JPH11242050A - Three-axis acceleration sensor - Google Patents

Three-axis acceleration sensor

Info

Publication number
JPH11242050A
JPH11242050A JP10060609A JP6060998A JPH11242050A JP H11242050 A JPH11242050 A JP H11242050A JP 10060609 A JP10060609 A JP 10060609A JP 6060998 A JP6060998 A JP 6060998A JP H11242050 A JPH11242050 A JP H11242050A
Authority
JP
Japan
Prior art keywords
axis
flexible
beams
acceleration sensor
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10060609A
Other languages
Japanese (ja)
Other versions
JP3330074B2 (en
Inventor
Takuro Nakamura
卓郎 中邑
Hitoshi Yoshida
仁 吉田
Takuo Ishida
拓郎 石田
Shigeaki Tomonari
恵昭 友成
Masatomo Kamakura
將有 鎌倉
Naomasa Oka
直正 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP06060998A priority Critical patent/JP3330074B2/en
Publication of JPH11242050A publication Critical patent/JPH11242050A/en
Application granted granted Critical
Publication of JP3330074B2 publication Critical patent/JP3330074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a three-axis acceleration sensor with improved sensitivity by narrowing the essential total width of a beam for constituting a flexible part. SOLUTION: A flexible part 2 is constituted of two parallel beams 21 and another beam 22 that is formed for connecting base parts at the side of a fixing part, and the width of the essential flexible part 2 is narrowed. A piezo resistor 23 or 24 for x or y axis is formed at the connection site with a connection part 3 of each beam 21, and a piezo resistor 25 for z axis is formed at another beam 22.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車、航空機、
家電製品等に用いられる半導体からなる3軸加速度セン
サに関するものである。
TECHNICAL FIELD The present invention relates to an automobile, an aircraft,
The present invention relates to a three-axis acceleration sensor made of a semiconductor used for home electric appliances and the like.

【0002】[0002]

【従来の技術】Si等の半導体基板のほぼ中心に作用
部、その周辺に固定部を形成し、作用部にかかる加速度
による可撓部の撓みを検出し、この撓みから加速度を検
出する加速度センサとしては、特願昭62−901号及
びXYZの多軸方向を検出するものとして特開平6−3
31646号に記載されたものがあり、ピエゾ抵抗の配
置により高感度な3軸加速度センサを実現している。
2. Description of the Related Art An acceleration sensor for forming a working portion substantially at the center of a semiconductor substrate made of Si or the like and a fixed portion around the working portion to detect bending of a flexible portion due to acceleration applied to the working portion and detect acceleration from the bending. Japanese Patent Application No. 62-901 and Japanese Patent Application Laid-Open No.
No. 31,646, a highly sensitive three-axis acceleration sensor is realized by arranging piezoresistors.

【0003】これらの内3軸加速度センサの従来例を図
10〜12に示す。この従来例は矩形枠状の固定部1の
各辺の内側中央部の縁から夫々中心方向に延長した4本
の可撓部2と、これら可撓部2の先端が結合される連結
部3を天面中央部に突設して可撓部2に支えられるよう
にして垂下される作用部たる重り部4とからなり、各可
撓部2と重り部4の連結部3の周囲に可撓部2と重り部
4を分離する切込み溝5を形成してある。そして各可撓
部の固定部1側基部中央には夫々z軸用のピエゾ抵抗2
5を形成し、また上記連結部3側基部の両側にx軸又は
y軸用のピエゾ抵抗23又は24を設けてある。
Conventional examples of these three-axis acceleration sensors are shown in FIGS. In this conventional example, four flexible portions 2 extending in the center direction from the edges of the inner central portions of the respective sides of a rectangular frame-shaped fixing portion 1 and a connecting portion 3 to which the tips of the flexible portions 2 are joined. Are formed at the center of the top surface and are suspended by the flexible portion 2 so as to be supported by the flexible portion 2. The weight portions 4 are acting around the connecting portion 3 of each flexible portion 2 and the weight portion 4. A cut groove 5 for separating the flexible portion 2 and the weight portion 4 is formed. A piezoresistor 2 for the z-axis is provided at the center of the base of the fixing portion 1 of each flexible portion.
5, and a piezoresistor 23 or 24 for the x-axis or the y-axis is provided on both sides of the base portion on the side of the connecting portion 3.

【0004】またセンサを製作する際に、犠牲層エッチ
ングの距離を少なくするための構成として、図13〜1
5に示すような、可撓部2を3本の並行する梁20で構
成してなる3軸加速度センサがある。更にまた、可撓部
2上のアルミ配線等による温度変化による反りを低減で
きる構造として、図16〜18に示すような、x軸及び
y軸のピエゾ抵抗23及び24を固定部1側の可撓部2
の基部に形成配置したものがある。
FIGS. 13 to 13 show a configuration for reducing the distance of etching of a sacrifice layer when manufacturing a sensor.
As shown in FIG. 5, there is a three-axis acceleration sensor in which the flexible portion 2 is constituted by three parallel beams 20. Further, as a structure capable of reducing the warpage due to the temperature change due to the aluminum wiring or the like on the flexible portion 2, the piezo resistors 23 and 24 on the x axis and the y axis as shown in FIGS. Flexible part 2
There is one that is formed and arranged at the base part.

【0005】また、加速度センサの感度は可撓部2の
幅、厚さの2乗に反比例し、重り部4の重量に比例す
る。また、x軸及びy軸では可撓部2から重り部4の重
心までの距離に比例する。このような加速度センサは従
来の機械式に比べ、小型、高感度のセンサが実現でき、
また、半導体プロセスが使用できるため低コストのセン
サを提供できるものである。
[0005] The sensitivity of the acceleration sensor is inversely proportional to the square of the width and thickness of the flexible portion 2 and is proportional to the weight of the weight portion 4. In the x-axis and the y-axis, the distance is proportional to the distance from the flexible portion 2 to the center of gravity of the weight portion 4. Such an acceleration sensor can realize a small, high-sensitivity sensor compared to the conventional mechanical type,
Further, since a semiconductor process can be used, a low-cost sensor can be provided.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
加速度センサでは、上記に示した可撓部2の幅は周辺部
にあるz軸のピエゾ抵抗の長さ、重り部4側にあるx軸
又はy軸のピエゾ抵抗の配線の幅とそれらの間隔から決
まってしまう。例えば、図13〜15の様に、3本の梁
20で可撓部2を構成した構造では、x軸又はy軸用の
梁2本とz軸用の梁1本の合計3本から構成されてお
り、感度はこの3本梁の合計幅の反比例する。そのた
め、3本梁の合計幅が広くなると感度を上げることが困
難となる。
However, in the above-described acceleration sensor, the width of the flexible portion 2 described above is determined by the length of the piezoresistor on the z-axis in the peripheral portion, the x-axis on the side of the weight portion 4 or It is determined by the width of the wiring of the piezoresistors on the y-axis and their spacing. For example, as shown in FIGS. 13 to 15, in a structure in which the flexible portion 2 is configured by three beams 20, the flexible portion 2 includes two beams for the x-axis or the y-axis and one beam for the z-axis. The sensitivity is inversely proportional to the total width of the three beams. Therefore, it is difficult to increase the sensitivity when the total width of the three beams is increased.

【0007】本発明は上記の問題点に鑑みて為されたも
ので、その目的とするところは、可撓部を構成する梁の
実質的な合計幅を狭くし、感度を向上した3軸加速度セ
ンサを提供するにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object to reduce the substantial total width of the beams constituting the flexible portion and improve the sensitivity of the triaxial acceleration. Providing a sensor.

【0008】[0008]

【課題を解決するための手段】上述の目的を達成するた
めに、請求項1の発明では、基板の中心に作用部と、該
作用部の周辺に設けた固定部と、作用部と固定部間に撓
み可能に両端が連結された可撓部とを設けるとともに、
可撓部と作用部の間に切込み溝を形成し、可撓部に歪に
より抵抗値が変化するピエゾ抵抗を設けた加速度センサ
であって、可撓部を長さ方向に並行配置された2本の梁
と該2本の該梁を固定部側にて両梁間を連結する別の梁
とで構成し、並行配置された2本の梁にx軸、y軸方向
のピエゾ抵抗を形成し、別の梁にz軸方向のピエゾ抵抗
を形成して成ることを特徴とする。
In order to achieve the above-mentioned object, according to the first aspect of the present invention, there is provided an operation portion at the center of a substrate, a fixing portion provided around the operation portion, an operation portion and a fixing portion. A flexible portion having both ends connected so as to be able to bend is provided,
An acceleration sensor in which a notch groove is formed between a flexible portion and an action portion, and a piezoresistor whose resistance value changes due to strain is provided in the flexible portion, wherein the flexible portions are arranged in parallel in the length direction. The two beams and another beam connecting the two beams on the fixed portion side are formed of two beams, and piezoresistances in the x-axis and y-axis directions are formed on the two beams arranged in parallel. A piezoresistor in the z-axis direction is formed on another beam.

【0009】請求項2の発明では、請求項1の発明にお
いて、並行配置された2本の梁に対するx軸及びy軸用
のピエゾ抵抗の配置位置を、作用部側付近としたことを
特徴とする。請求項3の発明では、請求項1の発明にお
いて、並行配置された2本の梁に対するx軸及びy軸用
のピエゾ抵抗の配置位置を、別の梁に対する連結部位付
近としたことを特徴とする。
According to a second aspect of the present invention, in the first aspect of the present invention, the positions of the piezoresistors for the x-axis and the y-axis with respect to the two beams arranged in parallel are located near the action portion side. I do. According to a third aspect of the present invention, in the first aspect of the present invention, the piezoresistors for the x-axis and the y-axis with respect to the two beams arranged in parallel are arranged near a connection portion with another beam. I do.

【0010】[0010]

【発明の実施の形態】以下本発明を実施形態により説明
する。 (実施形態1)図1〜図3に本実施形態の構成を示す。
本実施形態は、Siからなる半導体基板の中心部下面に
半導体加工技術を用いて重り部4を形成し、この重り部
4の上部中央に形成した連結部3と周囲の矩形枠状の固
定部1の各辺の内側中央縁との間を薄肉の可撓部2によ
り連結し、各可撓部2と、重り部4の連結部3の周囲に
可撓部2と重り部4を分離する切込み溝5を形成してあ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments. (Embodiment 1) FIGS. 1 to 3 show the configuration of this embodiment.
In the present embodiment, a weight portion 4 is formed on the lower surface of a central portion of a semiconductor substrate made of Si by using a semiconductor processing technique, and a connection portion 3 formed in the upper center of the weight portion 4 and a surrounding rectangular frame-shaped fixing portion are formed. 1 and the inner central edge of each side are connected by a thin flexible portion 2, and each flexible portion 2 is separated from the flexible portion 2 and the weight portion 4 around the connecting portion 3 of the weight portion 4. A cut groove 5 is formed.

【0011】ここで各可撓部2は2本の並行する梁21
と、固定部1側の基部間を連結するように形成した別の
梁22とにより構成されている。そして各梁21の連結
部3との連結部位には、図2、図3に示すようにx軸又
はy軸用のピエゾ抵抗23又は24を形成し、別の梁2
2にはz軸用のピエゾ抵抗25を形成してある。而して
本実施形態では、2本の梁21を並行させ、3本目の梁
22を梁21,21間を橋絡するように設けてあるた
め、実質的な可撓部2の幅を狭くすることができる。
Here, each flexible portion 2 has two parallel beams 21
And another beam 22 formed so as to connect between the bases on the fixed part 1 side. 2 and 3, a piezoresistor 23 or 24 for the x-axis or the y-axis is formed at a connection portion of each beam 21 with the connection portion 3, and another beam 2 is formed.
2, a piezoresistor 25 for the z-axis is formed. In this embodiment, since the two beams 21 are arranged in parallel and the third beam 22 is provided so as to bridge between the beams 21 and 21, the width of the substantial flexible portion 2 is reduced. can do.

【0012】また加速度センサの感度は梁の合計幅に反
比例するので、感度を向上することができる。例えば、
図4(a)に示すような梁21,22のサイズの場合、
梁21の長さdが該長さ方向に対応する梁22の長さc
に比較して十分長く、図4(b)に示す従来例の3本の
梁構造と比較して、およそ(2a+e)/2a倍のx軸
及びy軸の感度を得ることができる。但し、z軸の感度
に関しては、z軸のピエゾ抵抗25が配置されている梁
22の横幅が広いこと等から、z軸の感度自体は減少す
る。x軸及びy軸の感度とz軸感度の比は可撓部2から
重り部4の重心までの距離に影響する。例えば、加速度
センサでよく用いられている525μmのウエハー厚を
持つ半導体基板を用いた場合のz軸/x軸の比は2倍以
上あり、z軸の感度が低下してもx軸及びy軸感度より
も大きくz軸の感度の低下は問題とならない。むしろ感
度の比は1に近いほど好ましい。
Since the sensitivity of the acceleration sensor is inversely proportional to the total width of the beam, the sensitivity can be improved. For example,
In the case of the size of the beams 21 and 22 as shown in FIG.
The length d of the beam 21 corresponds to the length c of the beam 22 corresponding to the length direction.
4 (b), it is possible to obtain x-axis and y-axis sensitivities approximately (2a + e) / 2a times that of the conventional three-beam structure shown in FIG. However, regarding the z-axis sensitivity, the z-axis sensitivity itself decreases because the beam 22 on which the z-axis piezoresistor 25 is arranged is wide. The ratio between the x-axis and y-axis sensitivities and the z-axis sensitivity affects the distance from the flexible portion 2 to the center of gravity of the weight portion 4. For example, when a semiconductor substrate having a wafer thickness of 525 μm, which is often used in an acceleration sensor, is used, the ratio of the z-axis / x-axis is twice or more. A decrease in the sensitivity on the z-axis which is larger than the sensitivity does not pose a problem. Rather, the closer the sensitivity ratio is to 1, the better.

【0013】(実施形態2)図5〜7は本実施形態の構
成を示す。本実施形態は実施形態1と同様にSiからな
る半導体基板の中心部下面に半導体加工技術を用いて重
り部4を形成し、この重り部4の上部中央に形成した連
結部3と周囲の矩形枠状の固定部1の各辺の内側中央縁
との間を薄肉の可撓部2により連結し、各可撓部2と、
重り部4の連結部3の周囲に可撓部2と重り部4を分離
する切込み溝5を形成してある。
(Embodiment 2) FIGS. 5 to 7 show the configuration of this embodiment. In the present embodiment, similarly to the first embodiment, a weight portion 4 is formed on the lower surface of a central portion of a semiconductor substrate made of Si by using a semiconductor processing technique, and a connecting portion 3 formed in the upper center of the weight portion 4 and a surrounding rectangular shape. A thin flexible portion 2 connects between the inner central edges of each side of the frame-shaped fixing portion 1, and each flexible portion 2
A cut groove 5 for separating the flexible portion 2 and the weight portion 4 is formed around the connection portion 3 of the weight portion 4.

【0014】また各可撓部2も2本の並行する梁21
と、固定部1側の基部間を連結するように形成した別の
梁22とにより構成されている。そして各梁21の固定
部1との連結部位には、図5、図7に示すようにx軸又
はy軸用のピエゾ抵抗23又は24を形成し、別の梁2
2にはz軸用のピエゾ抵抗25を形成してある。つまり
x軸又はy軸用のピエゾ抵抗23又は24の形成位置が
実施形態1と相違する。
Each flexible portion 2 also has two parallel beams 21.
And another beam 22 formed so as to connect between the bases on the fixed part 1 side. 5 and 7, a piezoresistor 23 or 24 for the x-axis or the y-axis is formed at a connection portion of each beam 21 with the fixing portion 1, and another beam 2 is formed.
2, a piezoresistor 25 for the z-axis is formed. That is, the formation position of the piezoresistors 23 or 24 for the x-axis or the y-axis is different from that of the first embodiment.

【0015】而して本実施形態では、固定部1側にピエ
ゾ抵抗を配置した場合のx軸及びy軸のピエゾ抵抗2
3,24の位置を最適化している。固定部1側にx軸及
びy軸のピエゾ抵抗23,24を配置することで、梁2
1上のアルミ配線等による温度変化による反りを低減す
るような構造としている。図8は本実施形態の梁21の
a−a’断面における応力分布図である。図9のように
2本の梁21,21で可撓部を構成した場合、a−a’
断面の応力分布は梁21の端部付近が固定側での最大値
となる。しかし、本実施形態のような梁構造を用いた場
合、梁22の幅は梁21,21の合計幅と比較して広い
ため、梁21の端部付近が固定側とならず、梁21,2
1と梁22の重なる付近が最大値となり、固定側にピエ
ゾ抵抗を配置した時の最大値となる。
In this embodiment, the piezoresistors 2 on the x-axis and the y-axis when the piezoresistors are arranged on the fixed portion 1 side.
The positions of 3, 24 are optimized. The x-axis and y-axis piezoresistors 23 and 24 are arranged on the fixed part 1 side, so that the beam 2
The structure is such that warpage due to a temperature change due to the aluminum wiring or the like is reduced. FIG. 8 is a stress distribution diagram of the beam 21 of the present embodiment in a section taken along the line aa ′. When the flexible portion is constituted by the two beams 21 and 21 as shown in FIG.
The stress distribution in the cross section has a maximum value near the end of the beam 21 on the fixed side. However, when the beam structure as in the present embodiment is used, the width of the beam 22 is wider than the total width of the beams 21 and 21, so that the vicinity of the end of the beam 21 does not become the fixed side, and the beams 21 and 21 are not fixed. 2
The maximum value is in the vicinity where 1 and the beam 22 overlap, and the maximum value when the piezoresistor is arranged on the fixed side.

【0016】従って、本実施形態の梁構造を構成するこ
とにより、x軸及びy軸方向に対して高感度な3軸加速
度センサ実現できる。
Therefore, by configuring the beam structure of this embodiment, a three-axis acceleration sensor having high sensitivity in the x-axis and y-axis directions can be realized.

【0017】[0017]

【発明の効果】請求項1の発明では、基板の中心に作用
部と、該作用部の周辺に設けた固定部と、作用部と固定
部間に撓み可能に両端が連結された可撓部とを設けると
ともに、可撓部と作用部の間に切込み溝を形成し、可撓
部に歪により抵抗値が変化するピエゾ抵抗を設けた加速
度センサであって、可撓部を長さ方向に並行配置された
2本の梁と該2本の該梁を固定部側にて両梁間を連結す
る別の梁とで構成し、並行配置された2本の梁にx軸、
y軸方向のピエゾ抵抗を形成し、別の梁にz軸方向のピ
エゾ抵抗を形成してあるので、実質的な梁の合計幅を狭
くして、感度を向上することができるという効果があ
る。
According to the first aspect of the present invention, the operating portion is provided at the center of the substrate, the fixing portion provided around the operating portion, and the flexible portion having both ends connected between the operating portion and the fixing portion so as to be able to flex. And an acceleration sensor in which a notch groove is formed between the flexible portion and the action portion, and a piezo resistor whose resistance value changes due to strain is provided in the flexible portion. The two beams arranged in parallel and another beam connecting the two beams at the fixed portion side are constituted by the two beams, and the two beams arranged in parallel have the x-axis,
Since the piezoresistance in the y-axis direction is formed and the piezoresistance in the z-axis direction is formed on another beam, there is an effect that the total width of the substantial beam can be reduced and the sensitivity can be improved. .

【0018】請求項2の発明では、請求項1の発明にお
いて、並行配置された2本の梁に対するx軸及びy軸用
のピエゾ抵抗の配置位置を、作用部側付近としたので、
請求項1の発明の効果と同様な効果がある。請求項3の
発明では、請求項1の発明において、並行配置された2
本の梁に対するx軸及びy軸用のピエゾ抵抗の配置位置
を、別の梁に対する連結部位付近としたので、請求項1
の発明の効果に加えて、よりx軸及びy軸方向に対して
高感度な3軸加速度センサ実現できる。
According to the second aspect of the present invention, in the first aspect of the present invention, the positions of the piezoresistors for the x-axis and the y-axis with respect to the two beams arranged in parallel are located near the action portion side.
There is an effect similar to the effect of the first aspect of the present invention. According to a third aspect of the present invention, in the first aspect of the present invention, the two
The position of the piezoresistors for the x-axis and the y-axis with respect to one beam is set in the vicinity of a connection portion with another beam.
In addition to the effects of the invention, a three-axis acceleration sensor with higher sensitivity in the x-axis and y-axis directions can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態1の上面図である。FIG. 1 is a top view of a first embodiment of the present invention.

【図2】同上の断面図である。FIG. 2 is a sectional view of the same.

【図3】(a)は同上の図1のA部位の拡大上面図であ
る。(b)は同上の図1のB部位の拡大上面図である。
FIG. 3A is an enlarged top view of a portion A in FIG. 1 of the same. FIG. 2B is an enlarged top view of a portion B in FIG.

【図4】(a)は同上の効果を示す説明図である。
(b)は同上の効果と比較する従来例の説明図である。
FIG. 4A is an explanatory view showing the same effect as above.
(B) is an explanatory view of a conventional example comparing with the effect of the above.

【図5】本発明の実施形態2の上面図である。FIG. 5 is a top view of Embodiment 2 of the present invention.

【図6】同上の断面図である。FIG. 6 is a sectional view of the same.

【図7】図5のA部位の拡大上面図である。FIG. 7 is an enlarged top view of a portion A in FIG. 5;

【図8】同上の応力分布説明図である。FIG. 8 is an explanatory diagram of stress distribution in the above.

【図9】同上と比較するための比較例の応力分布説明図
である。
FIG. 9 is an explanatory diagram of a stress distribution of a comparative example for comparison with the above.

【図10】従来例の上面図である。FIG. 10 is a top view of a conventional example.

【図11】同上の断面図である。FIG. 11 is a sectional view of the same.

【図12】同上の図10のA部位の拡大上面図である。FIG. 12 is an enlarged top view of a portion A in FIG. 10 of the above.

【図13】別の従来例の上面図である。FIG. 13 is a top view of another conventional example.

【図14】同上の断面図である。FIG. 14 is a sectional view of the above.

【図15】同上の図13のA部位の拡大上面図である。FIG. 15 is an enlarged top view of a portion A in FIG. 13 of the above.

【図16】他の従来例の上面図である。FIG. 16 is a top view of another conventional example.

【図17】同上の断面図である。FIG. 17 is a sectional view of the above.

【図18】同上の図16のA部位の拡大上面図である。FIG. 18 is an enlarged top view of a portion A in FIG. 16 of the above.

【符号の説明】[Explanation of symbols]

1 固定部 2 可撓部 3 連結部 4 重り部 5 切込み溝 21,22 梁部 23,24,25 ピエゾ抵抗 DESCRIPTION OF SYMBOLS 1 Fixed part 2 Flexible part 3 Connecting part 4 Weight part 5 Cut groove 21,22 Beam part 23,24,25 Piezoresistance

───────────────────────────────────────────────────── フロントページの続き (72)発明者 友成 恵昭 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 鎌倉 將有 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 岡 直正 大阪府門真市大字門真1048番地松下電工株 式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshiaki Tomonari 1048 Kadoma, Kadoma, Osaka Prefecture Inside Matsushita Electric Works Co., Ltd. (72) Inventor Naomasa Oka 1048 Kadoma, Kadoma, Osaka Prefecture Inside Matsushita Electric Works, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板の中心に作用部と、該作用部の周辺に
設けた固定部と、作用部と固定部間に撓み可能に両端が
連結された可撓部とを設けるとともに、可撓部と作用部
の間に切込み溝を形成し、可撓部に歪により抵抗値が変
化するピエゾ抵抗を設けた加速度センサであって、可撓
部を長さ方向に並行配置された2本の梁と該2本の該梁
間を固定部側にて連結する別の梁とで構成し、並行配置
された2本の梁にx軸、y軸方向のピエゾ抵抗を形成
し、別の梁にz軸方向のピエゾ抵抗を形成して成ること
を特徴とする3軸加速度センサ。
An operating portion provided at the center of the substrate, a fixed portion provided around the operating portion, and a flexible portion having both ends connected between the operating portion and the fixed portion so as to be flexible. An acceleration sensor in which a notch groove is formed between a portion and an action portion, and a piezoresistor whose resistance value changes due to strain is provided in the flexible portion, wherein two flexible portions are arranged in parallel in the length direction. A beam and another beam connecting the two beams at the fixed portion side are formed, and piezoresistance in the x-axis and y-axis directions is formed on the two beams arranged in parallel, and the beam is formed on another beam. A three-axis acceleration sensor characterized by forming a piezoresistance in a z-axis direction.
【請求項2】並行配置された2本の梁に対するx軸及び
y軸用のピエゾ抵抗の配置位置を、作用部側付近とした
ことを特徴とする請求項1記載の3軸加速度センサ。
2. The three-axis acceleration sensor according to claim 1, wherein the positions of the piezoresistors for the x-axis and the y-axis with respect to the two beams arranged in parallel are in the vicinity of the action portion.
【請求項3】並行配置された2本の梁に対するx軸及び
y軸用のピエゾ抵抗の配置位置を、別の梁に対する連結
部位付近としたことを特徴とする請求項1記載の3軸加
速度センサ。
3. The three-axis acceleration according to claim 1, wherein the positions of the piezoresistors for the x-axis and the y-axis with respect to the two beams arranged in parallel are in the vicinity of a connection portion with another beam. Sensor.
JP06060998A 1998-02-24 1998-02-24 3-axis acceleration sensor Expired - Fee Related JP3330074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06060998A JP3330074B2 (en) 1998-02-24 1998-02-24 3-axis acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06060998A JP3330074B2 (en) 1998-02-24 1998-02-24 3-axis acceleration sensor

Publications (2)

Publication Number Publication Date
JPH11242050A true JPH11242050A (en) 1999-09-07
JP3330074B2 JP3330074B2 (en) 2002-09-30

Family

ID=13147184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06060998A Expired - Fee Related JP3330074B2 (en) 1998-02-24 1998-02-24 3-axis acceleration sensor

Country Status (1)

Country Link
JP (1) JP3330074B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004110839A1 (en) * 2003-06-17 2004-12-23 The Yokohama Rubber Co., Ltd. Anti-lock brake system and sensor unit for the same
WO2005000652A1 (en) * 2003-06-26 2005-01-06 The Yokohama Rubber Co., Ltd. Motor vehicle drive control system and sensor unit for the same
JP2005247068A (en) * 2004-03-02 2005-09-15 Yokohama Rubber Co Ltd:The Road surface condition detecting system, active suspension system, anti-lock braking system and sensor unit thereof
JP2007114011A (en) * 2005-10-19 2007-05-10 Oki Electric Ind Co Ltd Acceleration sensor chip and method of manufacturing same
EP1816048A1 (en) * 2004-11-05 2007-08-08 The Yokohama Rubber Co., Ltd. Tire ground-contact pattern determining method and its device
US7501835B2 (en) 2004-03-10 2009-03-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Displacement sensor
JP2009276210A (en) * 2008-05-15 2009-11-26 Yamaha Corp Mems
JP2011237390A (en) * 2010-05-13 2011-11-24 Gunma Univ Acceleration sensor
JP2014520638A (en) * 2011-07-14 2014-08-25 エムシー10 インコーポレイテッド Detection of force on foot or footwear
CN109974919A (en) * 2019-04-29 2019-07-05 重庆鲁班机器人技术研究院有限公司 A kind of new six Force sensor
CN113595440A (en) * 2020-10-09 2021-11-02 中国科学院合肥物质科学研究院 Double-folding cross multi-dimensional piezoelectric motor, control method thereof and scanning probe microscope

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7481501B2 (en) 2003-06-17 2009-01-27 The Yokohama Rubber Co., Ltd. Anti-lock brake system and sensor unit for the same
JP2005029142A (en) * 2003-06-17 2005-02-03 Yokohama Rubber Co Ltd:The Antilock brake system and its sensor unit
WO2004110839A1 (en) * 2003-06-17 2004-12-23 The Yokohama Rubber Co., Ltd. Anti-lock brake system and sensor unit for the same
WO2005000652A1 (en) * 2003-06-26 2005-01-06 The Yokohama Rubber Co., Ltd. Motor vehicle drive control system and sensor unit for the same
JP2005035523A (en) * 2003-06-26 2005-02-10 Yokohama Rubber Co Ltd:The Vehicle driving control system and its sensor unit
US8055423B2 (en) 2003-06-26 2011-11-08 The Yokohama Rubber Co., Ltd. Motor vehicle drive control system and sensor unit for the same
JP2005247068A (en) * 2004-03-02 2005-09-15 Yokohama Rubber Co Ltd:The Road surface condition detecting system, active suspension system, anti-lock braking system and sensor unit thereof
US7501835B2 (en) 2004-03-10 2009-03-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Displacement sensor
EP1816048A1 (en) * 2004-11-05 2007-08-08 The Yokohama Rubber Co., Ltd. Tire ground-contact pattern determining method and its device
EP1816048A4 (en) * 2004-11-05 2009-11-18 Yokohama Rubber Co Ltd Tire ground-contact pattern determining method and its device
JP2007114011A (en) * 2005-10-19 2007-05-10 Oki Electric Ind Co Ltd Acceleration sensor chip and method of manufacturing same
JP2009276210A (en) * 2008-05-15 2009-11-26 Yamaha Corp Mems
JP2011237390A (en) * 2010-05-13 2011-11-24 Gunma Univ Acceleration sensor
JP2014520638A (en) * 2011-07-14 2014-08-25 エムシー10 インコーポレイテッド Detection of force on foot or footwear
CN109974919A (en) * 2019-04-29 2019-07-05 重庆鲁班机器人技术研究院有限公司 A kind of new six Force sensor
CN109974919B (en) * 2019-04-29 2021-03-02 重庆鲁班机器人技术研究院有限公司 Six-dimensional force sensing device
CN113595440A (en) * 2020-10-09 2021-11-02 中国科学院合肥物质科学研究院 Double-folding cross multi-dimensional piezoelectric motor, control method thereof and scanning probe microscope

Also Published As

Publication number Publication date
JP3330074B2 (en) 2002-09-30

Similar Documents

Publication Publication Date Title
US20110174074A1 (en) Framed transducer device
US20040025591A1 (en) Accleration sensor
US7302847B2 (en) Physical quantity sensor having movable portion
JPH10177033A (en) Acceleration measuring instrument
JP2575939B2 (en) Semiconductor acceleration sensor
JP2000512023A (en) Suspension structure of semiconductor accelerometer
JP3330074B2 (en) 3-axis acceleration sensor
US20190339078A1 (en) Inertial sensor with single proof mass and multiple sense axis capabiliity
TW201922610A (en) Micromechanical z-inertial sensor
US5251485A (en) Semiconductor accelerometer
JP6258977B2 (en) Sensor and manufacturing method thereof
JP3985214B2 (en) Semiconductor acceleration sensor
KR20030026872A (en) Acceleration sensor
KR20060049908A (en) Acceleration sensor
JP2006275961A (en) Semiconductor sensor and its manufacturing method
JPH1010148A (en) Attitude sensing chip for semiconductor
JP2000147000A (en) Sesnor using piezoresistor and accelerometer
JPH01287470A (en) Semiconductor acceleration sensor
JPH08248060A (en) Semiconductor acceleration detector
JPH0526754A (en) Sensor utilizing change in electrostatic capacitance
JPH08327656A (en) Semiconductor acceleration sensor
JP2007256046A (en) Acceleration sensor
JPH01259264A (en) Semiconductor acceleration sensor
JPH08160066A (en) Acceleration sensor
JP5146097B2 (en) MEMS

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020702

LAPS Cancellation because of no payment of annual fees