JPH11244863A - Electric production of deionized water and device - Google Patents
Electric production of deionized water and deviceInfo
- Publication number
- JPH11244863A JPH11244863A JP6212598A JP6212598A JPH11244863A JP H11244863 A JPH11244863 A JP H11244863A JP 6212598 A JP6212598 A JP 6212598A JP 6212598 A JP6212598 A JP 6212598A JP H11244863 A JPH11244863 A JP H11244863A
- Authority
- JP
- Japan
- Prior art keywords
- water
- concentrated
- concentrated water
- room
- concentrating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、濃縮室内でのシリ
カ成分の析出を抑制して、脱イオン性能を維持し、省エ
ネルギー化及び省スペース化が図れる電気式脱イオン水
製造方法及び装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric deionized water producing method and apparatus capable of suppressing deposition of a silica component in a concentration chamber, maintaining deionization performance, and saving energy and space. It is.
【0002】[0002]
【従来の技術】従来、脱イオン水を製造するには、イオ
ン交換樹脂が利用されている。このイオン交換樹脂は、
通常薬剤による再生を必要とする。このため、該イオン
交換樹脂を利用した脱イオンと電気透析作用を組合せ、
薬剤による再生が不要で、高度な脱イオン水を得る電気
式脱イオン水製造装置の利用が進んでいる。2. Description of the Related Art Conventionally, an ion exchange resin has been used for producing deionized water. This ion exchange resin
Usually requires regeneration with drugs. Therefore, the combination of deionization using the ion exchange resin and electrodialysis,
The use of an electric deionized water producing apparatus for obtaining advanced deionized water which does not require regeneration with a chemical is increasing.
【0003】該電気式脱イオン水製造装置は、例えば、
基本的にはカチオン交換膜とアニオン交換膜で形成され
る隙間に、イオン交換体を充填して脱塩室とし、当該イ
オン交換体に被処理水を通過させると共に、前記両イオ
ン交換膜を介して直流電流を作用させて、両イオン交換
膜の外側に流れている濃縮水中に被処理水中のイオンを
電気的に排除しながら脱イオン水を製造するものであ
る。このため、濃縮水中にはイオンが濃縮されることと
なる。そして、この濃縮水は装置外へ排出(ブロー)さ
れる。The electric deionized water producing apparatus is, for example,
Basically, a gap formed by the cation exchange membrane and the anion exchange membrane is filled with an ion exchanger to form a desalination chamber, and water to be treated is passed through the ion exchanger, and the water is passed through both ion exchange membranes. A DC current is applied to produce deionized water while electrically removing ions in the water to be treated from the concentrated water flowing outside the ion exchange membranes. Therefore, ions are concentrated in the concentrated water. Then, the concentrated water is discharged (blown) outside the apparatus.
【0004】また、電気式脱イオン水製造装置の水利用
率(回収率)を向上させるため、この濃縮水を捨てずに
再利用する方法もある。すなわち、被処理水の一部を濃
縮水とし、該濃縮水を循環使用し、その一部を装置外へ
排出することにより水利用率の向上と適度な濃縮水のイ
オン濃度の維持を図るものである。このように、濃縮水
は濃縮水中のイオン濃度が上昇するため電気伝導率が上
昇する。このため、電気が流れ易く、当該装置に流れる
電流量が多くなる。従って、イオン除去率も向上する。
また、該装置に印加する電圧を低くできるため消費電力
が少なくなるなどの効果がある。In order to improve the water utilization rate (recovery rate) of the electric deionized water producing apparatus, there is a method of reusing the concentrated water without discarding it. That is, a part of the water to be treated is used as concentrated water, the concentrated water is circulated and used, and a part of the water is discharged to the outside of the apparatus to improve the water utilization rate and maintain an appropriate ion concentration of the concentrated water. It is. Thus, the electrical conductivity of the concentrated water increases because the ion concentration in the concentrated water increases. Therefore, electricity easily flows, and the amount of current flowing through the device increases. Therefore, the ion removal rate also improves.
Further, since the voltage applied to the device can be reduced, there is an effect that power consumption is reduced.
【0005】一方、電気式脱イオン水製造装置の性能
は、該装置に供給される被処理水及び濃縮水などの水温
とも関係する。すなわち、これら供給水の水温が低い
と、装置内の電気抵抗が上昇し、電流が流れにくくな
る。この場合、電源を低電流制御で運転していると電圧
が上昇し、これにより消費電力が上昇する。また、電圧
の上昇により運転電圧が電源の最高値電圧を越えると、
電源が電気脱塩処理に必要な電流を供給できなくなり、
水質の低下を招くこととなる。[0005] On the other hand, the performance of the electric deionized water producing apparatus is related to the temperature of the water to be treated and the concentrated water supplied to the apparatus. That is, when the temperature of the supply water is low, the electric resistance in the device increases, and the current hardly flows. In this case, when the power supply is operated with the low current control, the voltage increases, thereby increasing power consumption. Also, if the operating voltage exceeds the maximum voltage of the power supply due to the voltage rise,
The power supply cannot supply the current required for the electrodesalination process,
Water quality will be reduced.
【0006】また、濃縮水中に存在するシリカ成分は、
供給水の水温が低いと、シリカ成分の析出が生じる。特
に、濃縮水を循環する方法では長時間の循環使用により
当初は微量に存在するシリカ成分も濃縮されその析出が
助長される。このため、ブロー量を多くする必要がある
が、これでは濃縮倍率が小さくなり濃縮水の電気伝導率
が低下し、電流が流れにくくなる。したがって、前記と
同様の問題を生じる。このような問題を解決するものと
して、被処理水及び濃縮水などの供給水全体を加温した
後、電気式脱イオン水製造装置に供給する方法がある。[0006] The silica component present in the concentrated water is
If the temperature of the feed water is low, precipitation of the silica component occurs. Particularly, in the method of circulating the concentrated water, the silica component which is present in a trace amount at first is concentrated by long-time circulation use, and the precipitation thereof is promoted. For this reason, it is necessary to increase the blow amount. However, in this case, the concentration ratio becomes small, the electric conductivity of the concentrated water decreases, and the current does not easily flow. Therefore, the same problem as described above occurs. As a method for solving such a problem, there is a method of heating the entire supply water such as the water to be treated and the concentrated water, and then supplying the heated water to the electric deionized water producing apparatus.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、供給水
全体を加温する方法は、大きな熱源が必要となるため、
運転コストを引き上げると共に、それ相応の設置場所が
必要となり実用的ではないという問題がある。However, the method of heating the entire supply water requires a large heat source,
In addition to raising operating costs, there is a problem that a corresponding installation place is required and it is not practical.
【0008】したがって、本発明の目的は、濃縮室内で
のシリカ成分の析出を抑制して、脱イオン性能を維持す
ると共に、省エネルギー化及び省スペース化が図れる電
気式脱イオン水製造方法及び装置を提供することにあ
る。Accordingly, an object of the present invention is to provide an electric deionized water production method and apparatus which can suppress the precipitation of silica components in a concentration chamber, maintain deionization performance, and save energy and space. To provide.
【0009】[0009]
【課題を解決するための手段】かかる実情において、本
発明者は鋭意検討を行った結果、シリカ成分が析出する
か否かは、主に濃縮室内のシリカ濃度と水温に依存する
こと、電気抵抗については、脱塩室は通常イオン交換体
が充填されているのに対して、濃縮室はプラスチック製
のスペーサーが充填されている場合が多く、濃縮室では
水温低下に伴い電気抵抗が上昇し易いこと、したがっ
て、供給水の中、濃縮水のみを加温してやれば前記問題
点を一挙に解決できることを見出し、本発明を完成する
に至った。Under such circumstances, the present inventors have conducted intensive studies and as a result, it has been found that whether or not the silica component is deposited mainly depends on the silica concentration and the water temperature in the concentration chamber, and the electric resistance is high. Regarding the above, the desalting chamber is usually filled with an ion exchanger, whereas the enrichment chamber is often filled with a plastic spacer, and the electrical resistance tends to increase in the enrichment chamber as the water temperature decreases. That is, the inventors have found that the above problems can be solved at once by heating only the concentrated water in the supply water, and have completed the present invention.
【0010】すなわち、本発明は、脱塩室及び濃縮室を
設けてなる電気式脱イオン水製造装置において、前記濃
縮室に濃縮水を加温して供給する電気式脱イオン水製造
方法を提供するものである。また、本発明は、脱塩室及
び濃縮室を設けてなる電気式脱イオン水製造装置におい
て、前記濃縮室に循環される濃縮水循環ラインに加温装
置を設置した電気式脱イオン水製造装置を提供するもの
である。That is, the present invention provides an electric deionized water producing method in which a concentrated water is heated and supplied to the concentrating chamber in an electric deionized water producing apparatus provided with a desalting chamber and a concentrating chamber. Is what you do. Further, the present invention provides an electric deionized water producing apparatus comprising a desalting chamber and a concentrating chamber, wherein the heating apparatus is installed in a concentrated water circulating line circulated through the concentrating chamber. To provide.
【0011】本発明によれば、濃縮室内でのシリカ成分
の析出を抑制できる。したがって、濃縮水を高濃度に濃
縮して使用することが可能となるため、当該装置の水利
用率を向上させると共に、印加電圧を低くすることがで
き、省エネルギー化が図れる。また、当該装置において
は、シリカ成分の析出により電気抵抗が上昇することに
伴う性能低下を防止することができる。また、濃縮水又
は濃縮水と電極水のみを加温するため、供給水全体を加
温する従来の装置に比べて省エネルギー化及び省スペー
ス化が図れる。According to the present invention, the precipitation of the silica component in the concentration chamber can be suppressed. Therefore, the concentrated water can be used after being concentrated to a high concentration, so that the water utilization rate of the device can be improved, the applied voltage can be reduced, and energy can be saved. In addition, in the device, it is possible to prevent a decrease in performance due to an increase in electric resistance due to precipitation of a silica component. Further, since only the concentrated water or the concentrated water and the electrode water are heated, energy saving and space saving can be achieved as compared with a conventional apparatus for heating the entire supply water.
【0012】[0012]
【発明の実施の形態】次に、本発明の実施の形態におけ
る電気式脱イオン水製造方法について、図面を参照して
説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a method for producing electric deionized water according to an embodiment of the present invention will be described with reference to the drawings.
【0013】図1は、本発明の第1の実施の形態におけ
る電気式脱イオン水製造方法を説明するブロック図であ
る。図1において、被処理水(通常は、原水を逆浸透膜
装置で処理した透過水)は電気式脱イオン水製造装置
(以下、EDI装置ともいう)1に流入される。EDI
装置1は、イオン交換樹脂、イオン交換繊維などのイオ
ン交換体が充填された脱塩室と、この脱塩室とイオン交
換膜を介して仕切られた濃縮室と、これら脱塩室及び濃
縮室に電圧を印加する一対の電極を有している。そし
て、被処理水は脱塩室に流入される。また、本実施の形
態では、濃縮室に循環される濃縮水循環ライン4に、濃
縮水貯槽3及び加温装置2を設置したものである。すな
わち、濃縮水貯槽3には、被処理水の一部である補給水
と、濃縮室から排出された濃縮水が供給され、一方、濃
縮水貯槽3の濃縮水の一部は加温装置3に供給され、他
の一部は系外にブローされる。すなわち、加温装置2に
より加温された濃縮水は濃縮室に流入される。したがっ
て、EDI1では、被処理水中のシリカ成分を含む塩類
はイオン交換膜を介して濃縮水が流れる濃縮室中に移動
され、これによって、塩類が除去された処理水を得ると
共に、塩類が濃縮された濃縮水を濃縮室に得ることがで
きる。また、一対の電極を収納する電極室にも加温され
た濃縮水(電極水)を流通する。したがって、該電極室
からは電極水が排出される。なお、電極水に関しては電
極上で発生したガスを気泡分離した後、濃縮水貯槽3に
回収したり、あるいはEDI装置の前段に逆浸透膜装置
が設置されている場合は、この供給水に混合することも
できるFIG. 1 is a block diagram for explaining a method for producing electric deionized water according to a first embodiment of the present invention. In FIG. 1, water to be treated (usually, permeated water obtained by treating raw water with a reverse osmosis membrane device) flows into an electric deionized water producing device (hereinafter, also referred to as an EDI device) 1. EDI
The apparatus 1 includes a desalination chamber filled with an ion exchanger such as an ion exchange resin or an ion exchange fiber, a concentration chamber separated from the desalination chamber via an ion exchange membrane, a desalination chamber and a concentration chamber. Has a pair of electrodes for applying a voltage to the electrodes. Then, the water to be treated flows into the desalting chamber. In the present embodiment, the concentrated water storage tank 3 and the heating device 2 are installed in the concentrated water circulation line 4 circulated to the concentration chamber. That is, the concentrated water storage tank 3 is supplied with make-up water, which is a part of the water to be treated, and the concentrated water discharged from the concentration chamber, while the concentrated water in the concentrated water storage tank 3 is partially heated by the heating device 3. The other part is blown out of the system. That is, the concentrated water heated by the heating device 2 flows into the concentration chamber. Therefore, in the EDI1, the salt containing the silica component in the water to be treated is moved to the concentration chamber through which the concentrated water flows through the ion exchange membrane, whereby the treated water from which the salt has been removed is obtained, and the salt is concentrated. Concentrated water can be obtained in the concentration chamber. The heated concentrated water (electrode water) also flows through the electrode chamber that houses the pair of electrodes. Therefore, electrode water is discharged from the electrode chamber. As for the electrode water, after the gas generated on the electrode is separated into bubbles, it is collected in the concentrated water storage tank 3 or mixed with the supply water when a reverse osmosis membrane device is installed in front of the EDI device. Can also
【0014】濃縮室に流入する濃縮水の温度としては、
特に制限されないが、通常常温以上、35℃以下であれ
ばよい。濃縮水の温度は高い程シリカ成分の溶解度が向
上するため、濃縮倍率を高めることができるが、使用部
材に温度上限があり、また加温のためのコストも高くな
るため、上記の温度範囲とすることが好ましい。したが
って、使用部材の耐熱性が高く、加温による効果を優先
するのであれば更に高い温度とすることもできる。ま
た、加温装置2としては、例えばヒータ、温水による熱
交換器など通常使用されているものでよい。また、濃縮
水は循環することなく後述するようにそのままブローし
ても、図では省略するがEDI装置1の前段に設けられ
た逆浸透膜装置の流入側に戻してもよい。The temperature of the concentrated water flowing into the concentration chamber is as follows:
Although not particularly limited, it is usually sufficient that the temperature be equal to or higher than normal temperature and equal to or lower than 35 ° C. Since the solubility of the silica component increases as the temperature of the concentrated water increases, the concentration ratio can be increased.However, there is an upper limit on the temperature of the member used, and the cost for heating is also increased. Is preferred. Therefore, if the heat resistance of the member to be used is high and the effect by heating is prioritized, a higher temperature can be used. Further, the heating device 2 may be a commonly used device such as a heater or a heat exchanger using hot water. Further, the concentrated water may be blown as it is without being circulated, as described later, or may be returned to the inflow side of the reverse osmosis membrane device provided in the preceding stage of the EDI device 1 although not shown.
【0015】また、電気式脱イオン水製造装置として
は、上記EDI1以外にも、電気透析装置など供給水を
処理水と濃縮水に分けて通水を行うすべての装置に適用
される。また、被処理水としては、特に制限されない
が、市水、工業用水を逆浸透膜処理した透過水、あるい
は半導体ウエハーを超純水で洗浄した際に排出される洗
浄排水等が挙げられる。また、加温するのは、濃縮水の
み又は濃縮水と電極水の双方であり、好ましくは濃縮水
と電極水の双方である。The electro-deionized water producing apparatus is applied to all apparatuses other than the above-mentioned EDI1, such as an electrodialysis apparatus, which divides supply water into treated water and concentrated water to pass water. Examples of the water to be treated include, but are not particularly limited to, city water, permeated water obtained by treating industrial water with a reverse osmosis membrane, and washing wastewater discharged when a semiconductor wafer is washed with ultrapure water. What is heated is only the concentrated water or both the concentrated water and the electrode water, preferably both the concentrated water and the electrode water.
【0016】本第1の実施の形態によれば、濃縮室内で
のシリカ成分の溶解度が向上する。したがって、濃縮水
を高濃度に濃縮して使用することが可能となるため、当
該装置1の水利用率を向上させると共に、印加電圧を低
くすることができ、省エネルギー化が図れる。具体的に
は、シリカ濃度15ppm の水を被処理水(供給水)とし
た場合、図3より水温10℃でのシリカの水への溶解度
は約35ppm であり、次式(1)〜(3)から求められ
る濃縮倍率は57%以下とする必要がある。しかし、濃
縮水の水温が25℃に上昇すると溶解度は100ppm と
なるため、濃縮倍率も85%まで上げることができる。According to the first embodiment, the solubility of the silica component in the concentration chamber is improved. Therefore, the concentrated water can be used after being concentrated to a high concentration, so that the water utilization rate of the device 1 can be improved, the applied voltage can be reduced, and energy can be saved. Specifically, when water having a silica concentration of 15 ppm is used as the water to be treated (supply water), the solubility of silica in water at a water temperature of 10 ° C. is about 35 ppm from FIG. 3, and the following formulas (1) to (3) ) Must be 57% or less. However, when the temperature of the concentrated water rises to 25 ° C., the solubility becomes 100 ppm, so that the concentration ratio can be increased to 85%.
【0017】 濃縮倍率=(1−濃縮水量/供給水量)×100 (1) 濃縮室中のシリカ濃度×濃縮水量=供給水中のシリカ濃度×供給水量 (2) 式(1)及び(2)から次式(3)が求められる。 濃縮倍率=(1−供給水中のシリカ濃度/濃縮室中のシリカ濃度)×100 (3)Concentration magnification = (1−concentrated water amount / supplied water amount) × 100 (1) Silica concentration in concentrating room × concentrated water amount = silica concentration in supplied water × supplied water amount (2) From formulas (1) and (2) The following equation (3) is obtained. Concentration magnification = (1−concentration of silica in feed water / concentration of silica in concentration chamber) × 100 (3)
【0018】また、当該装置1においては、シリカ成分
の析出により電気抵抗が上昇することに伴う性能低下を
防止することができる。また、濃縮水のみ又は濃縮水と
電極水の双方のみを加温するため、供給水全体を加温す
る従来の装置に比べて省エネルギー化及び省スペース化
が図れる。例えば、濃縮水のみの加温で、且つ濃縮倍率
85%とする場合、従来の供給水全体を加温する場合に
比較して、加温に必要とする熱量は約1/7でよい。Further, in the device 1, it is possible to prevent a decrease in performance due to an increase in electric resistance due to precipitation of a silica component. In addition, since only the concentrated water or only the concentrated water and the electrode water are heated, energy saving and space saving can be achieved as compared with a conventional apparatus that heats the entire supply water. For example, when only the concentrated water is heated and the concentration ratio is 85%, the amount of heat required for heating may be about 1/7 as compared with the conventional case where the entire supply water is heated.
【0019】図2は、本発明の第2の実施の形態におけ
る電気式脱イオン水製造方法を説明するブロック図であ
る。図2において、図1と同一の構成要素には同一符号
を付して、その説明を省略し異なる点についてのみ主に
述べる。すなわち、図1と異なる点は、濃縮水を循環使
用することなくそのまま系外へブローした点にある。具
体的には、被処理水の一部は直接加温装置2に供給さ
れ、その後、濃縮室に濃縮水として、電極室に電極水と
して供給される。本第2の実施の形態によれば、水の利
用率は低下するものの、第1の実施の形態とほぼ同様の
効果を奏する。FIG. 2 is a block diagram for explaining a method for producing deionized water according to the second embodiment of the present invention. 2, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted. Only different points will be mainly described. That is, the difference from FIG. 1 lies in that the concentrated water is blown out of the system without circulation. Specifically, a part of the water to be treated is directly supplied to the heating device 2, and then supplied to the concentration chamber as concentrated water and to the electrode chamber as electrode water. According to the second embodiment, although the water utilization rate is reduced, substantially the same effects as in the first embodiment can be obtained.
【0020】[0020]
【実施例】次に、実施例を挙げて、本発明を更に具体的
に説明する。 実施例1 下記仕様のEDI装置、加温装置及び運転条件並びに図
1の装置に準拠して、濃縮水の水温と電源電圧の関係を
求めた。結果を図4に示す。図4から、濃縮水の水温の
上昇と共に電源電圧が低下することが判る。Next, the present invention will be described more specifically with reference to examples. Example 1 The relationship between the water temperature of the concentrated water and the power supply voltage was determined based on the EDI device, the heating device and the operating conditions of the following specifications, and the device of FIG. FIG. 4 shows the results. FIG. 4 shows that the power supply voltage decreases as the temperature of the concentrated water increases.
【0021】 (EDI装置) ・処理水量100L/h 、濃縮水量20L/h 、電極水量4L/h ・供給水(被処理水)の水温:10℃ ・印加電圧:200V、1.0A ・使用イオン交換体:カチオン交換樹脂アンバーライトIR120B アニオン交換樹脂アンバーライトIRA400 (いずれもロームアンドハース社製) カチオン交換樹脂とアニオン交換樹脂の混合比1:2(容量比) ・使用交換膜:カチオン交換膜CMH、アニオン交換膜AMH (いずれもトクヤマ社製) (加温装置) ・濃縮水の水温を15℃〜25℃に設定できる温水使用の熱交換器を使用した。(EDI equipment) ・ 100 L / h of treated water, 20 L / h of concentrated water, 4 L / h of electrode water ・ Temperature of supply water (water to be treated): 10 ° C. ・ Applied voltage: 200 V, 1.0 A ・ Ions used Exchanger: Cation exchange resin Amberlite IR120B Anion exchange resin Amberlite IRA400 (all manufactured by Rohm and Haas) Mixing ratio of cation exchange resin and anion exchange resin 1: 2 (volume ratio)-Exchange membrane used: Cation exchange membrane CMH Anion exchange membrane AMH (all manufactured by Tokuyama Corporation) (Heating device) A heat exchanger using hot water capable of setting the temperature of the concentrated water to 15 ° C to 25 ° C was used.
【0022】[0022]
【発明の効果】本発明によれば、濃縮室内でのシリカ成
分の析出を抑制できる。したがって、濃縮水を高濃度に
濃縮して使用することが可能となるため、印加電圧を低
くすることができ、省エネルギー化が図れる。また、当
該装置においては、シリカ成分の析出により電気抵抗が
上昇することに伴う性能低下を防止することができる。
また、濃縮水のみ又は濃縮水と電極水の双方のみを加温
するため、供給水全体を加温する従来の装置に比べて省
エネルギー化及び省スペース化が図れる。According to the present invention, the precipitation of the silica component in the concentration chamber can be suppressed. Therefore, the concentrated water can be used after being concentrated to a high concentration, so that the applied voltage can be reduced and energy saving can be achieved. In addition, in the device, it is possible to prevent a decrease in performance due to an increase in electric resistance due to precipitation of a silica component.
In addition, since only the concentrated water or only the concentrated water and the electrode water are heated, energy saving and space saving can be achieved as compared with a conventional apparatus that heats the entire supply water.
【図1】本発明の第1の実施の形態における電気式脱イ
オン水製造方法を説明するブロック図を示す。FIG. 1 is a block diagram illustrating an electric deionized water production method according to a first embodiment of the present invention.
【図2】本発明の第2の実施の形態における電気式脱イ
オン水製造方法を説明するブロック図を示す。FIG. 2 is a block diagram illustrating an electric deionized water production method according to a second embodiment of the present invention.
【図3】シリカの溶解度と温度の関係図を示す。FIG. 3 shows a relationship diagram between solubility of silica and temperature.
【図4】実施例1における濃縮水の温度と電源電圧の関
係図を示す。FIG. 4 shows a relationship diagram between the temperature of the concentrated water and the power supply voltage in the first embodiment.
1 電気式脱イオン水製造装置 2 加温装置 3 濃縮水貯槽 4 濃縮水循環ライン Reference Signs List 1 Electric deionized water production device 2 Heating device 3 Concentrated water storage tank 4 Concentrated water circulation line
Claims (2)
イオン水製造装置において、前記濃縮室に濃縮水を加温
して供給することを特徴とする電気式脱イオン水製造方
法。1. An electric deionized water producing method comprising: a deionization chamber and a concentration chamber, wherein the concentrated water is heated and supplied to the concentration chamber.
イオン水製造装置において、前記濃縮室に循環される濃
縮水循環ラインに加温装置を設置したことを特徴とする
電気式脱イオン水製造装置。2. An electric deionization water producing apparatus comprising a deionization chamber and a concentration chamber, wherein a heating device is installed in a concentrated water circulation line circulated through the concentration chamber. Water production equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6212598A JPH11244863A (en) | 1998-02-26 | 1998-02-26 | Electric production of deionized water and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6212598A JPH11244863A (en) | 1998-02-26 | 1998-02-26 | Electric production of deionized water and device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11244863A true JPH11244863A (en) | 1999-09-14 |
Family
ID=13191046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6212598A Pending JPH11244863A (en) | 1998-02-26 | 1998-02-26 | Electric production of deionized water and device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11244863A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006100937A1 (en) * | 2005-03-18 | 2006-09-28 | Kurita Water Industries Ltd. | Apparatus for producing pure water |
JP2006255650A (en) * | 2005-03-18 | 2006-09-28 | Kurita Water Ind Ltd | Apparatus for producing pure water |
JP2013188683A (en) * | 2012-03-13 | 2013-09-26 | Miura Co Ltd | Water treatment system |
JP2013188684A (en) * | 2012-03-13 | 2013-09-26 | Miura Co Ltd | Water treatment system |
JP2014507267A (en) * | 2011-01-17 | 2014-03-27 | オーシャンセイバー エーエス | Electrodialysis unit for water treatment |
WO2018235366A1 (en) * | 2017-06-23 | 2018-12-27 | 栗田工業株式会社 | Method for controlling and method for designing electrical deionization device |
-
1998
- 1998-02-26 JP JP6212598A patent/JPH11244863A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006100937A1 (en) * | 2005-03-18 | 2006-09-28 | Kurita Water Industries Ltd. | Apparatus for producing pure water |
JP2006255650A (en) * | 2005-03-18 | 2006-09-28 | Kurita Water Ind Ltd | Apparatus for producing pure water |
US7955503B2 (en) | 2005-03-18 | 2011-06-07 | Kurita Water Industries Ltd. | Pure water producing apparatus |
JP2014507267A (en) * | 2011-01-17 | 2014-03-27 | オーシャンセイバー エーエス | Electrodialysis unit for water treatment |
JP2013188683A (en) * | 2012-03-13 | 2013-09-26 | Miura Co Ltd | Water treatment system |
JP2013188684A (en) * | 2012-03-13 | 2013-09-26 | Miura Co Ltd | Water treatment system |
WO2018235366A1 (en) * | 2017-06-23 | 2018-12-27 | 栗田工業株式会社 | Method for controlling and method for designing electrical deionization device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4867182B2 (en) | Pure water production equipment | |
JPH0957271A (en) | Treatment of water by electrolytic deionization method and device used therefor | |
JP2005508729A (en) | Electrodeionization apparatus and electrodeionization method | |
JP4960288B2 (en) | Electric deionized water production apparatus and deionized water production method | |
JPH11244863A (en) | Electric production of deionized water and device | |
JP2005000828A (en) | Pure water production apparatus | |
JP3966103B2 (en) | Operation method of electrodeionization equipment | |
JP6799657B1 (en) | Water treatment system, ultrapure water production system and water treatment method | |
JP3788318B2 (en) | Electrodeionization apparatus and electrodeionization method | |
JP2003001259A (en) | Ultrapure water producing apparatus | |
JP3773178B2 (en) | Electric deionized water production apparatus and production method | |
JP2001259644A (en) | Pure water producer and pure water production method using the same | |
JP2001191080A (en) | Electric deionizing device and electric deionizing treatment method using the same | |
JP2001129554A (en) | Method and apparatus for making deionized water | |
JP2006255651A (en) | Pure water producing system | |
JP2007125455A (en) | Operation method of electric deionized water production apparatus and electric deionized water production apparatus | |
JP4505965B2 (en) | Pure water production method | |
JP2011121027A (en) | Electric type deionized water producing apparatus | |
JP2000263059A (en) | Electric desalting apparatus | |
JP3480661B2 (en) | Water treatment method for electric deionized water production equipment | |
JP3501339B2 (en) | Electric deionized water production equipment | |
JP2000005763A (en) | Electric deionized water production device | |
JPH11165176A (en) | Electric deionized water generator | |
JPH11165177A (en) | Electric deionized water generator | |
JP2006255684A (en) | Pure water making machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040930 |
|
A131 | Notification of reasons for refusal |
Effective date: 20050623 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051014 |