (en) 1999-09-14
JP3739927B2 JP3739927B2 (en) 2006-01-25

Family

ID=12891069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05158798A Expired - Fee Related JP3739927B2 (en) 1998-03-04 1998-03-04 Tactile sensor and tactile detection system

Country Status (1)

Country Link
JP (1) JP3739927B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048607A (en) * 2000-08-02 2002-02-15 Res Inst Electric Magnetic Alloys Thin-film tactile sensor
JP2002139302A (en) * 2000-11-01 2002-05-17 Mitsubishi Materials Corp Contact sensor and contact detecting device, and robot attached with contact detecting device
WO2006051515A1 (en) * 2004-11-15 2006-05-18 L'oreal A device comprising a sample of reconstructed tissue and a detection system
JP2007171047A (en) * 2005-12-22 2007-07-05 Tokyo Electron Ltd Wafer-type temperature sensor, temperature-measuring apparatus using the same, heat treatment apparatus having temperature-measuring function, and temperature-measuring method
CN100348387C (en) * 2005-09-02 2007-11-14 杭州电子科技大学 Robot touch sensor
JP2010135419A (en) * 2008-12-02 2010-06-17 Philtech Inc Substrate, substrate holding apparatus, analysis apparatus, program, detection system, semiconductor device, display apparatus, and semiconductor manufacturing apparatus
JP2010528267A (en) * 2007-05-18 2010-08-19 ユニバーシティ オブ サザン カリフォルニア Biomimetic tactile sensor for grip control
WO2011145464A1 (en) * 2010-05-20 2011-11-24 株式会社根本杏林堂 Injection head and drug solution injection system
JPWO2011135886A1 (en) * 2010-04-27 2013-07-18 日本電気株式会社 Wireless tag sensor system and calibration method thereof
CN103624803A (en) * 2012-08-23 2014-03-12 上海未来伙伴机器人有限公司 Artificial skin of robot
CN103961073A (en) * 2013-01-29 2014-08-06 中国科学院苏州纳米技术与纳米仿生研究所 Piezoresistive electronic skin and preparation method thereof
JP2014182517A (en) * 2013-03-18 2014-09-29 Fujitsu Ltd Contact sensor device and method of detecting contact information
CN104827491A (en) * 2015-04-30 2015-08-12 广东双虹新材料科技有限公司 High-sensitivity intelligent robot skin
CN107053254A (en) * 2017-01-24 2017-08-18 重庆大学 Wearable robot skin based on multi-layer airbag
CN107595433A (en) * 2017-08-29 2018-01-19 北京中硕众联智能电子科技有限公司 A kind of artificial intelligence skin and its method for detection humidity and temperature
CN110712224A (en) * 2019-10-17 2020-01-21 中国科学院长春光学精密机械与物理研究所 Intelligent skin with temperature sensation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8686951B2 (en) 2009-03-18 2014-04-01 HJ Laboratories, LLC Providing an elevated and texturized display in an electronic device
US20110199342A1 (en) 2010-02-16 2011-08-18 Harry Vartanian Apparatus and method for providing elevated, indented or texturized sensations to an object near a display device or input detection using ultrasound

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048607A (en) * 2000-08-02 2002-02-15 Res Inst Electric Magnetic Alloys Thin-film tactile sensor
JP2002139302A (en) * 2000-11-01 2002-05-17 Mitsubishi Materials Corp Contact sensor and contact detecting device, and robot attached with contact detecting device
JP4570760B2 (en) * 2000-11-01 2010-10-27 三菱マテリアル株式会社 Contact sensor, contact detection device, and robot equipped with the contact detection device
WO2006051515A1 (en) * 2004-11-15 2006-05-18 L'oreal A device comprising a sample of reconstructed tissue and a detection system
FR2878035A1 (en) * 2004-11-15 2006-05-19 Oreal Device to measure influence of physical, biological, and/or chemical stress on sample, or vice-versa comprises sample of reconstructed skin; and detection system that is at least partially in contact with sample and/or with culture device
CN100348387C (en) * 2005-09-02 2007-11-14 杭州电子科技大学 Robot touch sensor
JP2007171047A (en) * 2005-12-22 2007-07-05 Tokyo Electron Ltd Wafer-type temperature sensor, temperature-measuring apparatus using the same, heat treatment apparatus having temperature-measuring function, and temperature-measuring method
JP2010528267A (en) * 2007-05-18 2010-08-19 ユニバーシティ オブ サザン カリフォルニア Biomimetic tactile sensor for grip control
JP2010135419A (en) * 2008-12-02 2010-06-17 Philtech Inc Substrate, substrate holding apparatus, analysis apparatus, program, detection system, semiconductor device, display apparatus, and semiconductor manufacturing apparatus
JPWO2011135886A1 (en) * 2010-04-27 2013-07-18 日本電気株式会社 Wireless tag sensor system and calibration method thereof
US9071889B2 (en) 2010-04-27 2015-06-30 Nec Corporation Systems and methods for sensor spatial distribution mapping using assigned sensor regions
WO2011145464A1 (en) * 2010-05-20 2011-11-24 株式会社根本杏林堂 Injection head and drug solution injection system
JPWO2011145464A1 (en) * 2010-05-20 2013-07-22 株式会社根本杏林堂 Injection head and chemical injection system
CN103624803A (en) * 2012-08-23 2014-03-12 上海未来伙伴机器人有限公司 Artificial skin of robot
CN103961073A (en) * 2013-01-29 2014-08-06 中国科学院苏州纳米技术与纳米仿生研究所 Piezoresistive electronic skin and preparation method thereof
JP2014182517A (en) * 2013-03-18 2014-09-29 Fujitsu Ltd Contact sensor device and method of detecting contact information
CN104827491A (en) * 2015-04-30 2015-08-12 广东双虹新材料科技有限公司 High-sensitivity intelligent robot skin
CN107053254A (en) * 2017-01-24 2017-08-18 重庆大学 Wearable robot skin based on multi-layer airbag
CN107053254B (en) * 2017-01-24 2019-07-12 重庆大学 Wearable robot skin based on multi-layer airbag
CN107595433A (en) * 2017-08-29 2018-01-19 北京中硕众联智能电子科技有限公司 A kind of artificial intelligence skin and its method for detection humidity and temperature
CN110712224A (en) * 2019-10-17 2020-01-21 中国科学院长春光学精密机械与物理研究所 Intelligent skin with temperature sensation

Also Published As

Publication number Publication date
JP3739927B2 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
JP3739927B2 (en) Tactile sensor and tactile detection system
US7191013B1 (en) Hand held device for wireless powering and interrogation of biomems sensors and actuators
JP4837270B2 (en) RFID sensor system and RFID detection method
US7667547B2 (en) Loosely-coupled oscillator
US7113175B2 (en) Methods and apparatus for supplying power to touch input devices in a touch sensing system
Shi et al. A 0.065-mm 3 monolithically-integrated ultrasonic wireless sensing mote for real-time physiological temperature monitoring
JPH05344955A (en) Method and apparatus for detecting state of terminal processing of cable
CN106031049A (en) Passive wireless sensor
EA003848B1 (en) Verification techniques for biometric identification systems
JP2007024892A (en) Wireless position transducer using digital signal system
US20090141592A1 (en) Telemetric Sensing Using Micromachined Ultrasonic Transducer
CN112996432B (en) Patch type thermometer and system thereof
Quadir et al. Low-power implanted sensor for orthodontic bond failure diagnosis and detection
Hakozaki et al. Telemetric robot skin
JP3913496B2 (en) Tactile detection system
WO1988008184A1 (en) Measuring instrument with transmitter
JP6801370B2 (en) Sensor device
Schormans et al. A low-power, wireless, capacitive sensing frontend based on a self-oscillating inductive link
Hakozaki et al. Telemetric artificial skin for soft robot
Hausleitner et al. Cordless batteryless wheel mouse application utilizing radio requestable SAW devices in combination with the giant magneto-impedance effect
JPS636464A (en) Wireless probe
Qian et al. Long-Range Detection of a Wirelessly Powered Resistive Transducer
JPH08286825A (en) Data input device
JPS54127182A (en) Electronic medical appliances
Yamada et al. In vivo batteryless wireless communication system for bio-MEMS sensors

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees