JPH11240778A - Ceramic lightweight composite material having closed pore and its production - Google Patents

Ceramic lightweight composite material having closed pore and its production

Info

Publication number
JPH11240778A
JPH11240778A JP8515098A JP8515098A JPH11240778A JP H11240778 A JPH11240778 A JP H11240778A JP 8515098 A JP8515098 A JP 8515098A JP 8515098 A JP8515098 A JP 8515098A JP H11240778 A JPH11240778 A JP H11240778A
Authority
JP
Japan
Prior art keywords
alumina
closed pores
lightweight composite
powder
volcanic glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8515098A
Other languages
Japanese (ja)
Inventor
Kenichi Sodeyama
研一 袖山
Yoshio Sakka
義雄 目
Yoshitaka Jinno
好孝 神野
Kazuto Hamaishi
和人 浜石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima Prefecture
Original Assignee
Kagoshima Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima Prefecture filed Critical Kagoshima Prefecture
Priority to JP8515098A priority Critical patent/JPH11240778A/en
Publication of JPH11240778A publication Critical patent/JPH11240778A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/061Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances by melting out

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a high-strength alumina lightweight composite material having a low baking shrinkage percentage, excellent in dimensional stability, comprising closed pores, having a structure of a pore average diameter controlled to <=10 μm and having a low water absorbing power and a low thermal expansivity at a low cost and to provide a method for producing the alumina lightweight composite material. SOLUTION: This ceramic lightweight composite material is produced by uniformly mixing a solid volcanic glass powder having the average particle diameter controlled to <=10 μm and an alumina powder having the average particle diameter controlled to <=1 μm as a pore forming material and then baking the resultant mixture at >=1,250 deg.C and comprises closed pores. The method for reducing the weight comprises liquefying the volcanic glass particles surrounded by an unsintered alumina powder in advance in the course of baking and leaching the liquefied particles to the side of the alumina by a capillary phenomenon and thereby forming the closed pores.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、焼成収縮率が小さ
く寸法安定性に優れ、密閉気孔からなり、その気孔平均
径が10μm以下に制御された構造を有し、低吸水率、
低熱膨張性、低コスト、高強度のアルミナ軽量複合体お
よびその製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a structure having a low shrinkage ratio, excellent dimensional stability, closed pores, a controlled average pore diameter of 10 μm or less, low water absorption,
The present invention relates to a low-thermal-expansion, low-cost, high-strength alumina lightweight composite and a method for producing the same.

【0002】[0002]

【従来の技術】特願平7−98839号には、中空体を
気孔形成材として用い、セラミックスを軽量化する方法
が従来技術として提案されている。
2. Description of the Related Art Japanese Patent Application No. 7-98839 proposes, as a prior art, a method of using a hollow body as a pore-forming material to reduce the weight of ceramics.

【0003】[0003]

【発明が解決しようとする課題】気孔形成材として中空
体などを用いた従来技術によるセラミックス軽量複合体
は、焼成収縮率が大きく寸法安定性に劣る、焼結体の熱
膨張収縮率が大きい、開放気孔が密閉気孔より多く吸水
率が高い、気孔径が大きい、強度が低い、中空体が高価
であるため高コストになりやすいなどの問題があった。
更に、有機質の中空樹脂ビ−ズなどを用いた場合には、
焼成時に有毒な分解ガスを放出するため、環境上の大き
な問題があった。また、中空体が低比重であるため、特
に湿式成形法において比重分離し易いので成形時に均一
混合し難く、製造性に劣るなどの問題があった。さら
に、中空体を用いて乾式成形する場合には、プレス圧力
で中空体が破損しやすいため、成形体の密度がプレス圧
で大きく変化する、焼結体の気孔が不均一になるなどの
問題があった。
A conventional ceramic lightweight composite using a hollow body or the like as a pore-forming material has a large sintering shrinkage ratio and is inferior in dimensional stability. There are problems that the number of open pores is larger than the number of closed pores, the water absorption rate is higher, the pore diameter is larger, the strength is lower, and the cost of the hollow body tends to be higher because the hollow body is expensive.
Further, when an organic hollow resin bead or the like is used,
Since toxic decomposition gas is emitted during firing, there is a major environmental problem. Further, since the hollow body has a low specific gravity, the specific gravity is easily separated particularly in a wet molding method, so that there is a problem that uniform mixing is difficult at the time of molding and the productivity is poor. Furthermore, in the case of dry molding using a hollow body, since the hollow body is easily damaged by the pressing pressure, there are problems such as the density of the molded body greatly changing by the pressing pressure, and the pores of the sintered body becoming non-uniform. was there.

【0004】[0004]

【課題を解決するための手段】これらの課題を解決する
ために、気孔形成材として平均粒径10μm以下に制御
された中実の火山ガラス粉体と平均粒径1μm以下に制
御されたアルミナ粉体とを均一混合後、1250℃以上
で焼成することによって、密閉気孔の平均径が10μm
以下に制御されたアルミナ軽量複合体を製造することが
可能となった。軽量化の方法としては、従来法にみられ
る中空体の導入や可燃物焼失による気孔形成および揮発
成分を有するガラスの発泡現象などを利用するものでな
く、焼成途中において未焼結のアルミナ粉体に囲まれた
火山ガラス粒子が先に液状化してアルミナ側に毛管現象
で浸出することで密閉気孔が形成されることを利用した
ものである。そのため、開放気孔(連通気孔)が生じ難
く、密閉気孔からなり低吸水率で高強度のアルミナ軽量
複合体が合成できる。
In order to solve these problems, a solid volcanic glass powder whose average particle diameter is controlled to 10 μm or less and an alumina powder whose average particle diameter is controlled to 1 μm or less are used as pore-forming materials. After uniform mixing with the body, baking at 1250 ° C or higher results in an average diameter of closed pores of 10 μm.
It became possible to produce an alumina lightweight composite controlled as follows. The method of weight reduction does not utilize the introduction of hollow bodies, the formation of pores due to burning out of combustibles, and the foaming phenomenon of glass containing volatile components, which are found in conventional methods. This is based on the fact that closed pores are formed by volatilization of the volcanic glass particles surrounded by the liquefaction and leaching to the alumina side by capillary action. For this reason, open pores (continuous vents) are unlikely to be generated, and a high-strength alumina lightweight composite composed of closed pores and having a low water absorption rate can be synthesized.

【0005】アルミナ焼結体の軽量性と強度を両立させ
る方法としては、破壊起源になり易い開放気孔を少なく
し、密閉気孔を多くして可能な限り密閉気孔径を微細に
するという方法がある。しかし、単に気孔を導入する従
来法では、軽量化により開放気孔が生じ易いので、軽量
性と強度を両立させることは困難であった。そこで、軽
量化について鋭意研究を重ねた結果、微細な中実体の火
山ガラス粒子とさらに微細なアルミナ粉体を混合して、
1250℃以上の高温で焼結させることで、開放気孔を
生じさせることなく密閉気孔を導入することが可能であ
ることがわかった。
[0005] As a method for achieving both the lightness and strength of the alumina sintered body, there is a method of reducing the number of open pores which are liable to breakage, increasing the number of closed pores, and making the diameter of the closed pores as small as possible. . However, in the conventional method of simply introducing pores, it is difficult to achieve both lightness and strength because open pores are easily generated due to weight reduction. Therefore, as a result of intensive research on weight reduction, fine solid volcanic glass particles and finer alumina powder were mixed,
It has been found that by sintering at a high temperature of 1250 ° C. or more, it is possible to introduce closed pores without generating open pores.

【0006】そのアルミナ粉体の粒子径は、平均粒径1
μm以下としたときに密閉気孔のみになり易いことがわ
かった。そして、その密閉気孔径が、原料の火山ガラス
粒子径に依存することから、原料の火山ガラス粒子の平
均粒径を10μm以下に制御することで、密閉気孔の平
均径を10μm以下と非常に微細にすることができ、軽
量性と強度を両立させることが初めて可能となった。焼
成温度については、焼成温度が低いと焼結が不十分にな
り開放気孔が多くなり吸水率が大きくなるため、125
0℃以上で焼成することによって、ほとんど密閉気孔か
らなり低吸水率のアルミナ軽量複合体を得ることができ
た。
The particle size of the alumina powder is as follows:
It was found that when the thickness was less than μm, only closed pores were easily formed. Since the closed pore diameter depends on the volcanic glass particle diameter of the raw material, by controlling the average particle diameter of the raw material volcanic glass particles to 10 μm or less, the average diameter of the closed pores is very small, 10 μm or less. It was possible for the first time to achieve both lightness and strength. Regarding the firing temperature, if the firing temperature is low, sintering becomes insufficient, the number of open pores increases, and the water absorption rate increases.
By baking at 0 ° C. or higher, an alumina lightweight composite having almost closed pores and low water absorption was obtained.

【0007】焼成収縮に関しては、アルミナ粉体と火山
ガラス粉体を用いた場合は、1400℃以下の焼成では
アルミナ粉体のみと同様の焼成収縮挙動を示し、140
0℃以上の焼成では、アルミナと火山ガラス中のシリカ
が反応してムライトが生成されるためアルミナ粉体のみ
よりも収縮率が小さくなり、優れた寸法安定性を示し
た。生成したムライトは、アルミナよりも低比重、低熱
膨張性であり、焼成収縮率を小さくするとともに焼結体
の熱膨張係数を低く抑える働きがある。また、強度につ
いては、1300℃〜1400℃で焼成したアルミナ軽
量複合体が、同じ温度で焼結したアルミナ焼結体と同等
以上の強度を示すことを確認している。
With respect to firing shrinkage, when alumina powder and volcanic glass powder are used, firing at 1400 ° C. or lower shows the same firing shrinkage behavior as alumina powder alone.
When calcined at 0 ° C. or higher, alumina and silica in the volcanic glass reacted to generate mullite, so that the shrinkage was smaller than that of alumina powder alone, and excellent dimensional stability was exhibited. The generated mullite has a lower specific gravity and lower thermal expansion than alumina, and has a function of reducing the firing shrinkage and suppressing the thermal expansion coefficient of the sintered body. Further, regarding the strength, it has been confirmed that the alumina lightweight composite fired at 1300 ° C. to 1400 ° C. exhibits strength equal to or higher than the alumina sintered body sintered at the same temperature.

【0008】以上述べた優れた特性を発揮させるために
は、原料の火山ガラス粉体とアルミナ粉体を、均一に混
合し緻密な成形体を得ることが重要である。そのための
方法として、平均粒径10μm以下に制御された火山ガ
ラス粉体と平均粒径1μm以下に制御されたアルミナ粉
体、それと蒸留水、高分子電解質および結合剤を適正量
混合し、石膏型で鋳込み成形し、脱型後乾燥して緻密な
成形体を得た。それを、1250℃以上の高温で焼結す
ることによって、気孔平均径10μm以下に制御された
アルミナ軽量複合体を得た。高分子電解質は、アルミナ
粒子と火山ガラス粒子を水系サスペンジョンにおいて、
均一に分散させるために用いたものであり、結合剤は石
膏型から脱型した成形体の強度を向上させ、焼結を促進
させるために用いた。それらの添加量については、粉体
重量に対してそれぞれ2.9重量%、0.7重量%とし
た場合に、所望のアルミナ軽量複合体を合成することが
可能であった。
In order to exhibit the above-mentioned excellent characteristics, it is important to uniformly mix the raw material volcanic glass powder and alumina powder to obtain a dense compact. As a method therefor, a volcanic glass powder controlled to an average particle size of 10 μm or less, an alumina powder controlled to an average particle size of 1 μm or less, distilled water, a polymer electrolyte and a binder are mixed in an appropriate amount, and a gypsum mold is used. , And then dried after demolding to obtain a dense molded body. By sintering it at a high temperature of 1250 ° C. or more, an alumina lightweight composite controlled to an average pore diameter of 10 μm or less was obtained. Polymer electrolyte, alumina particles and volcanic glass particles in aqueous suspension,
The binder was used to uniformly disperse, and the binder was used to improve the strength of the molded article released from the gypsum mold and promote sintering. When the added amount was 2.9% by weight and 0.7% by weight, respectively, with respect to the powder weight, it was possible to synthesize a desired alumina lightweight composite.

【0009】[0009]

【作用】本発明のアルミナ軽量複合体における気孔形成
は、火山ガラスが発泡するためではなく、その焼成途中
において未焼結のアルミナ粉体に囲まれた火山ガラス粒
子が先に液状化してアルミナ側に毛管現象で浸出するた
めであり、元の火山ガラス粒子径以下の気孔が形成され
ている。その気孔は、密閉気孔からなるので、低吸水率
である。また、中実の火山ガラス粉体は、製造コストが
安く中空ガラス球状体よりも遙かに低価格であり、アル
ミナ軽量複合体を低コストで製造できる。
The pore formation in the alumina lightweight composite of the present invention is not caused by foaming of the volcanic glass, but during firing, the volcanic glass particles surrounded by unsintered alumina powder are first liquefied and the alumina side The pores are smaller than the original volcanic glass particle diameter because they are leached by capillary action. Since the pores are composed of closed pores, they have low water absorption. In addition, solid volcanic glass powder is inexpensive to manufacture and is far less expensive than hollow glass spheres, so that an alumina lightweight composite can be manufactured at low cost.

【0010】湿式成形法の場合には、火山ガラスの粒子
比重が中空ガラス球状体よりも大きいので、アルミナ粉
体との混合サスペンジョンを作製するときに、比重差が
小さく均一混合し易く、乾燥割れし難く成形し易い。さ
らに、乾式成形法の場合には、蒸留水、高分子電解質な
どが不要であり、湿式成形法よりも低コストで製造でき
るという利点がある。また、火山ガラス粉体は、有機質
ビーズと異なり、焼成時に水分しか放出しないことを確
認しており、環境的にも優れた素材である。すなわち、
本発明によるアルミナ軽量複合体は、優れた寸法安定
性、低熱膨張性、低吸水率、高強度、低コスト、簡便な
製造性、環境安全性という優れた特徴を持つ。
In the case of the wet molding method, since the specific gravity of the volcanic glass is larger than that of the hollow glass sphere, the difference in specific gravity is small and uniform mixing is easily performed when preparing a suspension mixed with alumina powder. Easy to mold and easy to mold. Further, in the case of the dry molding method, distilled water, a polymer electrolyte, and the like are not required, and there is an advantage that the production can be performed at lower cost than in the wet molding method. In addition, volcanic glass powder has been confirmed to release only moisture during firing, unlike organic beads, and is an environmentally superior material. That is,
The alumina lightweight composite according to the present invention has excellent features such as excellent dimensional stability, low thermal expansion, low water absorption, high strength, low cost, easy production, and environmental safety.

【0011】[0011]

【実施例】火山ガラス粉体に、鹿児島郡吉田町産シラス
の粉砕物(平均粒径8.2μm、粒子比重2.36)を
用い、アルミナ粉体には住友アルミ精錬製α−アルミナ
粉体(平均粒径0.5μm)を用いた。アルミナに対す
る火山ガラス粉体の割合は、28.6重量%で、粉体と
蒸留水の割合は、42.9重量%とした。高分子電解質
として共和産業製ポリアクリル酸アンモニウムを、結合
剤として三井東圧化学製アクリル系エマルジョンをそれ
ぞれ適量添加し、プラスチック円筒容器に直径19mmの
アルミナボールとともに1時間回転混合、攪拌して水性
サスペンジョンを作製した。真空脱泡後、石膏型に鋳込
み、110℃で乾燥し成形体を得た。成形体は、大気中
毎分2.5℃で昇温し、1300〜1500℃の温度に
1時間保持した。比較として、中空ガラス球状体を2
8.6重量%添加したもの、アルミナ粉体のみのについ
ても同様に焼結体を得た。
[Example] A pulverized shirasu from Yoshida-cho, Kagoshima-gun (average particle size 8.2 μm, specific gravity 2.36) was used as the volcanic glass powder, and α-alumina powder manufactured by Sumitomo Aluminum Refining was used as the alumina powder. (Average particle size: 0.5 μm). The ratio of volcanic glass powder to alumina was 28.6% by weight, and the ratio of powder to distilled water was 42.9% by weight. An appropriate amount of an ammonium polyacrylate manufactured by Kyowa Sangyo as a polymer electrolyte and an acrylic emulsion manufactured by Mitsui Toatsu Chemicals are added as binders, and the mixture is rotated and mixed with alumina balls having a diameter of 19 mm in a plastic cylindrical container for 1 hour. Was prepared. After vacuum degassing, the mixture was cast into a gypsum mold and dried at 110 ° C. to obtain a molded product. The molded body was heated at a rate of 2.5 ° C. per minute in the atmosphere and kept at a temperature of 1300 to 1500 ° C. for 1 hour. As a comparison, the hollow glass sphere was 2
Similarly, a sintered body was obtained in the case of adding 8.6% by weight and the alumina powder alone.

【0012】このアルミナ軽量複合体の1500℃まで
の焼成収縮率は9.9%であり、中空ガラス球状体を用
いたもの(焼成収縮率16.4%)より小さく、さらに
アルミナ粉体のみ(焼成収縮率13.1%)よりも小さ
く、優れた寸法安定性を示した。1300℃、1400
℃、1500℃のアルミナ軽量複合体は、かさ比重がそ
れぞれ2.80、2.97、2.93であり、焼結体内
部に形成された気孔は、吸水率がほぼ0%であったこと
から、密閉気孔からなることがわかった。破断面を観察
した結果、いずれの軽量複合体においても、密閉気孔か
らなり、気孔形状が火山ガラス粒子の輪郭に依存し、そ
の気孔平均径は10μm以下であることが観察された。
The firing shrinkage rate of the alumina lightweight composite up to 1500 ° C. is 9.9%, which is smaller than that using a hollow glass spherical body (firing shrinkage rate of 16.4%). (Sintering shrinkage rate of 13.1%) and showed excellent dimensional stability. 1300 ° C, 1400
C. and 1500.degree. C., the alumina lightweight composite had a bulk specific gravity of 2.80, 2.97 and 2.93, respectively, and the pores formed inside the sintered body had a water absorption of almost 0%. From this, it was found that it was composed of closed pores. As a result of observing the fracture surface, it was observed that each of the lightweight composites was composed of closed pores, the pore shape was dependent on the contour of the volcanic glass particles, and the pore average diameter was 10 μm or less.

【0013】1500℃で焼結したアルミナ軽量複合体
の熱膨張係数は、5.7×0.000001/K(25
〜800℃)であり、アルミナのみの値よりも小さく、
優れた低熱膨張性を示した。また、1300℃、140
0℃焼結のアルミナ軽量複合体の曲げ強度(3回試験の
平均値)は、それぞれ190.7MPa、249.3MPaで
あり、アルミナのみの焼結体は158.9MPa、24
9.7MPaであった。すなわち、アルミナ軽量複合体の
強度は1400℃焼結の場合にはアルミナのみと同程
度、1300℃焼結の場合には、アルミナ軽量複合体の
方がアルミナのみより高強度を示した。
The thermal expansion coefficient of the alumina lightweight composite sintered at 1500 ° C. is 5.7 × 0.000001 / K (25
800800 ° C.), which is smaller than the value of only alumina,
Excellent low thermal expansion. 1300 ° C, 140
The bending strength (average value of three tests) of the alumina lightweight composite sintered at 0 ° C. was 190.7 MPa and 249.3 MPa, respectively, and the sintered body of alumina alone was 158.9 MPa and 24
It was 9.7 MPa. In other words, the strength of the alumina lightweight composite was similar to that of alumina alone at 1400 ° C., and the strength of the alumina lightweight composite was higher than that of alumina alone at 1300 ° C.

【0014】[0014]

【発明の効果】本発明で得られるアルミナ軽量複合体
は、純粋なアルミナ焼結体に比べて25%以上軽量であ
り、吸水率はほぼ0%で、密閉気孔からなるその気孔平
均径は10μm以下に制御されている。また、焼成収縮
率が小さく寸法安定性に優れ、焼成体は低熱膨張性で、
高強度であり、簡便な製造方法により低コストで安全に
製造できる。これらの優れた物性により、耐熱衝撃性の
要求される高温用断熱材、密閉性(低吸水率)と低誘電
率および高強度が要求されるIC用アルミナ基板などの
電子材料、そして、低吸水率と低コストが要求されるア
ルミナ食器、アルミナ工芸品、エクステリア製品などへ
の応用が考えられ、南九州に900億トン賦存すると言
われるシラスの有効利用につながるものと期待される。
The lightweight alumina composite obtained by the present invention is at least 25% lighter than a pure alumina sintered body, has a water absorption of almost 0%, and has an average pore diameter of closed pores of 10 μm. It is controlled as follows. In addition, the firing shrinkage is small and excellent in dimensional stability, and the fired body has low thermal expansion,
It has high strength and can be manufactured safely at low cost by a simple manufacturing method. Due to these excellent physical properties, heat insulating materials for high temperature that require thermal shock resistance, electronic materials such as alumina substrates for ICs that require hermeticity (low water absorption), low dielectric constant and high strength, and low water absorption It can be applied to alumina tableware, alumina crafts, exterior products, etc., which require high efficiency and low cost, and is expected to lead to the effective use of shirasu, which is said to have 90 billion tons in southern Kyushu.

フロントページの続き (72)発明者 浜石 和人 鹿児島県姶良郡隼人町小田1445番地1 鹿 児島県工業技術センター内Continued on the front page (72) Inventor Kazuto Hamaishi 1445-1 Oda, Hayato-cho, Aira-gun, Kagoshima Prefecture Inside the Kagoshima Prefectural Industrial Technology Center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径10μm以下に制御された中実
の火山ガラス粉体と平均粒径1μm以下に制御されたア
ルミナ粉体を均一混合して成形後、1250℃以上で焼
成して得られる密閉気孔からなる軽量焼結体で、焼成途
中において未焼結のアルミナ粉体で囲まれた火山ガラス
粒子が先に液状化してアルミナ側に毛管現象により浸出
することで密閉気孔が形成され軽量化したもので、その
密閉気孔の平均径が10μm以下に制御されていること
を特徴とする高強度のアルミナ軽量複合体。
1. A method in which a solid volcanic glass powder controlled to an average particle size of 10 μm or less and an alumina powder controlled to an average particle size of 1 μm or less are uniformly mixed, molded, and fired at 1250 ° C. or more. This is a lightweight sintered body composed of closed pores, and volcanic glass particles surrounded by unsintered alumina powder are liquefied first during sintering and leached out toward the alumina side by capillary action, forming closed pores and lightweight. A high-strength alumina lightweight composite, wherein the average diameter of the closed pores is controlled to 10 μm or less.
【請求項2】 平均粒径10μm以下に制御された中実
の火山ガラス粉体と平均粒径1μm以下に制御されたア
ルミナ粉体を均一混合して成形後、1250℃以上で焼
成し、焼成途中において未焼結のアルミナ粉体に囲まれ
た火山ガラス粒子が先に液状化してアルミナ側に毛管現
象により浸出することで密閉気孔が形成され、その密閉
気孔の平均径を10μm以下に制御することを特徴とす
る高強度のアルミナ軽量複合体の製造方法。
2. A solid volcanic glass powder controlled to an average particle size of 10 μm or less and an alumina powder controlled to an average particle size of 1 μm or less are uniformly mixed, molded, and then fired at 1250 ° C. or more. On the way, volcanic glass particles surrounded by unsintered alumina powder are first liquefied and leached toward the alumina side by capillary action to form closed pores, and the average diameter of the closed pores is controlled to 10 μm or less. A method for producing a high-strength alumina lightweight composite, comprising:
JP8515098A 1998-02-27 1998-02-27 Ceramic lightweight composite material having closed pore and its production Pending JPH11240778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8515098A JPH11240778A (en) 1998-02-27 1998-02-27 Ceramic lightweight composite material having closed pore and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8515098A JPH11240778A (en) 1998-02-27 1998-02-27 Ceramic lightweight composite material having closed pore and its production

Publications (1)

Publication Number Publication Date
JPH11240778A true JPH11240778A (en) 1999-09-07

Family

ID=13850647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8515098A Pending JPH11240778A (en) 1998-02-27 1998-02-27 Ceramic lightweight composite material having closed pore and its production

Country Status (1)

Country Link
JP (1) JPH11240778A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048073A1 (en) * 2001-12-07 2003-06-12 Ngk Insulators, Ltd Method for producing porous ceramic article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048073A1 (en) * 2001-12-07 2003-06-12 Ngk Insulators, Ltd Method for producing porous ceramic article
US7208108B2 (en) 2001-12-07 2007-04-24 Ngk Insulators, Ltd. Method for producing porous ceramic article

Similar Documents

Publication Publication Date Title
CN101503298B (en) Method for preparing silicon nitride porous ceramic by gel injection moulding
KR100538690B1 (en) Highly Porous Ceramics Fabricated From Preceramic Polymers And Expandable Microspheres, And The Producing Method The Same
US4356271A (en) Noncollapsible ceramic foam
WO2006079208A1 (en) Lightweight proppant and method of making same
BRPI0617350A2 (en) Method for the manufacture of refractory ceramic material, Method for the manufacture of ceramic material with multimodal porosity, Method of manufacture of ceramic material with multimodal porosity from 70% to 90%, and Method of manufacture of insulating ceramic material
CN110818442B (en) CaO-MgO-SiO using asbestos tailings as raw material2Is a foamed ceramic
CN112479679A (en) Glaze composite foamed ceramic plate with low thermal expansion, and preparation method and application thereof
CN104496522A (en) Method for preparing aluminum oxide/mullite foamed ceramic
Jang et al. Processing of highly porous, open-cell, microcellular silicon carbide ceramics by expansion method using expandable microspheres
JP2018165224A (en) Porous ceramic
KR101866319B1 (en) Process for manufacturing high density slip-cast fused silica bodies
JPH11240778A (en) Ceramic lightweight composite material having closed pore and its production
JP2002226285A (en) Lightweight ceramic member and method for manufacturing the same
Kato et al. Effect of core materials on the formation of hollow alumina microspheres by mechanofusion process
JPS58500284A (en) Porous shaped body made of sintered glassy and/or crystalline material and method for producing such a porous shaped body
JPH11240756A (en) Ceramic lightweight composite material having closed pore and its production
CN113800944A (en) Method for preparing micron-pore heat insulation material by virtue of loss on ignition method
JP2003012384A (en) High strength lightweight porous ceramic and method of manufacturing the same
JPH06166579A (en) Production of lightweight cellular building material produced by using coal ash as main raw material
Kamitani et al. Fabrication of highly porous alumina-based ceramics with connected spaces by employing PMMA microspheres as a template
JP2607217B2 (en) Ceramics with fine voids
KR20030044733A (en) Manufacture technology of porous ceramics that use surfactant
KR100646212B1 (en) Producing method of highly porous, high strength ceramics materials and the materials the same
JP2000109381A (en) Lightweight pottery product and its production
JP3219112B2 (en) Method for producing calcium aluminate ceramic sintered body